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1. Introduction    

The increasing demand for portable, high data-rate communications has stimulated search 
for new wireless technologies. Ultra-wideband impulse radio (UWB-IR) is an emerging 
radio technology that can support data rates of megabit-per-second, while maintaining low 
average-power consumption. UWB uses very short, carrier-less pulses of bandwidth on the 
order of a few Gigahertz. Over the past decade, many individuals and corporations began 
asking the United States Federal Communications Commission (FCC) for permission to 
operate unlicensed UWB systems concurrent with existing narrowband signals. In 2002, the 
FCC decided to change the rules to allow UWB system operation in a broad range of 
frequencies between 3.1 and 10.6 GHz. The FCC defines UWB as a signal with either a 
fractional bandwidth of 20% of the center frequency or 500 MHz (when the center frequency is 
above 6 GHz). The formula proposed by the FCC commission for calculating the fractional 
bandwidth is 2(fH-fL)/(fH +fL) where fH represents the upper frequency of the -10 dB emission 
limit and fL represents the lower frequency limit of the -10 dB emission limit. What makes 
UWB systems unique is their large instantaneous bandwidth and the potential for very 
simple implementations. Additionally, the wide bandwidth and potential for low-cost 
digital design enable a single system to operate in different modes as a communications 
device, radar, or locator. Taken together, these properties give UWB systems a clear 
technical advantage over other more conventional approaches in high multipath 
environments at low to medium data rates. Communication over UWB is particularly 
attractive due to its wide range of bit-rates, resilience to multi-path fading, accurate ranging 
ability, low transmission power requirements, and low probability of interception. After 
substantial progress in research on the UWB physical layer, in recent years, researchers 
began to consider the design of UWB networks [1]-[9]. The maximum allowable UWB 
transmission power is limited to a very small value, since UWB shares the same frequency 
band with other existing wireless communication systems. Consequently, short-distance 
communications are the main uses considered and UWB networks will likely often be ad 
hoc in nature. In an ad-hoc network each node has to have a routing function and it is 
essential to use multihop transmission to reach nodes further away. Since each node has a 
network control function, even if one of the nodes is not working properly, its influence on 
the whole network is quite limited. Therefore, ad-hoc networks are excellent with respect to 
robustness. Ad-hoc network do not require any infrastructure, a feature which allows for 
instant deployment and rerouting of traffic around failed or congested nodes. Since in ad-
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hoc networks it is unnecessary to deploy base stations, the cost of a ad-hoc networks system 
is expected to be considerably lower than the corresponding cost of a cellular infrastructure. 
Furthermore, fault-tolerance (for example, due to richness of alternative routes [15]) of this 
type of networks is also significantly improved. Ad-hoc networks can be reconfigured to 
adapt its operation in diverse network environments. As the results of these characteristics, 
ad-hoc networks became of interest to the commercial and to the military markets. It is 
expected that UWB ad-hoc networks will be used for digital household electric appliances 
and peripheral equipment of PCs, for example, such as a wireless link between a PC and 
DVD player or a physical layer for a ‘wireless USB’ replacing traditional USB cables between 
devices. Examples of other applications that were considered are for networking among 
students in classrooms or among delegates at a convention centre. The mechanisms to best 
meet the requirements of the network layer for wireless ad hoc networks are a focus of 
current research and are certainly not well understood for UWB, which is a nascent 
networking technology. There are opportunities to leverage both radio link characteristics, 
using cross-layer design, and application requirements to optimize network layer protocols. 
For example, UWB devices in an ad hoc network may self-organize themselves into 
hierarchical clusters in ways that consider mutual interference, power conservation, and 
application connectivity requirements. 
Throughput, which is defined as the bit rate of successfully received data, is a key 
performance measure for a data communication networks. In a wireless ad hoc network, 
throughput is a function of various factors, including the transmission power, the symbol 
rate (i.e., data rate), the modulation and the coding schemes, the network size, the antenna 
directionality, the noise and the interference characteristics, the routing and the multiple 
access control (MAC) schemes, and numerous other parameters. How to allocate resource 
and determine the optimal transmission power, transmission rate and schedule is a very 
challenging issue. There are several related papers [2]-[8] in the technical literature that study 
the throughput capacity and the optimization of UWB networks. They have suggested that: 
(1) an exclusion region around a destination should be established, where nodes inside the 
exclusion region do not transmit and the nodes outside the exclusion region can transmit in 
parallel [4], (2) the optimal size of the exclusion region depends only on the path-loss 
exponent, the background noise level, and the cross-correlations factor [6], (3) each node 
should either transmit with full power or not transmit at all [7], (4) the design of MAC is 
independent of the choice of a routing scheme [5].  
In this chapter, we analyze and investigate the maximal total network throughput of UWB 
based ad hoc wireless networks. Understanding how this characteristic affects system 
performance and design is critical to making informed engineering design decisions 
regarding UWB implementation. The objectives of our work are: (1) to obtain theoretical 
results which demonstrate the dependencies among the maximum achievable throughput of 
a network, the number of active links in the network, the bit rate and the transmission 
power of active links, and other parameters, and (2) to determine the implications of these 
dependencies on the allocation and scheduling of the network resources. Our analysis show 
that the optimal allocation should: (1) allow the transmitters to either transmit at maximum 
power or be turned off, (2) allow more than one transmission when the maximum powers of 
the links are less than some value, which we term the critical power, (3) allow only one 
transmission when the maximum powers of the links are larger than the critical power, and 
(4) adjust the transmission rates to maintain the optimal transmission rates. We also derive 
an expression of the optimum transmission rate. As an example, we analytically calculate 
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the critical transmission power for the case of two-links and for the case of a scenario of N-
links. Our results imply that the design of the optimal MAC scheme is not independent of 
the choice of the routing scheme. Furthermore, we expect our results obtain in this chapter 
to be helpful to network protocol design as well. 
This chapter is organized as follows. The next section describes the UWB transmission 

system and formalizes the throughput optimization problem. In Section 3, we demonstrate 

the solution for the case of two simultaneous transmitters, while in Section 4 we analyze a 

network with arbitrary number of transmitters. Section 5 discusses the implications of the 

results, and the summary is given in Section 6. 

2. Analytical model 

We consider an ad hoc wireless network (Fig. 1.) that consists of identical nodes, each 

equipped with a half-duplex UWB radio. A transmitting node (a source node) is associated 

with a single receiver node (a destination node) and a pair of source-destination nodes 

forms a communication link. Each link can be selected for transmission by the MAC 

protocol based on some traffic requirements. 

 

 

Fig. 1. A Multiple Hop Ad Hoc Network 

We assume that the physical link layer is based on the Time Hopping with Pulse Position 

Modulation (TH-PPM) scheme, described in refs. [10--12]. In PPM, each monocycle pulse 

occupies a frame. Signal information is contained in pulse time position relative to the frame 

boundaries. Each bit is represented as L PPM-modulated pulses. An analytic TH-PPM 

representation of the transmitted signal of the k-th node is given by 

 /( ) ( )k k k
f j c j L

j

s t w t jT c T Dδ ⎢ ⎥⎣ ⎦
= − − −∑  (1) 
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where w(t) denotes the monocycle pulse waveform, Tf is the nominal frame or pulse 
repetition interval, ckj is a user-unique pseudorandom TH code sequence (used for multiple 

access), Tc is the TH code chip period, Dk ⎣j/L⎦ is the k-th user’s ⎣j/L⎦ -th data symbol, where 

⎣j/L⎦ is the integer part of j/L and a symbol is transmitted as L monocycles PPM-modulated 
pulses, and ├ is the amount of time shift of the PPM pulse for a data bit of "1". 
The UWB communication system considered in this chapter is a spread-spectrum 
communication system, which uses a multiple-access scheme. Time hopping is used for 
multiple accesses. The source and the destination of each link have a common 
pseudorandom time hopping sequence, which is independent of other links’ sequences. In 
the multiple-access scheme, transmissions on other links contribute added interference to 
the received signal and, due to randomness in time-hopping codes, we model such an 
interference as having statistical properties of Gaussian noise. The total noise at a receiver is 
comprised of background noise and a sum of interferences from all other active transmitters. 
The communication channel is assumed to be an AWGN channel. Thus, supposing that N 
links are active at a given time, the signal-to-interference plus noise (SINR) at the i-th link’s 

receiver is represented as γi and is defined as [10] 

 

1,

i ii
i N

i f i k ki

k k i

p g

R T p g

γ

η ρ
= ≠

=
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑
 (2) 

where Ri is the data transmission rate of i-th link and Ri=1/(LTf), pi is the average transmission 
power of the i-th link’s transmitter, gij denotes path gain from the i-th link’s transmitter to j-th 
link’s receiver (gii is referred to as the i-th link’s path gain and gij (i≠j) is the interference path 
gain), ηi denotes the power of the background noise at i-th link’s receiver, and ρ represents a 
parameter which depends on the shape of impulse((79) in ref. [10]). 
In this work, a link is comprised of a pair of transmitter and receiver and the link is active if 
it is transmitting. When N links in a network are active at a given time, we define the 
throughput of the i-th link as the number of packets per second received without error at the 
i-th link's receiver: 

 ( )N
i i iT R f γ=  (3)  

where f(┛i) is the packet success rate; i.e., it is the probability that the i-th link’s receiver 
decodes a data packet correctly as a function of ┛i. The actual form of f(┛i) depends on the 
UWB receiver’s configuration, the packet size, the channel coding, and the radio 
propagation model. We do not impose any restrictions on the form of f(┛i), except that f(┛i) is 
a smooth monotonically increasing function of ┛i, and 0≤ f(┛i)≤1. 
The total network throughput of N active links in the network, which we term TN, is the sum 
of the N individual throughputs TNi. 

 

1

N
N N

i

i

T T

=

=∑  (4)          

The aim of our optimization study is to determine the rate and the power assignments 
among the N links when the link gains and the background noise are given such that the 
total network throughput is maximized. 
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First we examine the properties of the throughput of link i, TNi, as a function of SINR. 

Using the following definition: 

 

1,

i ii
i N

f i k ki

k k i

p g

T p g

μ

η ρ
= ≠

=
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑
 (5) 

eqs. (1) and (3) can now be represented respectively as 

 i
i

iR

μγ =  (6) 

 
( )N i

i i
i

f
T

γ
μ

γ
=  (7) 

Given the links' powers pi (i=1, ..., N), the value of μi is fixed and SINR ┛i varies only with 

rate Ri. As the rate Ri increases, the SINR ┛i and the packet success rate f(┛i) decrease. From 

eq. (7), we can see that too large or too small SINR leads to reduced throughput; at small 

SINR, the throughput is limited by small packet transmission success probability; however, 

at large SINR, the throughput is limited by small data transmission rate. Thus, we expect 

that there is an optimal value of SINR or an optimal symbol rate which corresponds to the 

maximum throughput. 

3. Optimization for the two-links case 

Before analyzing the performance of an arbitrary number of active links, we examine the 

case of two active links (N=2). This will allow us to gain some insight into the optimum 

allocation of transmission rates and transmission powers based on maximization of the 

throughput. 

In the case of two active links, the total throughput is 

 2 1 2
1 2

1 2

( ) ( )f f
T

γ γ
μ μ

γ γ
= +  (8) 

To obtain the optimal values of SINRs, ┛1* and ┛2*, that maximize the total network 

throughput, when p1 and p2 are fixed, we differentiate eq. (8) with respect to ┛1 and ┛2, 

setting the first derivatives at zero and verifying that the second derivatives are negative. A 

simple calculation reveals that the conditions for both ┛*1 and ┛*2 are the same and, 

therefore, we can write ┛*1=┛*2 = ┛c and state the conditions on ┛c as follows: 

 '( ) ( )c c cf fγ γ γ=  (9) 

 

 ''( )cf γ < 0  (10) 

Then, from eq. (6), we calculate the optimal data rates: 
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R

T g p
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γ γ η ρ
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γ γ η ρ

= = ⋅
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= = ⋅
+

 (11) 

And with the above conditions, the optimal total network throughput is 

 

2* '
1 2

'
11 1 22 2

1 21 2 2 12 1

( )( )

( )
( )

c

c

f

T f

f g p g p

T g p g p

γ μ μ

γ
η ρ η ρ

= +

= +
+ +

 (12) 

When there is only a single active link in the network, either p2=0 or p1=0, the optimum total 

throughput is, respectively 

 

'
1* 2* 11 1
1 2

1

'
1* 2* 22 2
2 1

2

( )
( 0)

( )
( 0)

c

f

c

f

f g p
T T p

T

f g p
T T p

T

γ
η

γ
η

= = = ⋅

= = = ⋅

 (13) 

If we can adapt the transmission rates to the transmission powers according to eq. (11), the 

optimal total network throughput is then a function of the two links' powers and its value is 

determined by eqs. (12) and (13). Next, we show how to allocate the transmission powers 

between the two links so as to maximize the total network throughput. To do so, we focus 

our attention on eq. (12). From eq. (12), the optimal total network throughput is a function of 

p2 only for fixed value of p1. In Figure 2, we depict a set of curves of the optimal total 

network throughput for different values of p1. Note that the graph includes the value of T21* 

(i.e., T2*(p1=0)) and that the values for p2=0 correspond to the situation in which only the first 

link is active. We state two observations: Firstly, we note that the throughput increases for 

large enough values of p2 and that for small values of p1, the value of T2* increases faster than 

for larger values of p1, so that T21* will eventually exceed T2* for non-zero p1. Secondly, we 

observe from the Figure that, there is a critical value, pc1, such that if p1 is larger than pc1, T2* 

will first decrease, take on a minimum, and then increase as p2 grows. However, if p1 is 

smaller than pc1, T2* will always be an increasing function of p2, with a minimum at p2=0 (i.e., 

when the second link is inactive). These two observations imply that, when the two powers 

are high enough, the optimal total network throughput of two active links will always be 

smaller than the throughput of a single active link, but if the power of the first link is smaller 

than pc1, then the adding of the second link increases the optimal total network throughput. 

To obtain the value of pc1, we set ∂T2*/∂p2 at p2=0 at zero, which results in 

 
2
1 12 222

1 2
12 2 21 11

( 1 4 1)
2

c

g g
p

g g g

ηη
ρ η

= + −  (14) 

Also, if eq. (12) is seen as a function of single variable p1 with p2 being a parameter, we can 

obtain the critical value of p2 as 
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2
2 21 111

2 2
21 1 12 22

( 1 4 1)
2

c

g g
p

g g g

ηη
ρ η

= + −  (15) 

When p2 is smaller than pc2, T2* will always be an increasing function of p1. If the power p1 
and p2 simultaneously satisfy the following two inequalities: p1< pc1 and p2< pc2, then the 
total network throughput, T2*, is larger than the throughputs of the single active link case 
with the same power, T11* and T21*. In the example of Figure 2, we find that pc1=90. 95 mW 
and pc2=155.69 mW. 
 

 

Fig. 2. The maximal total throughput vs. the power of the second link, the power of the first 
link as the parameter, and with the following values of parameters in (12): f’(┛c)/Tf=1 bit/s, 
g11=0.03, g22=0.04, g21=0.003, g12=0.002, ρ=0.01, η1=0.004 mW, η2=0.006 mW, pc1=90.95 mW, 
pc2=155.69 mW 

In any practical situation, transmission powers are not unlimited. But, using eq. (11), we can 
calculate the corresponding optimal transmission rates according to the attainable 
transmission power values and, so as to achieve the optimal throughput. We describe how 
to allocate the transmission powers, so as to maximize the throughput, when 0<p1<P1 and 
0<p1<P2. Since the sign of the second derivatives of eq. (12) with respect to p1 and p2 is 
positive for any value of p1 and p2, the maximum throughput lies on the boundary of the 
attainable region, i.e., [0<p1<P1 , 0<p1<P2]. Based on our analytic results obtained so far, if 
P1< pc1 and P2< pc2, the optimum transmission power allocation is p1=P1 and p2=P2, i.e., the 
two links' transmitters transmit at their maximum powers and at the same time (Figure 3 is 
an example of such a case). However, if P1>pc1 and P2>pc2, the optimum allocation is p1=P1, 
p2=0 or p1=0, p2= P2, i.e., the transmitter of one link transmits at its maximum power, while 
the other is turned off (Figure 4 is an example of such a case). 
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Fig. 3. The maximal total throughput vs. the transmission powers of the two link, when 
maximum attainable powers are smaller than the critical values, for the same parameters' 
values as in Figure 2 (the total throughput is maximum at p1=80 mW, p2=80 mW) 

A transmitted signal attenuates according to a power law as a function of distance from its 
transmitter; i.e., if dij is the distance from the i-th link’s transmitter to j-th link’s receiver, then 

 ij ijg c d α−= ⋅  (16) 

where c and α are constants. This is a commonly used attenuation model for wireless 
transmissions, and it has been verified as applicable to an UWB indoor propagation model 
[13][14]. Hence, pc1 and pc2 are functions of d12, d21, d11, and d22. From eqs. (14) and (15), we 
calculate the two critical distances, dc12 and dc21 for given values of P1, P2 , d11, d22, and either 
d12 or d21. 

 

1
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22 12 1 2 1
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11 1
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c
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d

α αρ η ρ
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−⎡ ⎤+
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d cd P P c
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d
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η

−⎡ ⎤+
= ⋅ ⎢ ⎥

⎢ ⎥⎣ ⎦
 (18) 

So, if d12<dc12 or d21<dc21, only one link should be active. This conclusion is equivalent to the 
concept of "the exclusion regions" in refs. [4--6], but in our case the exclusion regions sizes, 
dc12 and dc21, depend on the transmission powers of the sources, the powers of background 
noises, the path-loss exponent, and the length of the links; thus our solution is different from 
the proposition in refs. [4--6]. 
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Fig. 4. The maximal total throughput vs. the transmission powers of the two link, when 
maximum attainable powers are larger than the critical values, for the same parameters' 
values as in Figure 2 (the total throughput is maximum at p1=500 mW, p2=0 mW) 

4. Optimization for N links 

We now expand our study to consider the optimization problem of eq. (4) for networks with 

N active links. Examining the first and second derivatives of (4) with respect to ┛i (i=1,…,N), 

we find that all the optimal values of SINRs, ┛*i (i=1,…,N), correspond to one and the same 

value, ┛c, a value which satisfies eq. (9) and (10). So the N optimal rates are 

 *

1,

1
1ii ii
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c c f

i ki k

k k i

g p
R i N

T
g p

μ
γ γ

η ρ
= ≠

= = ⋅ =

+ ∑
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Accordingly, the optimum total network throughput is 

 
'
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= ≠
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∑

∑
 (20) 

We fix all pi (i=1,…, N) at some arbitrary values, except for pj, and we consider eq. (20) as a 

function of a single free variable pj. We can draw curves similar to those in Figure 2, but the 

values for pj=0 are now the throughputs of the N-1 active links. The first and second partial 

derivatives of (20) with respect to pj are 
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Because eq. (22) is always positive for any pj>0 (j=1… N), TN* is always a concave function, 

and hence its maximum is only attained either at pj=0 or at the value of maximum 

transmission power, pj=Pj. Of course, pj=0 means that the link j is inactive, while pj=Pj means 

transmission at maximum attainable power. So to solve the maximal throughput problem, 

we need to determine how many links will be active (transmitting with maximal power). By 

setting eq. (21) at pj=0 (j=1… N) at zero, we can compute a set of critical pcj (j=1… N). When 

Pj< pcj (j=1… N), since eq. (21) is always positive, then the maximal total throughput of N 

active links, TN*, is larger than the maximal throughput of single active link, T1*, and larger 

than the maximal throughput of N-1 active links, T(N-1)*. So the optimal scheduling is to 

allow all the N links to transmit, each at its maximal power. When Pj>pcj (j=1… N), the 

maximal total throughput of N active links might be less than the maximal throughput of a 

single active link. So, at any particular time, the optimal scheduling should allocate 

transmission of one active link with large enough power, while the other transmitters are 

turned off. We could also arrive at this conclusion by the following argument. If we allocate 

each link’s transmitting power as pi=aip (i=1… N), ai being a positive constant or zero, then 

eq. (20) becomes 
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We can see that TN* is an increasing function of p. When p is large enough (strictly, infinity), 
we can obtain 
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When more than two links are active, the value of TN* is limited. However, if just one link is 
active, for example, ai=0 (i=2…N) but a1≠0, then TN* tends to infinity. 
We consider a special scenario when gii=g, gij=g’(i≠j), ηi=η, and pi=p (i,j=1…N). With these 
conditions, the single active link’s maximal throughput is 
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However, the maximal total network throughput of N active links is in this case: 
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and each link's maximal throughput is 
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If we let p go to infinity, T1* will approach infinity as well, but TN* approaches the following 

finite value: 
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We can also see that TN* is an increasing function of N. So with N increasing to infinity, eq. 

(27) decreases to zero, but  eqs. (26) and (28) approach 
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From comparison, eq. (26) will be smaller than eq. (25) when p is larger than the following 

value of pc: 

 
'

cp
g

η
ρ

=  (30) 

Using eq. (16), we calculate the critical value of the interference distance, dc’, for transmitted 

power p: 

 

1
' ( )c

cp
d αρ

η
=  (31) 

In this special symmetric scenario, the critical power, pc, is independent of N. and the critical 

interference distance, dc’, is independent of the link length. When 0<p<pc, the maximal total 

network throughput is larger than the maximal single active throughput and the increment, 

TN*-T1*, is maximum when p is equal to the following value of pm: 

 
( 1) '

mp
N g

η
ρ

=
+

 (32) 
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When p=pm, eqs. (25) and (26) become, respectively 
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and the maximal throughput of each link is 
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Actually, T∞* is the maximal total network throughput capacity of a network with 

concurrently active links, and 90% of the maximal total network throughput can be attained 

when N=81. From eq. (29), the maximal total network throughput T∞* is mainly determined 

by the physical layer, and it can be enhanced by increasing g (the signal gain) and f’(┛c) 

(packet transmission success probability increment rate at optimal SINR), and by decreasing 

Tf (pulse repetition interval), ρ (the shape factor of impulse), and g’(the interference gain). 

The values of f’(┛c), Tf, and ρ depend on design parameters, such as modulation, pulse shape, 

time-hopping sequences, and the size of data packets. The values of g and g’ depend on the 

antenna design; e.g., multiple transmit and receive antennas (MIMO) [16] can increase g and 

decrease g’. However, g and g’ are also affected by the routing and the MAC schemes. 

5. Discussion and concluding remarks 

While the fundamental principles of networking are the same regardless of the underlying 
physical layer, UWB has unique characteristics that influence how protocols and a UWB 
system are designed. A UWB network can be represented by a five-layer model, compatible 
with the TCP/IP suite, that includes a UWB physical layer, associated data link layer, 
network layer, transport layer, and application layer. Each layer provides services to the 
layer directly above it and uses services provided by the layer beneath it. The unique 
characteristics of the UWB physical layer have the greatest influence on the design of the 
data link layer. The characteristics of the physical layer and the design of the associated data 
link layer may also influence the design of the network layer, transport layer, and even 
application layer, especially if a design is to achieve optimal performance. 
When designing a communication network, it is important to understand how much 
information such a network can transport, what parameters affect the maximal throughput 
of the network, and how to change the parameters so as to maximize the throughput. The 
two last sections provide us with some answers to these questions for UWB wireless ad hoc 
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networks. We have established the dependencies among the maximum achievable 
throughput of the network, each active link’s transmission rate and transmission power, the 
number of simultaneously active links in the network, the link and the interference paths 
gains, and the background noise. 
In the MAC protocol of data link layer, time is divided into time slots, which are allocated 

for links according to the link-scheduling policy. There are two types of link-scheduling 

policies: single link policy which allows only one link to transmit in any slot, and concurrent 

links policy which allows multiple links to transmit simultaneously in a slot. These two 

policies require that the transmission rate of the active links be maintained at the optimal 

value according to eq. (19). Under this condition, the maximum total network throughput 

depends on each link's maximum power and on the interferences among the active links. 

Our results show that the single link policy suits transmissions with large power: the 

throughput increases linearly with the power (and, in theory, indefinitely), as shown in eq. 

(13) and (25). With this policy, the larger is the power, the larger is the throughput. With the 

concurrent links policy, the maximal total network throughput cannot increase indefinitely 

by continual increase in transmission powers. Actually, the maximal total network 

throughput is limited by the interference levels among the active links, and the throughput 

approaches a finite value when multiple powers are increased indefinitely. This is 

demonstrated by eqs. (24) and (28). So, on one hand, when the powers are large enough, the 

single active link maximal throughput exceeds the maximal total network throughput of 

concurrently active links. In this situation, it is better to choose the single link policy. On the 

other hand, the maximal total network throughput of the concurrently active links is larger 

than the maximal throughput of a single active link, if each link power is below the critical 

value or when the separation between any pair of active links is above their critical values. 

These critical values are computed in eqs. (14), (15), (30), (17), (18), and (31). Hence, the 

concurrent links policy is suitable for small powers or for sparse networks. In this situation, 

each link has an optimum power value which maximizes the throughput gain by increasing 

the number of the concurrently active links. 

The maximal total network throughput with concurrent active links, or the network 

capacity, is calculated by eq. (29), and can be enhanced by decreasing the interference path 

gains or by increasing the link path gain, but not by increasing the power. As the number of 

concurrently active links, N, is increasing, each link throughput is decreased. Existing 

protocols (like 802.11) are based on the single link policy, but their rate might not be 

optimum. The regulatory bodies (like FCC) impose severe limitation on UWB power density 

to avoid interference on other existing wireless communication systems (such as GPS and 

802.11 networks), since they share the same frequency band. The FCC regulation allows 

commercial UWB devices to emit no more than -41 dBm/MHz of average transmitted 

power, so the maximum transmitted power is limited to less than -2.2 dBm, or 

approximately half a Milliwatt. Consequently, the concurrent links policy may be a more 

suitable choice for UWB ad hoc networks. 

Because the routing protocol of network layer determines the paths of data flow and 
interference gains between intended links, the design of an MAC protocol based on the 
concurrent links policy should be related to the choice of a routing protocol for 
maximization of the total network throughput. However, the design of an MAC protocol 
based on the single link policy should be independent of the choice of routing protocol. As 
the rate adaptation requires support of the physical layer, such adaptation is most efficiently 
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performed if the design is based on cross-layer considerations. The application of our results 
to implementation of an MAC protocol based on the concurrent links policy with cross-layer 
design considerations is outside the scope of this chapter, but is left for future study. 
When a mechanism for adaptation of transmission rates is incorporated into the design of 

the MAC protocol, by adjusting the transmission rates to their optimum values, the maximal 

total network throughput is limited by maximal transmission power and by the interference 

from other active links in the networks. The maximal total network throughput approaches 

a constant and each link’s throughput approaches zero as the maximal transmission power 

and the simultaneously active links increase in number. For the case of a single active link, 

the maximal throughput increases linearly with the maximal transmission power and, 

barring a limit on transmission power, the maximal throughput can increase indefinitely. 

When the values of the maximal transmission power are large enough, the maximal 

throughput in the single active link case exceeds the maximal total network throughput of 

the multiple active links case. To maximize the total network throughput, the optimal 

transmission scheduling should allocate at any time transmission on one link only when the 

maximal transmission power is large and the interference is strong. However, when the 

maximal transmission power is small and the interference is weak, the optimal transmission 

scheduling should allocate at any time simultaneous transmission on multiple links. 

6. Summary 

In this chapter, we study the problem of radio resource allocation, both transmission rates 

and transmission powers, so as to maximize the throughput of UWB wireless ad-hoc 

networks. Our analysis is based on the packet-success function (PSF), which is defined as 

the probability of a data packet being successfully received as a function of the receiver’s 

signal-to-interference-and-noise-ratio (SINR). We find an optimal link transmission rate, 

which maximizes the link’s throughput and is dependent on the all active links transmission 

powers. If each link transmission rate is adapted to this optimal link transmission rate, then, 

with single-link operation (i.e., no other interference sources are present), the link's 

throughput is directly proportional to the transmitter’s power and increases indefinitely 

with increasing transmission power. However, with multiple-links operation and 

interference each other, as each link transmitting power increases, so does the interference 

level, and the total network throughput approaches a constant other than infinite. Thus, for 

sufficiently small transmission power, the total network throughput of the multiple-links 

case exceeds the throughput of the single-link case, but the reverse happens for high power. 

In addition, this chapter reveals that, as the number of concurrently transmitting links 

increases, regardless of the power level, the maximal total network throughput approaches a 

constant, with each link’s throughput approaching zero. To maximize the network 

throughput, for the case of small maximal transmission power with weak interference 

levels, the optimal transmission scheduling allocates simultaneous transmissions of multiple 

links, but for the case of large maximal transmission power with strong interference levels, 

the optimal policy assigns separate time for transmission on each link. The breakpoint of 

when to use one link or multiple links is termed the critical power. As an example of the 

analytical calculation of the critical link's power, we present here solutions for a two-link 

case and an N-link case. In contrast with previous studies, our results imply that the design 

of optimal MAC is dependent on the choice of a routing scheme. 
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