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1. Introduction 

The term acoustic refers to a periodic pressure wave. The term includes waves in the audio 
frequency range as well as those above audio frequency range (ultrasonic and hypersonic) 
and below the audio frequency range. Acoustic waves are characterized by their speed and 
absorption. Acoustic absorption is a measure of the energy removed from the acoustic 
waves by conversion to heat as the wave propagates through a given thickness of material; 
it has unit dB/cm (or Np/cm). Absorption is a material property, in contrast to attenuation, 
which includes energy loss due to scattering and reflection as well as and depends upon 
sample size and experimental configuration.  
The elastic and inelastic properties of solids are suitable for the study of acoustic dissipation 
which account for the direct conversion of acoustic energy into thermal energy. In 
measurement of the attenuation of acoustic waves in solids using pulse echo method, the 
attenuation is usually found to be greater than the absorption due to intrinsic dissipation. 
Acoustic energy is removed from the propagating acoustic wave, but is not immediately 
converted into heat. 
The most important cause of the attenuation is the scattering of acoustics wave from 
imperfections. In terms of phonon description of acoustic waves, this is a two-phonon 
process, in which incoming and outgoing phonons have different wave vectors. The 
perturbation at the scattering centre may be due to a mass difference of an impurity atom 
from the normal mass or to a change in interatomic forces.  
In polycrystalline solids, sound is scattered from the boundaries between the microcrystal 
grains. The grain boundaries act as scattering centers due to the discontinuity of the elastic 
constants, and the amount of loss depends on the grain size and on the wavelength of the 
acoustic wave. When the wavelength of the acoustic wave is small compared to the grain size, 
the loss is independent of frequency and inversely proportional to the mean grain diameter. 
When the wavelength is large compared to the grain size, the loss is proportional to the fourth 
power of the frequency (Rayleigh scattering) and to the third power of grain diameter. 
Another source of nondissipative loss is diffraction of acoustic field from the transducer. 
This is an important loss mechanism in megahertz frequency range, but at higher 
frequencies it is negligible. At higher frequencies, a loss mechanism occurs due to lack of 
flatness and parallelism of the end faces of the specimen. At higher frequencies (10 GHz), 
the wavelength of the sound in a solid is of the order of optical wavelength in visible range 
and hence, the surface of the specimen should be polished with optical quality. 

Source: Acoustic Waves, Book edited by: Don W. Dissanayake,  
 ISBN 978-953-307-111-4, pp. 466, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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Various causes can be attributed to the dissipation of acoustic waves propagating in 
different types of solids. These causes depend primarily on the physical conditions of the 
material under investigation. Having control over the physical conditions of the material, 
one cause can be studied eliminating others. Most of the energy from the propagating 
acoustic wave through the medium is absorbed and converted into heat. Following causes 
may be attributed to the attenuation of the acoustic wave propagating through a solid; 
(a) Electron-phonon interaction, (b) Phonon-phonon interaction, (c) Lattice imperfection, (d) 
Thermoelastic loss (e) Ferromagnetic and Ferroelectric losses and (f) NMR and Thermal 
relaxation etc.. In non conducting non-ferromagnetic solids at 50 K and above, phonon-
phonon interaction is the principal cause of acoustical dissipation. 
Among the wide band gap II-IV semiconductors, the barium chalcogenides [BaX, X=S, Se, 

Te] are interesting in connection with optoelectronic applications in blue light wavelength 

regime. The Barium Chalcogenides form very important closed shell ionic systems 

crystallized in the NaCl (B1) type and CsCl (B2) type structures at ambient conditions. 

Alkaline earth chalcogenides are currently under intense investigations driven by their 

applications in light emitting diodes (LEDs) and laser diodes (LDs). It is expected that these 

compounds may provide new II-IV candidates for the fabrication of various electrical and 

optical devices [Charifi et al. (2005) and Bouhemadou et al. (2006)]. 

Experimental as well as theoretical work on different aspects of these compounds has been 

reported in the recent past [Charifi et al. (2005), Bouhemadou et al. (2006), Hassan and 

Akbarzadeh (2006) and Cervantes et al (1998)]. However, results on temperature dependent 

acoustical behaviour of these chalcogenides viz. acoustical dissipation due to phonon-

phonon interaction, thermoelastic loss, dislocation damping, Gruneisen parameter, non-

linearity parameters and thermal relaxation time etc, which are very important parameters 

necessary to explain the microstructure and other related physical properties of these 

chalcogenides have not been studied. Recently, we studied in detail [Singh and Singh 2010] 

acoustical behaviour of these compounds starting from second and third order elastic 

constants (obtained at different temperatures), which were used to evaluate Gruneisen 

parameters and non-linearity parameters along different crystallographic directions viz. 

<100>, <110> and <111> for longitudinal and shear modes in the temperature range 50K-500 

K. Taking electrostatic and Born repulsive potentials and utilizing some parameters viz. 

nearest neighbour distance, hardness parameter and specific heat as a function of Debye 

temperature; acoustical dissipation coefficients were obtained at different temperatures. 

2. Absorption of acoustic waves by thermal phonons 

The anharmonic interactions among phonons in a solid are responsible for attenuation of 
ultrasonic waves, and are particularly important in insulators where absorption due to free 
electrons is absent. Also, when a longitudinal wave propagates in a crystalline solid, 
compression and rarefaction is produced and heat is transmitted from compressed part to 
rarefied parts and dissipation of acoustic waves occurs. Dislocation damping due to screw 
and edge dislocations also produces appreciable loss in solids.  

2.1 Phonon-phonon interaction  

In perfect, insulating, non-ferromagnetic and non-ferroelectric substances, dissipation of 

acoustical energy occurs mainly due to phonon-phonon (p-p) interaction and thermoelastic 

www.intechopen.com



Dissipation of Acoustic Waves in Barium Monochalcogenides   

 

433 

loss. Akhiezer (1939) was first to propose the phonon-viscosity mechanism for acoustical 

dissipation, but he did not include the finite value of relaxation time for thermal equilibrium 

process. Bommel and Dransfeld (1960) later took this work considering the relaxation time 

to be finite. They obtained results comparable to the experimental results. Further, Woodruf 

and Ehrenreich (1960) used the Boltzmann equation method to evaluate the steady state 

distribution of thermal phonons and acoustical attenuation. They considered the N (normal) 

and U (Umklapp) processes. But due to insufficient information regarding parameter ‘ γ ’, 

used,  Mason (1965) used Gruneisen constant ( )j
iγ , which is related to second and third 

order elastic constants and this approach is found to be very useful for the estimation of 

ultrasonic attenuation in various crystals. 

At room temperature and in a wide temperature region also, thermal phonon relaxation 

time, thτ , varies from 10-10  sec to 10-12 sec from metallic to dielectric crystals. As temperature 

increases, thτ  decreases. Hence, condition 1thωτ <<  holds good and at the same time the 

individual phonon looses its significance and idea of the phonon gas having macroscopic 

parameter is described. In the Akhiezer regime (ωτ « 1), a sound wave passing through a 

solid can be attenuated by two processes. First, if the wave is longitudinal, periodic 

contractions and dilations in the solid induce a temperature wave via thermal expansion. 

Energy is dissipated by heat conduction between regions of different temperatures. This is 

called thermoelastic loss. Second, dissipation occurs as the gas of thermal phonons tries to 

reach an equilibrium characterized by a local (sound wave induced) strain. This is internal 

friction mechanism. 
The physical basis for obtaining attenuation coefficient is that the elastic constants 
contributed by thermal phonons relax [Bommel and Dransfield (1960), Pippard (1955) and 
Mason (1955)]. The phonon contribution to the unrelaxed elastic constants is evaluated by 
taking into consideration the change in energy of the thermal phonons due to applied 

instantaneous strain. The frequency of each mode iν  is changed by ji
i j

i

S
ν γ
ν
∂

= − , where j
iγ  

is generalised Gruneisen parameter & Sj is instantaneous strain. It is assumed that all the 
phonons of a given direction of propagation and polarization have equal change in 
frequency. Then phonons of ith branch and jth mode suffer a change in temperature 

0

ji
i j

T
S

T
γΔ

= −  (T is the temperature). A relaxed elastic constant is obtained after there is 

phonon-phonon coupling among various branches and ΔTi relax to a common temperature 

change, TΔ  given by j
i j

T
S

T
γΔ

= − ; where j
iγ  is the average value of j

iγ . 

The sudden application of acoustical pressure to a body at temperature T  causes different 
temperature increments for different phonon modes, which relax back to new equilibrium at 

a temperature T T+ Δ  through the phonon-phonon collision. This temperature difference 
lags behind the periodic stress and causes a relaxational absorption. 

The relation between the attenuation and eCΔ  (change in the elastic constant due to non-

equilibrium temperature separation of the phonon modes by the applied strain) is given as: 

 2 3 2 2/ 2 (1 )e th thC dVα ω τ ω τ= Δ +  (1) 

Where α the is attenuation in dB/cm, d  is density, ω  is angular frequency of the ultrasonic 

wave and V  is the velocity of the wave. 
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When the strain jS  is applied to the crystal, there is change in mode frequency given by: 

 0
1

(1 )j
i i i j

j
Sω ω γ

=
= − ∑  (2)                          

0iω  is frequency of the mode in the standard state. By measurements of SOEC and TOEC, it 
could be predicted that j

iγ  do not vary much. When the above expression is differentiated, 
one obtains: 

 0( / ) /j
i i j iSγ ω ω= ∂ ∂  (3) 

j
iγ  is known as Gruneisen number. A general formula for j

iγ  has been given by Brugger in 
terms of tensor notation: 

 ( ) / 2j jk
i i i j p q jkpq r s jkpqrs eU U N N C U U C Cγ γ− = − = + +  (4) 

Where jk  are the two index symbols for strain jS . pN  and qN  are the direction cosines for 
the propagation direction and eC  is the required elastic constant determined by the type of 
the wave and the direction of propagation. jU  and kU  are the direction cosines for the 
particle displacements. jkpqC  and jkpqrsC  are the second and third order elastic constants in 
tensor notations. Now a suddenly applied strain neither changes the number of modes nor 
their entropy. Mason considered thermal energy of the modes under Debye’s 
approximation, 

 2 2

0
3 ( / ) ( /(exp( / ) 1))

gi

th i gi
i

U N kT d
ω

ω ω ω ω= ∑ −∫¥ ¥  (5) 

on differentiation of the sum of the elastic energy plus the total thermal energy of all modes, 
one obtains: 

 /j th jT U S= ∂ ∂  (6) 

3 3

0
3 ( / )( ( / ) ( /(exp( / ) 1))

giS
ij j j i giC S S N kT d

ω
ω ω ω ω= + ∂ ∂ ∑ −∫¥ ¥  

and finally one gets: 

 23 ( ) 3j jS
j ij i i j i i

i i
T C E S Eγ γ= + ∑ + ∑  (7) 

where jT  is the stress associated with the strain jS , ijC  is the corresponding elastic 
constants resulting from no entropy exchange between any of the modes and j

iγ  is the 
Gruneisen number. iE  is the thermal energy associated with each direction and each mode. 
The above expression, shows that elastic constant changes by 

 23 ( )j
e i i

i
C E γΔ = ∑  (8) 

This development is valid for shear modes for which the average rise in temperature is zero. 
For longitudinal modes, the increase in modulus resulting from the difference between the 
adiabatic and isothermal conditions is to be supported and it is given by: 
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 2(3 ( ) )j
e i i

i
C E CTγ γΔ = ∑ −  (9) 

Replacing the value of eCΔ , one gets: 

 2 3 2 2/6 (1 )th thED dVα ω τ ω τ= +  (10) 

for 

  1thωτ << , 2 3/6thED dVα ω τ=  (11) 

Equation (1) reduces to 

 2 2 3
0( / ) 2 ( /3) /l l l lf E D dVα π τ=  (12) 

and  

 2 2 3
0( / ) 2 ( /3) /S S S Sf E D dVα π τ=  (13) 

for longitudinal and shear waves, respectively. 

 where     2 29 ( ) (3 ( ) / )j j
i iD CT Eγ γ= < > − < >  (14) 

Here D  is the non-linearity constant. Mason and co-workers ( 1964) have obtained a 
number of tables in terms of second and third order elastic constants to calculate 2( )j

iγ< >  
and 2( )j

iγ< >  for different directions of propagation and polarization. Gruneisen numbers 
along different directions of propagation viz. <100>, <110> and <111> can be obtained using 
Mason (1965) approach.  
Thermal relaxation time, τ  (subscripts l and s for longitudinal and shear waves) is given as, 

 
2

3

2
l

s
v

K

C V

ττ τ= = =
< >

 (15) 

Where K is thermal conductivity, vC  is specific heat per unit volume and V< >  is Debye 

average velocity given by 

 
( )3

3

V< >
  =  

3

1

LV
  +  

3

2

SV
 (16)  

The Debye temperature is given by [Jasiukiewicz & Karpus (2003)], 

                                                      ΘD =   ћ <V> qd / KB (17) 
KB is Boltzmann constant and  
 qd =      (6П2Na) 1/3  where Na  is atom concentration 
According to Mason and Batemann [1964], SOEC and TOEC are related by Gruneisen 

parameter j
iγ  and hence by non-linearity parameter, D. ( )2

j
iγ  and j

iγ 2 are square 

average & average square Gruneisen parameters, V is sound wave velocity (Vl) for 
longitudinal wave  and (Vs) for shear wave  and d is density. 
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Fig. 1.Temperature variation of (α/f2)l  along different directions.  
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Fig. 2. Temperature variation of (α/f2)s  along different direction directions. 

The ultrasonic attenuation due to phonon-phonon interaction for longitudinal, (α/f2)l and 
shear waves, (α/f2)s are evaluated using equations (12) and (13), respectively. Typical 
attenuation versus temperature curves ((α/f2)l and (α/f2)s vs Temperature) along [100], [110] 
and [111] directions of propagation are shown in Figs. (1-2) , and it can be seen that the 
temperature dependence divides into two regions. Region 1, (upto Debye temperature of 
respective solids, which has been shown in Table 1) attenuation coefficient varies rapidly 
and in Region II, attenuation coefficient becomes temperature independent. To understand 
the physical processes involved, it is helpful to consider region I and II  

separately. When thωτ <1 (Region 2), where ω is the acoustic frequency and  thτ is the mean 

lifetime of thermal phonons, the phonon mean free path is short compared to the acoustic 

wavelength and phonons see a very gradual spatial gradient of the acoustic starin. In the 

opposite extreme ( thωτ >1), the phonon mean free path is long compared to the acoustic 
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wavelength, and the acoustic wave is best thought of as a beam of coherent phonons which 

are on an actual footing with the thermal phonons. The mode of interaction is then by 

phonon-phonon interaction.  
 

Compound ΘD (K) <V> (105cm/sec) M (Mol. Weight) 

BaS 200 4.18 169.39 

BaSe 170 2.61 216.28 

BaTe 143 2.39 264.92 

Table 1. Debye temperature (ΘD) and average Debye velocity (<V>) at 300 K     
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Fig. 3.Temperature variation of specific heat (Cv)  

The attenuation due to phonon-phonon interaction for longitudinal and shear waves (α/f2)l , 
(α/f2)s increases  up to ΘD and then becomes constant. When (ΘD/T) ≥ 1, (α/f2)l and (α/f2)s  
increase  and for values of temperatures satisfying (ΘD/T) <1, attenuation becomes nearly 
constant, because (α/f2)l or (α/f2)s due to p-p interaction is mainly affected by the specific 
heat, Cv ( since (α/f2) due to phonon-phonon interaction is related to Cv, (through the 
relaxation time). For (ΘD/T) ≥ 1, Cv increases and becomes nearly constant for the values 
satisfying (ΘD/T) <1, (Fig. 3).  
The value (α/f2) at a given temperasture is minimum for BaS and maximum for BaTe. The 
value of (α/f2) depends upon Debye temperature (ΘD). The Debye temperature is maximum 
for BaS and minimum for   BaTe, (Table 1). Thus greater the ΘD value, smaller is the 
attenuation. The value of ΘD depends on the Debye average velocity <V> and inverse of 
cube root of molecular weight i.e.  M-1/3 through (N/V) 1/3 where N is the Avogadro number 
and V (V = M/d, M= mol. wt. and d= density) is volume. <V> is maximum for BaS and 
minimum for BaTe, therefore larger is the <V>, smaller will be attenuation. The attenuation 
increases in these chalcogenide series with increasing the Molecular weight. The ΘD and 
<V> are SOEM dependent. Thus the increase in the value of (α/f2)l , (α/f2)s and (α/f2)th from 
BaS to BaTe is mainly influenced by SOEM values and Molecular weight. 
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2.2 Thermoelastic loss 

In an isotropic polycrystalline solid, strain varies according to applied stress from one grain 
to another (Lucke, 1956). The substance is isotropic due to random orientation of grains. The 
individual grain may be anisotropic. The propagation of longitudinal wave creates 
compression and rarefactions throughout the crystal. The rarified regions are cooler than 
compressed regions and hence there is a flow of heat between the two regions and the 
direction of flow of this energy will be reversed after every half cycle. Since there is a 
relaxational phenomenon, there is a loss of energy. Attenuation due to this effect is given by 
(Mason, 1965) 

 2 2 32 ( ) /nn nn V nnf K C C dV C Cσ θα π= −  (17) 

where nnC σ  and nnC θ  are adiabatic and isothermal elastic constants, K is thermal 

conductivity and VC  is specific heat per unit mass. The difference between nnC σ  and nnC θ  

may be obtained with the help of SOEC and TOEC. This loss does not make any appreciable 

contribution to the total ultrasonic attenuation in case of dielectric and semiconducting 

crystals due to low value of thermal conductivity. In case of metals thermal conduction 

arises due to electronic and lattice contribution so it is large enough to cause appreciable 

contribution to the total ultrasonic attenuation. For shear wave propagation no compression 

or rarefaction occurs hence no thermoelastic loss. Propagation of sound wave through 

crystal produces compression and rarefactions as a result heat are transmitted from 

compressed region (at higher temperature) to rarefied region (at lower temperature) and 

hence thermoelastic loss occurs, which is given by. 

                                         αth =  

2
2 2

5

4

2

j
i

L

f KT

dV

π γ
  (18) 

Ultrasonic attenuation due to this effect has also been evaluated in case of barium 
monochalcogenides and is given in Fig. 4..    
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Fig. 4. Temperature variation of (α/f2) th along diffrent direction    
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(α/f2)th is directly proportional to rate of heat transfer from compressed regions to rarefied 
regions. In the low temperature range, 50-200 K, heat is transferred at faster rate from 
compressional regions to the rarefied regions resulting larger rate of thermoelastic loss.  The 
rate of increase of thermoelastic loss is small beyond 200 K.  

2.3 Phonon processes and drag on dislocations 

A dislocation is a linear imperfection in a crystal. In edge dislocation, near the dislocation 
line, the crystal is severely strained. In a screw dislocation, Burger vectors are parallel to the 
dislocation line. In general, a dislocation is composed of mixtures of screw and edge 
dislocations. Another process for which thermal losses due to p-p interaction can produce 
an appreciable effect is the drag on disclocations as they are moved through a lattice. 
Leibfried et al. (1954) discussed the mechanism of scattering of phonons by moving 
disclocations and the results show that the resulting differential produces a drag force 
which is proportional to the velocity of the disclocation. Mason (1965) proposed a theory to 
explain the mechanism involved in the drag produced on a dislocation by phonon-viscosity. 
This was evaluated on the basis of the effect caused by the change in dimensions of phonon 
modes and their subsequent equilibrium through a thermal relaxation process. 
Dislocation damping due to screw and edge dislocations also produces appreciable loss due 
to phonon-phonon interaction. The loss due to this mechanism can be obtained by 
multiplying dislocation viscosities by square of dislocation velocity. Dislocation damping 
due to screw and edge dislocations is given by equations (21) and (22). 
The Phonon-viscosity, which is analogous to shear-viscosity in liquids damps the motion of 
both type (screw and edge) disclocations and has the value 

 2/ / 3thEDk C V EDη τ= < > =  (19) 

These phonon-viscosities are presented in the form of drag coefficients for the motion of 

screw and edge type of disclocations. Here the Cortell’s (Cortell, 1963) condition 0 3 / 4a b=  

is valid, where 0a the disclocation core radius and ‘b’ is is the Brugger’s vector. screwB  and 

edgeB  are given by 

 2 2/8B b aπ=  (20) 

substituting 0 3 / 4a b=  the above equation reduces to, 

 0.071screwB η=  (21) 

and 

 2 2(0.0532 0.0079( / ) /(1 )edgeB Kη μ χ σ= + −   (22) 

where σ , μ , K  and χ  are Poisson’s ratio, shear modulus, bulk modulus and 

compressional viscosity respectively. These values can be calculated using the relations 

 11 12 44( ) / 3C C Cμ = − + , 11 12( 2 ) / 3K C C= + ,  

 and (4 / 3 )l Sχ η η= −  (23)                    
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Compound Bscrew Bedge 

 Long. Shear Long. Shear 

BaS 0.23 0.10 0.45 0.55 

BaSe 0.29 0.17 0.60 0.79 

BaTe 0.47 1.30 1.07 3.22 

Table 2. Phonon viscosity due to screw and edge dislocation at 300K longitudinal (in cp) and 
shear (in mp.) waves.        

Debye average velocity and Debye temperature have been calculated using equations (16) 
and (17) and are presented in Table 2.  

Square average Gruneisen numbers < γij2 >l  and   < γij 2>s* and  average square Gruneisen 

parameter < γij >2 l  and < γij >2s and   < γij >2s*  for longitudinal and shear waves, nonlinearity 

coupling constants Dl, Ds, Ds*  and their ratios Dl/Ds, and Dl/Ds* along different directions 

of propagation are given in Table 3. Results are as expected [Mason (1967), Kor and Singh 

(1993)].  
     

Compound Direction < γij2 >l < γij >2 l   < γij >2s < γij >2s* Dl Ds D s*      Dl /Ds   Dl/Ds* 

100 0.94 0.17 0.04 -- 7.82 0.37 -- 20.81 -- 
BaS 

110 1.06 0.26 0.15 1.93 8.63 1.43 17.37 6.03 0.49 

100 0.90 0.24 0.04 -- 7.27 0.43 -- 16.79 -- 
BaSe 

110 1.04 0.36 0.22 1.80 8.04 1.98 16.28 4.06 0.49 

100 1.68 1.28 0.30 -- 10.63 2.73 -- 3.88 -- 
BaTe 

110 2.14 1.75 4.49 1.33 12.93 40.46 12.00 0.31 1.00 

Table 3.  Square Average and average square Gruneisen number for longitudinal < γij2 >l, < 
γij >2l and shear < γij >2s , < γij >2s*  Waves, nonlinearity coupling constants Dl , Ds and   
nonlinearity coupling constants ratios Dl / Ds , Dl / Ds* at 300K 

l   for longitudinal wave  

s    for shear wave, polarized along  [001]     

s*  for shear wave, polarized along [ 110 ] 

 

Viscous drag due to screw (Bscrew) and edge dislocations have been obtained (Bedge) using 
equation (21) and (22), as given in Table 2. 

The phonon mean free path due to phonon-phonon collision is a rapidly changing function 

of temperature at low temperatures. Fig. 4 shows the thτ vs T plot for barium 

monochalcogenides.. Thermal relaxation time is evaluated using equation (6). Temperature 

variation of thermal relaxation time is shown in Fig. 4 which shows exponential decay 

according to relation τ = τo exp (- t/T), where τo and t are constants. 

From the values of thermal relaxation time, it can be seen that the condition thωτ <<1 is 

satisfied even at GHz range acoustic wave frequency. 
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Fig. 4. Temperature variation of thermal relaxation time (τ). 

3. Conclusions 

Acoustical dissipation and related parameters have been evaluated over a wide temperature 
range using simple approach and starting from second and third order elastic constants. 
These values of second and third order elastic constants have been used to obtain acoustical 
Gruneisen parameters and non-linearity coupling constants. Utilizing values of non-
linearity coupling constants, ultrasonic arttenuation due to phonon-phonon interaction, 
thermoelastic loss and dislocation dampming due to screw and edge dislocations have been 
obtained over a wide temperature range. In the present approach, Grunesen parameters 
have been evaluated for longitudinal and shear modes by considering only finite number of 
modes (39 modes for longitudinal wave while 18 modes for shear waves). However, a more 
rigorous approach is needed, in which all possible phonon modes can be incorporated.  
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