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1. Introduction 

Monitoring and studying the pressure effect on liquid physical properties are becoming 

increasingly important in the food (Le Bail et al., 2003), chemical (Schettino et al., 2008), 

cosmetic (Sonneville-Aubrun et al., 2004) and pharmaceutical industry (Masson et al, 2001). 

High-pressure research of the physical properties of liquids has been stimulated by the fast 

development of such technologies as biodiesel production (Demirbas, 2008), high pressure 

food processing and conservation (Bamberger et al., 1999). High pressure processing enables 

inactivation of pathogenic microorganisms without decreasing the nutritional values and 

organoleptic properties. Rheological data provide information on molecular structure of the 

processed food. The knowledge of viscosity changes with pressure is also very important for 

food-processing plant design. Viscosity measurement on-line is necessary for control of food 

quality at different stages of the process.  

Knowledge of the effect of pressure on the viscosity of polymer melts containing dissolved 

gases and on the viscosity of carbonaceous materials used in the impregnation process 

(Kosinskii, 2009) is also very important. Acoustic measurements offer also a potentially 

practical manner for the in situ characterization of reservoir fluids (e.g., crude oil) under 

reservoir conditions of pressure (Ball et al., 2002). The rheological properties of liquid 

lubricants (Bair et al., 2001) under high pressure determine friction and wear and they are 

fundamental properties for tribological evaluation of rolling bearings, gears and traction 

devices. High-pressure technologies (up to 1 GPa) have proved a great potential in modern 

bioengineering as a method of modification of biotechnological materials. The knowledge of 

physical properties (e.g., viscosity, compressibility) of treated substance is essential for 

understanding, design and control of the process technology. Measurement techniques for 

“in-situ“ determining of physical parameters of liquids under high pressure allow insight 

into the phenomena governing the microstructural modifications occurring in the treated 

substance. High-pressure transitions in liquids can be investigated by the measurement of 

the viscosity or the acoustic wave phase velocity in function of hydrostatic pressure. 

Source: Acoustic Waves, Book edited by: Don W. Dissanayake,  
 ISBN 978-953-307-111-4, pp. 466, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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Pressure is an important parameter in processes of glass making when pressures in regime 
of some hundreds of megapascals occur e.g., in injection molding or pressure-assisted 
sintering. Changes in the melt viscosity upon pressurization result in changes in the glass 
transition temperature and the working regime for glasses (Del Gaudio et al., 2009).  
In earth science interesting information can be obtained from the high-pressure rheological 

investigations of molten minerals (Bingwell et al., 2004). Moreover, oil-based drilling fluids 

have become widely used in oil industry because of their distinct advantage over water-

based drilling fluids. However, unlike water-based drilling fluids, oil-based drilling fluids 

show significant rheological properties dependence on temperature and pressure. It is 

highly recommended to measure rheology of the actual mud system at high pressures prior 

to drilling operations (Zhao et al., 2008).  

The properties of water at high pressures are investigated for the purpose of studying the 

physical chemistry, geophysics, planetology, and the most diverse problems in science and 

engineering. At pressures lower than 1 GPa, the rheological properties of water, including 

viscosity, are essential for the investigation of hydrodynamic and heat transfer processes. At 

present, the rheological properties of water are used in designing power plants of some 

types, as well as in developing new technologies in the food industry and medicine where, 

in particular, the shock compression of water has come to be used to lithotripsy (Mineev & 

Funtikov, 2005).  

Direct measurements of the physical properties such as density, compressibility and isobaric 

heat capacity are very difficult under conditions of very high pressure. The speed of sound 

is closely linked with these thermodynamic properties and can be measured relatively easily 

and with high accuracy over wide ranges of temperature and pressure. An understanding of 

the pressure dependence of sound speed, attenuation, and relaxation frequencies can 

provide valuable information as to transport quantities such as fluid viscosity and thermal 

conductivity along with ratios of specific heats. Additionally, sound speed is closely related 

to derivatives of the equation of state. Therefore, the precision of these derivatives is often 

substantially better when they are deduce from the speed of sound rather than obtained 

from the analysis of classical pVT data. 

Up to date, high pressure viscosity measurements were performed only in laboratory 

conditions, using conventional mechanical methods (Kulisiewicz & Delgado, 2010), 

developed as early as in the second half of the nineteenth century (Shames, 2002), (Ferguson 

& Kemblowski, 1991). The conventional mechanical methods followed works of such 

eminent scientists as Stokes, Navier, Poiseuille, Couette, et al. The common factor of all 

conventional mechanical methods is their inability to measure the viscosity on-line, without 

interfering with the industrial process controlled. Since on-line monitoring is necessary in 

process automation a need for new real-time monitoring methods emerged.  

In this work new ultrasonic methods for the measurement of the viscosity of liquids under 

high pressure are presented (Kiełczyński et al., 2008a). These methods employ SH (shear 

horizontal) surface waves of the Love and Bleustein-Gulyaev (B-G) type. The energy of the 

SH surface wave is concentrated in the vicinity of the waveguide surface. Thus, the SH 

surface wave velocity and attenuation strongly depend on the boundary conditions on the 

waveguide surface which is viscoelastically loaded. Application of these SH surface waves 

extends considerably range of measuring pressures (up to 1 GPa). Moreover, the viscosity 

measurement is simplified and can be computerized. This enables on-line measurements of 

liquid viscosity.  
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2. Mechanical measuring methods for the measurement of liquid viscosity  

Among the mechanical methods, the methods using rolling ball (King et al., 1992), falling 
ball (Nakamura et al., 2005), falling needle (Sha, 1997), and falling cylinder (Schaschke et. al., 
2008) are the most popular. Rotational viscometers of Couette type (Matveev et al., 2005) 
form another group of high-pressure viscometers. The critical parts of rotating viscometers 
are seals. The third group of viscometers is based on the Hagen-Poiseuille formula for 
capillary flow (Ripple, 1992). Similarly, a modified capillary tube viscometer is a high-
pressure extrusion slit die viscometer (Lan & Tseng, 2002). Another type of viscometers is a 
sliding plate viscometer. In these viscometers, the medium to be tested is charged in 
between two parallel sliding plates. After shear rate and shear stress are measured, the 
viscosity can be readily evaluated according to the Newton equation of viscosity (Koran & 
Dealy, 1999). However, it is very difficult to extend conventional methods to determine the 
viscosity at high pressure. One of the problems is to control the trajectory of the falling 
(rolling) ball and to track its movements. The resetting of the sinker or rolling ball also 
present difficulties. An eccentric fall of the sinker can cause significant errors in determining 
viscosity based on sinker descent time. Falling sinker viscometers and rolling ball 
viscometers have very long measuring times at high viscosities. Moreover, capillary type 
viscometers pose problems with pressure gradients.  
Conventional mechanical methods and devices for measuring viscosity of liquids possess 
many disadvantages: 
1. presence of moving parts 
2. measurements are tedious and time consuming 
3. require special sophisticated equipment 
4. large dimensions 
5. difficult to computerize 
The application of rotary viscometers is limited due to the problems with generated heat 
and leakage during the transmission of the rotation into high-pressure chamber. Due to 
inherent limitations, the conventional methods cannot operate in real-time, and are only 
laboratory methods. 
There exist also other methods employing different physical phenomena, e.g., magnetic field 
(Mattischek & Sobczak, 1997), (Royer et al., 2002) and light scattering (Fukui et al., 2010), for 
measuring the viscosity of liquids at high pressure. However, they need very complicated 
equipment and specially developed high-pressure chambers.  
This is why, their use for measuring liquid viscosity at high pressure is very limited.  

3. Ultrasonic methods 

3.1 Bulk acoustic waves 

Due to the disadvantages of the mechanical methods a need for new measuring methods 

arose. To this end, ultrasonic methods for the measurements of the viscosity of liquids under 

high pressure were proposed. Ultrasonic waves are mechanical disturbances, propagating in a 

material medium, at frequencies above 20 kHz. Present day technology enables for routine 

generation and detection of ultrasonic waves in the frequency range from ~20 kHz to ~2 GHz. 

However, the frequency range used in acoustic viscosity sensors is usually limited to 1-20 

MHz. The ultrasonic methods due to their accuracy and relative simplicity can be applied in 

the study of liquid state. Ultrasonic velocity and attenuation measurements have proved to be 

useful in investigations of structures of liquids and interactions between the molecules.  
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Standing waves (resonators) and travelling waves (waveguides) were used to investigate 
the rheological properties of liquids at high pressure. For example, a torsionally oscillating 
piezoelectric quartz rod was applied as an ultrasonic viscosity sensor (Phillippoff, 1963), 
(Collings & McLaughlin, 1971), (Ruttle & Stephenson, 1975). In this type of ultrasonic 
sensors bulk type waves were applied. The acoustic energy of bulk waves is distributed in 
the entire volume of the resonator. The contact with a measured liquid takes place on the 
surface of the resonator. This results in the moderate sensitivity of this type of viscosity 
sensors.  
A high-pressure (up to 300 MPa) torsional shear wave rheometer has been developed by 
Kulisiewicz (Kulisiewicz et al., 2007). This measurement system uses transmission of small 
amplitude torsional shear waves generated and detected by piezoelectric elements. In order 
to determine the complex shear modulus the measurement of the time of flight of the bulk 
torsional acoustic wave travelling between driver and sensor plates (distance 0.3–1 mm) is 
used to assess the wave velocity. To perform the viscosity measurement a very complicated 
calibration procedure is needed.  
Modified crystal plate (langasite) resonators were also used to measure the viscosity of liquids 
at high pressure (Andle et al., 2008). This attempt was not successful because of the enormous 
troubles in the construction of the resonator. The structure of the resonator is fragile and not 
robust. Moreover, the range of measuring pressures was very modest (up to 60 MPa).  
To overcome the disadvantages of the bulk wave methods, the author has proposed to use 
the SH surface acoustic waves of the Love and Bleustein-Gulyaev (B-G) type (Kiełczyński & 
Płowiec, 1989). At the beginning, the measurement of the liquid viscosity was carried out at 
the atmospheric pressure.  
Subsequently, SH surface waves, i.e., Love waves and acousto-electric Bleustein-Gulyaev 
waves were used as a tool to measure the rheological parameters of liquids at high pressure 
(Kiełczyński et al., 2008a), (Kiełczyński et al., 2008b).  

4. Surface acoustic waves  

4.1 Love waves  

The Love wave propagates in a semi-infinite layered structure shown in Fig.1. Here, an 
elastic isotropic layer is rigidly attached to an isotropic and elastic half-space. Love waves 
can exist in special layered structures where phase velocity of the SH volume wave in the 
surface layer is smaller than that in the substrate, (Achenbach, 1973), (Farnell, 1978), 
(Royer&Dieulesaint, 2000). Mechanical vibrations of the shear horizontal surface wave are 
performed along the x2 axis parallel to the propagation surface (x1 = 0) and perpendicularly 
to the direction of propagation x3. The energy of Love waves is concentrated in the vicinity 
of the surface. The amplitude 1( )f x  of the surface Love wave should vanish for 

1
x →∞ . 

The penetration depth of the Love wave is of the order of the wavelength. At low 
frequencies the energy of the Love wave propagates mainly in the substrate. As the 
frequency increases the fraction of energy travelling in the surface layer increases. This 
improves sensitivity to surface perturbations like liquid viscous loading.  
The propagation of Love waves in the layered waveguides is governed by the differential 
problem (Sturm-Liouville problem). Solving this problem, we obtain a set of pairs 

( )1, ( )i if xβ , namely, the eigenvalue ,iβ  and eigenvector 1( )if x  correspond to the 
propagation constant and distribution of the mechanical displacement with depth 1x  of the 
Love wave. The index 1i =  refers to the fundamental mode. Higher modes of Love waves 
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are labeled by 1i > . Similar Sturm-Liouville problem describes propagation of light waves 
in planar optical waveguides and motion of quantum particles in a potential well 
(Schrödinger equation). 
 

 

3 

1 

2 X2 

X1 

X3

 
 

(a) 
 

 

(b) 

Fig. 1. a) Excitation of the Love wave in the layered waveguide by means of the PZT plate 
transducer (3). Cu surface layer (1) is deposited on a steel substrate (2), b) Love wave 

amplitude distribution with the depth 1x  for two different frequencies ( 1 2f f> ).  

The Love wave has a multimode character. In the present paper, we have restricted our 

attention to the propagation of the fundamental mode of Love waves.  

Love waves are excited by the plate transducer (3) attached to the waveguide face, see Fig.1. 

The sending-receiving transducer (3) is excited to shear vibrations parallel to the waveguide 

surface and generates impulses of the Love wave that propagate along the waveguide 

surface. Theoretical and experimental analysis of the generation of SH surface waves by 

means of a plate transducer is presented in (Kinh & Pajewski, 1980). 

4.2 Bleustein-Gulyaev (B-G) waves  

Bleustein-Gulyaev (B-G) waves are shear horizontal acousto-electric waves, and they have 

no elastic counterpart (Royer & Dieulesaint, 2000), (Nakamura, 2007). If there is no 

piezoelectric effect, B-G wave degenerates to the shear bulk wave.  
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The distribution of the B-G wave mechanical displacement is similar to that of the Love 
wave. The B-G wave is capable of propagating along the surface of some crystals, e.g., with 
6mm  or 2mm  symmetry (Zhang et al., 2001), as well as along the surface of properly 
polarized piezoelectric ceramics, see Fig.2.  
Metallization of the PZT ceramic surface lowers the penetration depth of the B-G wave. In 
this case the penetration depth is of the order of a wavelength. Hence, in the metallized 
surface condition the B-G wave is more sensitive to liquid loading. B-G waves are excited 
similarly as Love waves, using the plate transducer (Kiełczyński et al., 2004), see Fig.2. 
 

 

Fig. 2. Excitation of the B-G wave in a piezoceramic PZT waveguide (2) covered on the 
surface by a very thin metallic (Ag) layer (1) by means of the PZT plate transducer (3). PZT 

ceramics (both in the transducer and waveguide) is polarized along the axis 2x .  

The Love wave is a dispersive wave (i.e., the phase velocity is dependent on frequency) and 
can exhibit higher waveguide modes than fundamental one. By contrast, the B-G wave is a 
nondispersive wave. Moreover, an advantage of B-G wave for liquid sensing application is 
that B-G wave has no multiple modes. This makes that inverse determination of liquid 
properties by utilizing B-G wave is easier than that by utilizing SH surface waves of the 
Love type. Both types of SH surface waves are widely used in resonators, sensors and delay 
lines.  

5. Application of SH surface waves for determining the rheological 
parameters of liquids at atmospheric pressure  

To overcome the drawbacks of the bulk wave method, shear horizontal (SH) surface 
acoustic waves (SAW) such us: 
1.     Love waves and 
2.     Bleustein-Gulyaev (B-G) waves 
have been introduced for the viscosity measurements under ambient pressures (Kiełczyński 
& Płowiec, 1989). These waves have only one SH component of mechanical displacement 
perpendicular to the direction of wave propagation and parallel to the waveguide surface. 
The energy of these waves is concentrated in the vicinity of the surface being in contact with 
a measured liquid. In consequence, the sensitivity of the viscosity sensors using SH surface 
acoustic waves (SAW) can be several orders larger than the sensitivity of the sensors 
employing bulk shear acoustic waves. 

X2 

X1 

X3 
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To measure the viscosity of liquid Rayleigh waves were also applied. Rayleigh waves have 
at least two components of vibrations i.e., longitudinal and vertical transverse, which cannot 
be separated. When Rayleigh waves propagate at a solid-liquid interface, the surface normal 
displacement radiates compressional waves into the liquid. Consequently, Rayleigh waves 
can be completely attenuated within the propagation range of the sensing device. Therefore, 
Rayleigh waves are impractical for use in the measurements of liquid viscosity. However, 
Rayleigh waves can be successfully applied in gas phase sensors.  
In measurements of liquid viscosity, the effect of an investigated liquid on the properties of 

acoustic waves propagating in waveguides is primordial. The liquid presented on the 

waveguide surface loads it mechanically. The value of this load is proportional to the value 

of the mechanical impedance ZL of a liquid medium (Kiełczyński et al., 2004). The 

mechanical impedance of a layer of liquid loading the surface of the SH surface wave (i.e., 

Love or B-G wave) waveguide is equal to the characteristic shear impedance of the liquid ZL 

for plane waves: 

 ( )1 2

L L LZ Gρ= ⋅  (1) 

where: ' ''LG G jG= +  is the complex shear modulus of the liquid defined as the ratio (T/S) of 

the shear stress T to the shear strain S, Lρ  is the liquid density and ( )1 2
1j = − .  

      In general, liquid loading of the sensor surface changes the phase velocity v  and the 

attenuation α  of the SH surface wave. The complex propagation constant γ  of the SH 

surface wave changes (Ballantine et al., 1997):  

 
0

v
j

v

γ α
β β
Δ Δ Δ

= −   (2) 

where: jγ α β= + , vβ ω= , 0v  is the phase velocity of the non-perturbed SH surface wave 

on the free surface, and ω  is the angular frequency of the SH surface wave.  
Significant experimental indications result from Eq.2. Namely, (1) by measuring the time 
delay between two subsequent echoes, one can determine the relative change in phase 

velocity of the surface wave 
0

v

v

Δ
, and (2) by measuring the amplitudes of the subsequent 

impulses of the surface waves, we can determine the relative change in the surface wave 

attenuation 
α
β
Δ

. In this way, the relative change in the complex propagation constant 
γ
β
Δ

 

of the surface wave is determined experimentally. Knowledge of the change in complex 
propagation constant γ  is fundamental to the established nondestructive method used to 

determine the rheological parameters of a liquid medium.  
By applying the perturbation method one can prove that the change in the complex 
propagation constant γ  of the SH surface wave produced by viscoelastic liquid loading is as 

follows (Auld, 1973):  

 1

2

2 0

4

x

L

v
j Z jKZ

P
γ =

⎛ ⎞
⎜ ⎟Δ = − = −
⎜ ⎟
⎝ ⎠

 (3) 
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where: 2v  is the SH surface wave amplitude on the waveguide surface ( 1 0x = ), P  is the 

mean power on the unit width of the SH surface wave. The coefficient K  is the 

characteristic quantity for each SH surface wave waveguide and depends solely on the 

material parameters of the waveguide and frequency (Kiełczyński & Płowiec, 1989).  

Knowing the change in the complex propagation constant γΔ  from the experiment, we can 

calculate the complex shear impedance of a liquid L L LZ R jX= + . Subsequently, by 

separating the real and imaginary parts of the Eq.1 we can calculate the real G′  and 

imaginary G′′  parts of the complex shear modulus LG  of the liquid and, consequently, the 

rheological parameters of a viscoelastic liquid.  

6. Application of SH surface waves for measuring the viscosity of liquids at 
high pressure 

The Love wave and the Bleustein-Gulyaev (B-G) wave method for measuring the viscosity 
of liquids at high pressures have been established in the Laboratory of Acoustoelectronics of 
the Institute of Fundamental Technological Research, Polish Academy of Sciences in 
Warsaw, Poland (Kiełczyński et al., 2008a), (Kiełczyński et al., 2008b). 
The SH SAW method for measuring the viscosity of liquids at high pressures possesses 
many advantages: 
1.     absence of moving parts 
2. operation in real time 
3. short measuring time 
4. high sensitivity 
5. low power consumption 
6. small dimensions, simple and robust construction of the sensor 
7. possibility of computerization 
8. output signal is electrical 
9. no leakage problems 
10. no heating caused by shear  

6.1 Measuring set up  

High-pressure chamber was designed and fabricated in the Institute of Physics at Warsaw 
University of Technology (Rostocki et al., 2007). High pressure was generated in a thick-
walled cylinder of 17 mm internal diameter with a simple piston and Bridgman II sealing 
system. The piston-cylinder assembly was working with a 20–tonne hydraulic press, driven 
by hand operated pump. The maximum pressure in this arrangement is limited to about 1.2 

GPa due to the hydraulic press working range. For pressure measurement, a typical 500 Ω 
manganin transducer was used. Its resistance was measured with a precise HP 34970 

multimeter. An accuracy of the pressure measurement was better than ± 0.5 MPa. All 
experiments were carried out at the temperature 293 K. Temperature was measured with the 
Cu – Constantan thermocouple placed inside the chamber. The described previously 
viscosity sensor (B-G or Love waveguide, see Figs.1, 2 and 4) was placed inside the high-
pressure chamber, see Fig.3.  
The piezoelectric transducer attached to the SH surface wave waveguide, manganin coil and 
thermocouple were connected with the external measuring setup by an electrical 
multichannel lead-through. 
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Fig. 3. Ultrasonic set up for measuring the viscosity and pressure of liquids under high 
pressure. 
 

 

Fig. 4. Love wave waveguide (Cu surface layer on a steel substrate) connected to the high-
pressure lead-through (on the left).  

In the setup for measuring viscosity using the SH surface wave, see Fig.3, the sending-
receiving piezoelectric transducer is driven by the TB-1000 pulser-receiver computer card 
(Matec, USA). The TB-1000 pulser generates the rf tone burst with a frequency f = 2 MHz 

and length equal to 0.5 μs. The repetition period equals 0.4 ms. The SH surface wave 
impulse generated by the transducer is reflected in multiple ways between two opposite 
edges of the SH surface wave waveguide (Fig. 4). The signals received by the transducer, see 
Figs.5a, b, are amplified by the TB-1000 receiver and sent into the PDA-500 digitizer card 
(Signatec, USA). This card samples and digitizes the input analog signals. The stored signals 
are then analyzed by computer software. For each measurement, the ultrasonic signal is 
averaged 1024 times in order to improve the signal – to – noise ratio. A computer program 
which controls the operation of the pulser–receiver card and digitizer card was written in C 
language.  

6.2 Theoretical background  

In this paper, the liquids investigated under high pressure are treated as the Newtonian 
liquids. The model of a Newtonian liquid was used by (Philippoff, 1963). He stated that the 
majority of oils in the considered shearing rate (about 1 MHz), and under high pressure are  
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Fig. 5. (a) Oscillogram of the SH surface wave impulses reverberating in the waveguide 
unloaded with an investigated liquid, and b) Oscillogram of the SH surface wave impulses 
reverberating in the waveguide loaded with an investigated liquid.  

the Newtonian liquids. This can justify the use of a Newtonian liquid model in our paper. 
For the case of a Newtonian (viscous) liquid, the shear mechanical impedance ZL (defined as 
a ratio of the shear stress to the shear vibrational velocity) can be expressed as follows 
(Landau&Lifshitz, 1958): 

 ( )
1 2

1
2

L
L L LZ R jX j

ρ ωη⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

  (4) 
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where: η  is the viscosity, Lρ  is the density of a liquid and ( )1 2
1j = − .  

So that, we may regard formula (5) as holding for the liquids considered in the paper.  

 
2 22 2L L

L L

R X
η

ωρ ωρ
= =   (5) 

where: RL and XL is a real and imaginary part of the mechanical shear impedance of a liquid.  

The shear mechanical impedance of a liquid L L LZ R jX= +  can be determined from the 
measurement of the change in attenuation and time of flight of wave-trains that propagate 
in the waveguide loaded by a liquid (Kiełczyński et al., 2004), see Fig.6.  

The real part RL of the shear mechanical impedance of a liquid can be expressed as, see Fig.6:  

 
( )0 1

1 1ln

2
L

A A
R

K L
=   (6) 

where: 0
1A  and 1

1A  represent amplitudes of the first echo of the SH surface wave for an 

unloaded ( )0
1A  and loaded ( )1

1A  waveguide respectively, L is the length of the waveguide 

covered with an investigated liquid. 
 

 

Fig. 6. Scheme of the SH surface wave measuring method, (a) free (nonloaded) waveguide 
surface and (b) waveguide surface loaded with a viscoelastic liquid. 1) waveguide of the SH 
surface wave, (2) sending+receiving transducer, and (3) layer of an investigated viscoelastic 
liquid.  

6.3 Experimental results (Love waves)  
An example of variations in viscosity of liquids as a function of hydrostatic pressure 
measured by the Love wave method is presented in Fig.7  (Kiełczyński et al., 2008b), 
(Rostocki et al., 2010).  
Castor oil is a vegetable oil, that is a triglyceride in which approximately ninety percent of 
fatty chains are ricinoleic acid. Oleic and linoleic acids are the other significant components. 
Castor oil and its derivatives have applications in the manufacturing of soaps, lubricants, 
hydraulic and brake fluids, paints, dyes, coatings, inks, cold resistant plastics, waxes and 
polishes, nylon, pharmaceuticals and perfumes.  
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Fig. 7. Variations in viscosity of castor oil, as a function of hydrostatic pressure, measured by 

the Love wave method, 2f MHz= . Red arrow indicates the hydrostatic pressure such as on 

the bottom of the Marianas Trench.  

The pressure was generated in 10 MPa steps then kept constant for about 2-5 minutes. 
During that time the pressure was carefully observed. That allowed to identify pressure 
drop due to the first order phase transition and to observe whether the system is reaching 
thermodynamic equilibrium. After approaching 0.6 GPa the pressure was kept constant for 
about 20 hours to enable the phase transformation to occur. During the phase transition the 
small drop of pressure and increment of viscosity was observed.  

As it can be seeing in Fig.7, the experimental curve up to about 400 MPa is almost tangential 

to the exponential curve which represents the Barus formula ( ) ( )0 expp pη η α= , (continuous 

curve in Fig.7), where: 0η  is the viscosity at atmospheric pressure and α  is the viscosity – 

pressure coefficient. Above 400 MPa the experimental points are raising slower than the 

theoretical prediction. Finally, at 600 MPa when the pressure rise was stopped for about 20 

hours the viscosity has risen to the new value characteristic for the high-pressure phase of 

castor oil. The further increment of viscosity was rather linear function of pressure.  

6.4 Experimental results (Bleustein-Gulyaev waves) 

Similar as in the case of Love waves, measurements of high-pressure liquid viscosity were 
also performed using the Bleustein-Gulyaev wave method. Fabrication of the B-G wave 
waveguide is easy and its construction is simpler that that of the Love wave. On the other 
hand, Love wave waveguides are more robust and mechanically resistant.  
A triglyceride and unsaturated fat: a triolein (C17 H33 COO)C3 H5 was investigated. Triolein 
is a model liquid in investigations of high-pressure phenomena in the natural oils that are 
very important in biodiesel technologies as well as in high-pressure food processing.  
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Most of the natural oils like castor oil, soybean oil, rapeseed oil, etc. consist of triglycerides 
of various fatty acids. The statistical characteristics of the molecular composition of these 
oils have made difficulties for the interpretation of the phenomena observed at high 
pressure. Therefore experiments have been concentrated upon well-defined triacylglycerol 
(triglyceride) structures.  The triolein is very good model-liquid for the whole group of 
triglycerides since the phase transition takes place within only several dozen minutes after 
the application of sufficient pressure. That allows for more detailed and accurate studies 
than similar phase transition in vegetable oils taking even up to ten days from the 
application of sufficient pressure to the start of the phase transition.  
Variations in viscosity of triolein as a function of hydrostatic pressure measured by the B-G 
wave method is presented in Fig.8 (Kiełczyński et al., 2008a). Up to about 500 MPa the 
viscosity was increasing exponentially according to the known empirical Barus formula 
(continuous curve in Fig.8). After approaching 700 MPa the compression was stopped and 
the piston in the high-pressure chamber was fixed to enable the phase transformation to 
occur undisturbed. During the phase transition a pressure drop of about 100 MPa was 
observed in the chamber. The viscosity showed the further rise despite the pressure drop. It 
means that volume occupied by the resulting high-pressure phase diminishes. After the 
termination of the phase transformation process, the further increase of viscosity with 
increasing pressure was observed. The changes of viscosity during the decompression 
process inducing the high-pressure phase decomposition have shown large hysteresis 
(upper curve). Large hysteresis indicates existence of large internal friction forces. The phase 
transition in the case of triolein (Fig.8) lasts 1 hour. By contrast the phase transition in castor 
oil (Fig.7) is completed after 20 hours. 
 

 

Fig. 8. Variations in viscosity of triolein, as a function of hydrostatic pressure, measured by 

the Bleustein-Gulyaev (B-G) wave method, 2f MHz= . Red arrow indicates the hydrostatic 

pressure such as on the bottom of the Marianas Trench.  
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7. Measurement of sound speed in liquids at high pressure  

For the measurements of the phase velocity of longitudinal ultrasonic waves we have 

constructed the setup (Fig.9) especially designed to obtain a low level of parasitic ultrasonic 

signals (Kiełczyński et al., 2009).  

High-pressure chamber and computer cards are the same as in the viscosity measurements 

described previously. A special mounting of transducers in the high-pressure chamber was 

fabricated. The transducers were 5 MHz LiNbO3 (Y36 cut) plates (Boston Piezo-Optics Inc., 

USA). The phase velocity of the longitudinal ultrasonic wave was measured using a cross-

correlation method (Sugasawa, 2002) to evaluate the time of flight (TOF). 
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Fig. 9. Ultrasonic setup for measuring the phase velocity of longitudinal acoustic waves in 
liquids as a function of hydrostatic pressure.  

For the sending and receiving of wave pulses the TB-1000 pulser-receiver computer card 

(Matec, USA) was used. The TB-1000 pulser generated the rf tone burst with a frequency 5 

MHz and length equal to 0.3 sμ . The longitudinal wave impulse generated by the sending 

transducer propagated in investigated liquid and was detected by the receiving transducer. 

The PDA-500 digitizer card (Signatec, USA) sampled and digitized the signals received by 

the transducer and amplified by the TB-1000 receiver. The stored signals were then analyzed 

by computer software. For each measurement, the ultrasonic signal was averaged 1024 times 

in order to improve the signal-to-noise ratio. A computer program that controls the 

operation of the pulser-receiver card and digitizer card was written in C++ language. The 

time of flight of the ultrasonic pulses (see Fig.10) was evaluated by applying the cross-

correlation method (Sugasawa, 2002), (Viola & Walker, 2003). The cross-correlation method 

is a global differential method. Due to this reason, the cross-correlation method does not 

depend on the trigger level and delays in cables and amplifiers. The change in the height of 

the column of a liquid caused by the piston movement was measured by a digital caliper. 

The piezoelectric transducers and manganin coil were connected with the external 

measuring setup by an electrical multichannel lead-through.  
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Fig. 10. Time of flight (TOF) between two ultrasonic impulses (delimited by cursors) is 
evaluated by using the cross-correlation method.  

The sound velocity vL was calculated using the formula:  

 0
L

l
v

t
=
Δ

   (7) 

where: 0l  is the distance between sending and receiving transducer, tΔ  is time of flight 
(TOF) of the ultrasonic signal.  
The isothermal compressibility Tβ  is given by the formula:  

 
1

T

V

V p
β ∂

= −
∂

 (8) 

where: V is the volume of a liquid in the chamber for a given value of the hydrostatic 
pressure p.  

7.1 Results  

The measurements of the phase velocity (Fig.11) and isothermal compressibility (Fig.12) of 
triolein were carried out in function of hydrostatic pressure up to 650 MPa.  
The pressure was generated in 20 MPa steps then kept constant about 2 min. that allowed to 
control whether the system was reaching equilibrium. Up to 450 MPa the phase velocity was 
increasing monotonically with pressure (arrow 1 in Fig.11). After approaching 450 MPa the 
compression was stopped, and the piston in the high-pressure chamber was fixed to enable 
the phase transformation to occur undisturbed. During the phase transition a pressure drop 
of about 150 MPa was observed in the chamber. It means that the volume occupied by the 
resulting high-pressure phase of triolein diminished. The phase velocity showed the further 
rise despite the pressure drop (arrow 2 in Fig.11). Finally the phase velocity has risen to the 
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new value characteristic for the high-pressure phase of triolein. Once the phase transition 
was completed the pressure was further increased up to about 650 MPa (arrow 3 in Fig.11). 
The phase velocity of longitudinal waves in high-pressure phase has increased 
monotonically. After approaching 650 MPa the decompression process was started (arrow 4 
in Fig.11). At the point marked in Fig.11 by a the decomposition of the high-pressure phase 
started. Between points marked by a and b two phases coexisted in triolein. 
Compressibility is an important property. It enters into many pressure-dependent 
thermodynamic expressions, and is an essential parameter for the design and use of any 
high-pressure equipment. Compressibility is dependent on the intermolecular forces acting 
within the substance, that is, it is the result of the balance between attractive and repulsive 
potentials. Compression results in decreasing the average intermolecular distance and 
reducing rotational and translational motion. Compressibility of liquids decreases with 
pressure, since the initial “free volume” has largely disappeared, and the repulsive potential 
is stronger than the attractive at high pressure. (Barbosa, 2003) 
The isothermal compressibility of triolein presented in Fig. 12 was calculated using Eq.8. 
The volume changes VΔ  were determined from the changes of the height of the triolein 

column measured by the slide caliper. The arrows indicated by numbers 1, 2 and 3 in Fig.12 
refer (similarly as in Fig.11) to the low-pressure phase, phase transition and high-pressure 
phase respectively.  

It is worth noticing that the value of isothermal compressibility Tβ  during the phase 
transition is negative. Moreover, the isothermal compressibility of high-pressure phase is 
different than that of low-pressure phase.  
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Fig. 11. Phase velocity vL of longitudinal acoustic waves in triolein in function of hydrostatic 
pressure. (1) refers to low-pressure phase, (2) indicates the phase transition, (3) refers to 
high-pressure phase, and (4) indicates the decompression, 5f MHz= . Red arrow indicates 
the hydrostatic pressure such as on the bottom of the Marianas Trench.  
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Fig. 12. Isothermal compressibility of triolein Tβ  as a function of hydrostatic pressure. 

During the phase transformation (arrow 2) Tβ  is negative. 5f MHz= . Red arrow indicates 

the hydrostatic pressure such as on the bottom of the Marianas Trench. 

7.2 Possibility of measurement of various physical (thermodynamic) parameters  
The speed of sound is a particularly interesting property to study as it provides an indirect 
way to all of the observable thermodynamic properties of a single fluid phase. This way is a 
convenient one experimentally because sound speed measurements may be made quickly 
and accurately over ranges of temperature and pressure by means of largely automated 
apparatus.  
The knowledge of the thermodynamic properties of pure organic liquids is of practical 
interest to industries in different fields, such as chemical, pharmaceutical industries, and 
food technology, because the applied industrial procedures are influenced by the 
temperature and pressure dependence of the used liquids.  
The seven thermodynamic variables: pressure, volume, temperature, entropy, and the three 
components of the vector fluid velocity, can be related to one another through the equation 
of state, the equation of energy conservation, and also through the equation of continuity for 
mass and momentum, and the second law of thermodynamics. (Heydemann&Houck, 1969), 
(Stallard et al., 1969).  
The densities, isobaric heat capacities, isobaric thermal expansions, isentropic 
compressibilities, isothermal compressibilities, and internal pressures as functions of 
temperature and pressure can be calculated using the experimental speeds of sound under 
elevated pressures together with the densities and heat capacities at atmospheric pressure 
(Oakley et al, 2003a), (Oakley et al, 2003b). 
The bulk modulus of biodiesels determines the spray characterisics upon injection. As the 
fuel injection in the engine is approximately an adiabatic process, the adiabatic bulk 
modulus seems to be more useful than the isothermal one in estimation of the fuel injection 
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timing. The only experimental method that leads directly to adiabatic modulus is the 
acoustic one, based on the measurement of the speed of sound. The method is relatively 
simple tool for determination of thermodynamic properties, especially at high pressures 
(Dzida & Prusakiewicz, 2008).  
The measurements of ultrasonic velocity can be applied for studying the nature of molecular 
systems and physicochemical properties of liquid mixtures and solutions. The results are 
interpreted in terms of molecular interaction between components of the liquid mixtures. A 
study of the thermophysical properties as a function of pressure and temperature in a 
homologous series of chemical compounds is of great interest not only for industrial 
applications (for example, the petroleum industry), but also for fundamental aspects for 
understanding the influence of the chain length of the components on the liquid structure 
and the developing models for an accurate representation of the liquid state. To this aim, 
ultrasonic speed measurements under pressure have been successfully applied (Daridon et 
al., 2002).  
The experimental determination of the non-linearity parameter B/A is possible using the 
measurement of the ultrasonic wave velocity change due to an isentropic change of the 
static pressure (Khelladi et al., 2009), (Plantier et al., 2002).  

8. Measurement of the physical properties of liquids during phase transition  

High hydrostatic pressure can change molecular structure and intermolecular interactions in 
liquids. (Kulisiewicz et al., 2007), (Nithya et al., 2009). Rheological parameters describe 
macroscopic properties of a material. However, they are governed by molecular structure 
and mutual interactions of molecules in the material. Therefore, rheological parameters can 
be correlated with micro-structural parameters of a liquid (Delgado et al., 2010).  
Investigation of phase transitions is important in lubricants, since rheological properties of 
lubricants can change during phase transitions. Investigations of the phase transitions in 
vegetable oils (e.g., castor oil or olive oil) and in the triglycerides (e.g., triolein) are of great 
importance. Vegetable oils are usually excellent boundary lubricants. They show higher 
viscosity index than mineral oils and they are environmentally friendly. In general, 
vegetable oils are highly attractive substitutes for petroleum based oils. Unfortunately their 
high-pressure behavior was not yet systematically investigated. The most important is to 
determine the range of pressures when phase transition (solidification) begins (Mia et al., 
2007). 
Investigation of phase transitions is also very important in food industry and in food 
conservation. Phase transitions can modify irreversibly the molecular structure and quality 
of food products. Media with high molar volumes like edible oils and fats exhibit phase 
transition at pressure levels about several hundred megapascals.  
Investigation of phase transitions was impossible with conventional mechanical methods. 
By contrast, the proposed novel SH surface wave methods enable for the measurement of 
the rheological parameters of liquids during phase transitions.  
As it is seen in Figs.7, 8, 11 and 12 during phase transitions a step change in liquid viscosity, 
phase velocity and compressibility occurs. This phenomenon is a clear indication that phase 
transitions in a liquid were initiated. 
The kinetics of the phase transition, as a function of pressure, was investigated during phase 

velocity measurements in triolein. Pressure changes, occurring during phase transition, 

were registered with the piston locked in a fixed position, see Fig. 13. At stable pressure 
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conditions (450 MPa) the pressure remained constant in the first 30 minutes. Subsequently, a 

rapid decrease of pressure was observed, due to a phase transition in triolein. After about 60 

minutes the pressure level stabilized on 330 MPa. This means that phase transition was 

complete. As a result, a new high-pressure phase in triolein with different microstructure 

has emerged. Physical properties of the new high-pressure phase are different than those in 

the low-pressure phase. The high-pressure induced phase transitions in vegetable oils are 

the phase transitions of first order.  

To the author’s knowledge, the measurement of the phase velocity of longitudinal acoustic 

waves in liquids during the phase transitions was not reported in the scientific literature and 

is a novelty. Measurement of the viscosity and sound speed in liquids during phase 

transitions is an original author’s contribution. 

 

 

Fig. 13. Variation in pressure on time during the phase transition in triolein.  

9. Summary 

In this Chapter new methods for measuring the viscosity of liquids at high pressure are 

presented. Measurement of liquid viscosity at high-pressure is important in tribology in 

rolling bearings, in design and exploitation of ship diesel engines, in the chemical, 

pharmaceutical and cosmetic industries as well as in bio-fuels, and food conservation. 

Based on the SH surface Love and Bleustein-Gulyaev waves, we designed novel methods 
and devices to characterize viscosity of liquids at high pressure. The SH SAW viscosity 
sensor is electrically responsive. Owing to this fact, modern methods of the digital signal 
acquisition and processing can be efficiently used. The measuring setup operates in real-
time and can be employed for measuring liquid viscosity under high-pressure in the course 
of the technological processes. In general, the SH SAW method has high sensitivity and high 
reliability. The sensitivity of this method can be several orders larger than the sensitivity of 
the methods employing bulk acoustic waves. Application of this method will provide real-
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time process monitoring and control thereby reducing down time and increasing product 
quality in food, chemical, cosmetic, pharmaceutical and petroleum industry. 
The SH SAW method can be computerized. This enables continuous (on-line) monitoring of 
the rheological parameters of a liquid “in situ” in the processing line. Small dimensions of 
the viscosity sensor and the absence of moving parts are substantial advantages of this 
method. Only an electrical lead-through is needed. Therefore, it is very easy to assemble the 
sensor into the high-pressure chamber. 
Ultrasonic methods using SH surface waves enable the measurement of the liquid viscosity 
in difficult access places such as pipelines and tanks.  
In general, conventional mechanical methods enable the measurement of viscosity only up 
to about 200 MPa. In some cases, extending the measuring range up to 400 MPa may be 
possible after overcoming the enormous difficulties. Classical methods are in principle 
mechanical methods and can not be applied “in situ”. 
Application of ultrasonic waves extends considerably the range of pressures (up to 1 GPa) 
employed during the measurement of viscosity.  
We measured the viscosity of liquid not only in the exponential range but also during the 
phase transitions, at high pressure phase and during the decompression. This is a novelty.  
The measurements of the rheological properties of liquids during the phase transitions are 
not possible using conventional mechanical methods. On the other hand, application of the 
ultrasonic methods enables both the detection of phase transitions and investigation of their 
kinetics. This makes it also possible to determine the changes in microstructure occurring 
during the phase transitions.  
To the author’s knowledge, the measurements of liquid viscosity and sound speed under 
high-pressure during the phase transition and during the pressure decompression have not 
been reported in the scientific literature. This is an original author’s contribution. 
In future research it would be desirable to measure the physical properties of liquids in 
function of temperature and pressure. In this way, additional thermodynamic parameters 
could be determined (e.g., molar volume or adiabatic specific heat). The measurements 
should be extended into the non-Newtonian liquids (e.g., slurries, drilling fluids). In future 
the developed method could be applied in industry for on-line operation to investigate 
lubricants and bio-fuels (bio-diesels) and to control the food processing.  

10. References  

Achenbach J.D. (1973). Wave propagation in elastic solids. North-Holland, ISBN: 0 7204 2367 8, 
Amsterdam.  

Andle J.; Haskell R.; Chap M. (2008). Electrically isolated thickness shear mode liquid phase 
sensor for high pressure environments. (2008) IEEE International Ultrasonics 
Symposium Proceedings, pp. 1128-1133, ISBN: 978-1- 4244-2480-1, Beijing, China, 
November 2008.  

Auld B.A. (1973). Acoustic Fields and Waves in Solids, Wiley, ISBN: 0-471-03700-1, New York, 
Vol. II, Chap. 12.  

Bair S.; Jarzynski J.; Winer W.O. (2001). The temperature, pressure and time dependence of 
lubricant viscosity. Tribology International, Vol. 34, No 7, (July 2001) (461-468), ISSN: 
0301-679X.  

www.intechopen.com



Application of Acoustic Waves to Investigate the Physical Properties of Liquids at High Pressure   

 

337 

Ball S.J.; Goodwin A.R.H. & Trusler M.J.P. (2002). Phase behavior and physical properties of 
petroleum reservoir fluids from acoustic measurements. Journal of Petroleum Science 
and Engineering, Vol. 34, No 1, (2002) (1-11), ISSN: 0920-4105.  

Ballantine D.S.; White R.M.; Martin S.I.; Ricco A.J.; Zellers E.T.; Frye G.C.; Wohltjen H. 
(1997). Acoustic Wave Sensors, Academic Press, ISBN: 0-120-77460-7, London.  

Bamberger J.A.; Bond L.J.; Greenwood M.S. (1999). Ultrasonic measurements for on-line 
real-time food process monitoring. Sixth Conference on Food Engineering Proceedings, 
1999 AIChE Annual Meeting, Paper PNNL-SA-32024, Dallas, USA  

Barbosa R.D. (2003). High pressure and temperature dependence of thermodynamic 
properties of model food solutions obtained from in situ ultrasonic measurements. 
PhD. Thesis, Graduated School of the University of Florida, USA.  

Bingwell D.B.; Courtial P.; Giordano D.; Nichols A.R.L. (2004). Viscosity of peridotite liquid. 
Earth and Planetary Science Letters, Vol. 226, No. 1-2, (September 2004) (127-138), 
ISSN: 0012-821X.  

Collings A.F.; Laughlin E. Mc. (1971). Torsional crystal technique for the measurement of 
viscosities of liquids at high pressure. Trans. Faraday Soc. Vol. 67, (1971), (340-352).  

Daridon J.L.; Carrier H.; Lagourette B. (2002). Pressure dependence of the thermophysical 
properties of n-Pentadecane and n-Heptadecane. International Journal of 
Thermophysics, Vol. 23, No. 3 (May 2002) (698-708), ISSN: 0195-928X.  

Delgado A.; Kulisiewicz. L.; Rauh C.; Benning B. (2010). Basic aspects of phase changes 
under high pressure. Annals of the New York Academy of Sciences, Vol. 1189, (March 
2010) (16-23), ISSN: 1749-6632.  

Del Gaudio P.; Behrens H. (2009). An experimental study on the pressure dependence of 
viscosity in silicate melts. Journal of Chemical Physics, Vol. 131, No. 4, (July 2009) 
(044504-1-14), ISSN: 0021-9606.  

Demirbas A. (2008). Relationships derived from physical properties of vegetable oil and 
biodiesel fuels. Fuel, Vol. 87, No 8-9, (July 2008) (1743-1748), ISSN: 0016-2361.  

Dzida M.; Prusakiewicz P. (2008). The effect of temperature and pressure on the 
physicochemical properties of petroleum diesel oil and biodiesel fuel. Fuel, Vol. 87, 
No. 10-11, (August 2008) (1941-1948), ISSN: 0016-2362.  

Farnell G.W. (1978). Properties of elastic surface waves, In: Acoustic surface waves, Oliner 
A.A. (Ed.), (26-81), Springer, ISBN: 3-540-085785-0, Berlin. 

Ferguson J,; Kemblowski Z. (1991). Applied Fluid Rheology, Springer, ISBN: 1851665889, 
Berlin-New York.  

Fukui K.; Asakuma Y.; Maeda K. (2010). Determination of liquid viscosity at high pressure 
by DLS. Journal of Physics; Conference Series, Vol. 215, (2010), 012073-1-4, ISSN: 1742-
6588.  

Heydemann P.L.M.; Houck J.C. (1969). Self consistent ultrasonic method for the 
determination of the equation of state of liquids at very high pressure. Journal of 
Applied Physics, Vol. 40, No 4, (February 1969) (1609-1613), ISSN: 0021-8979.  

Khelladi H.; Plantier F.; Daridon J.L.; Djelouah H. (2009). Measurement under high pressure 
of the nonlinearity parameter B/A in glycerol at various temperatures. Ultrasonics, 
Vol. 49, No 8, (December 2009) (668-675), ISSN: 0041-624X.  

Hou Y.Y.; Kassim H.O. (2005). Instrument techniques for rheometry. Review of Scientific 
Instruments, vol. 76, (October 2005), 101101-1-19, ISSN: 0034-6748.  

www.intechopen.com



 Acoustic Waves 

 

338 

Kiełczyński P.; Płowiec R. (1989). Determination of the shear impedance of viscoelastic 
liquids using Love and Bleustein-Gulyaev waves. Journal of the Acoustical Society of 
America, Vol. 86, No 2, (August 1989) (818-827), ISSN: 0001-4966. 

Kiełczyński P.; Pajewski W, Szalewski M.; Balcerzak A. (2004). Measurement of the shear 
storage modulus and viscosity of liquids using the Bleustein-Gulyaev wave. Review 
of Scientific Instruments, Vol. 75, No. 7, (July 2004) (2362-2367), ISSN: 0034-6748.  

Kiełczyński P.; Szalewski M.; Siegoczynski R.M.; Rostocki A.J. (2008). New ultrasonic 
Bleustein-Gulyaev wave method for measuring the viscosity of liquids at high 
pressure. Review of Scientific Instruments, Vol. 79, (February 2008) (026109-1-3), ISSN: 
0034-6748.  

Kiełczyński P.; Szalewski M.; Rostocki A.J.; Gładysz J. (2008). Investigation of high-pressure 
phase transitions in castor oil using SH surface acoustic waves. IEEE International 
Ultrasonics Symposium Proceedings, pp. 2154-2157, ISBN: 978-1-4244-2480-1, Beijing, 
China, November 2008.  

Kiełczyński P.; Szalewski M.; Rostocki A.J.; Zduniak M.; Siegoczyński R.M.; Balcerzak A. 
(2009). Investigation of high-pressure phase transitions in vegetable oils by 
measuring phase velocity of longitudinal ultrasonic waves. IEEE International 
Ultrasonics Symposium Proceedings, pp 1563-1566, , ISBN: 978-1-4244-4390-1, Rome, 
Italy, September 2009.  

Kinh N.V.; Pajewski W. (1980). Generation of acousto-electrical waves using a source of 
transverse vibrations. Archives of Acoustics, Vol. 5, No 3, (July 1980) (261-274), ISSN: 
0137-5075.  

King H.E.; Herboltzheimer E.; Cook R.L. (1992). The diamond-anvil cell as a high-pressure 
viscometer. Journal of Applied Physics, Vol. 71, No 5, (March 1992) (20171-2081), 
ISSN: 0021-8979.  

Kosinskii V.V. (2009). Effect of the major process factors on the high-pressure impregnation 
of rigid porous substrates with viscous media. Powder Metallurgy and Metal 
Ceramics, Vol. 48, No1-2, (January 2009) (13-20), ISSN: 1068-1302.  

Koran F.; Dealy J.M. (1999). A high-pressure sliding plate rheometry for polymer melts. 
Journal of Rheology, Vol. 43, No. 5 (September 1999), (1279-1290), ISSN: 0148-6055.  

Kulisiewicz L.; Baars A.; Delgado A. (2007). Effect of high hydrostatic pressure on structure 
of gelatin gels. Bulletin of the Polish Academy of Sciences, Vol. 55, (June 2007), (239-
244), ISSN: 0239-7528.  

Kulisiewicz L; Delgado A. (2010). High-pressure rheological measurement methods. A 
review. Applied Rheology, Vol. 20, No. 1, (January 2010), (13018-1-15), ISSN: 1430-
6395.  

Lan H.Y.; Tseng H.C. (2002). Study of the rheological behavior of PP/supercritical CO2 
mixture. Journal of Polymer Research, Vol. 9, No 3 (September 2002), (157-162), ISSN: 
1022-9760.  

Landau L.D.; Lifshitz E.M. (1958). Continuum Mechanics. Pergamon Press, London, Chap. 2.  
Le Bail A.; Boillereaux L; Davenel A.; Hayert M.; Lucas T.; Monteau J.Y. (2003). Phase 

transitions in foods: effect of pressure and methods to assess or control phase 
transition. Innovative Food Science and Engineering Technologies, Vol. 4, No 1, (March 
2003) (15-24), ISSN: 1466-8564.  

www.intechopen.com



Application of Acoustic Waves to Investigate the Physical Properties of Liquids at High Pressure   

 

339 

Masson P.; Tonello C.; Balny C. (2001) High pressure biotechnology in medicine and 
pharmaceutical science. Journal of Biomedicine and Biotechnology, Vol. 1, No 2, 
(February 2001) (85-88), ISSN: 1110-7243.  

Mattischek J.P.; Sobczak R. (1997). High-pressure cell for measuring the zero shear viscosity 
of polymer melts. Review of Scientific Instruments, Vol. 68, No 5, (May 1997) (2101-
2105), ISSN: 0034-6748.  

Matveev V.A.; O.F. Orlov O.F.; Berg V.I. (2005). Measurement of the viscosity of a liquid at 
high pressures. Measurement Techniques, Vol. 48, (October 2005) (1009-1013), ISSN: 
0543-1972  

Mia S.; Hayashi S.; Ohno N. (2007). High pressure tribological behavior of vegetable oils as 
lubricant. Proceedings of the International Conference on Mechanical Engineering, (29-31 
December 2007), Dhaka, Bangladesh, Paper Id FL-07.  

Mineev V.N.; Funtikov A.I. (2005). Measurements of the viscosity of water under shock 
compression. High Temperature, Vol. 43, No 1, (January 2005), (141-150), ISSN: 0018-
151X.  

Nakamura K. (2007). Shear-horizontal piezoelectric surface acoustic waves. Japanese Journal 
of Applied Physics, Vol. 46, No 7B (July 2007), (4421-4427), ISSN: 0021-4922.  

Nakamura Y.; Kurosaki Y. (2005) Micro-rheometry of pressurized lubricants and micro-
nanorheology. Microsystems and Technology, Vol. 11, (August 2005), (1127-1131), 
ISSN: 0946-7076.  

Nithya R.; Nithyanathan S.; Mullainathan S.; Rajasekaram M. (2009). Ultrasonic 
investigation of molecular interactions in binary mixtures at 303 K. E-Journal of 
Chemistry, Vol. 6, No. 1, (January 2009) (138-140), ISSN:0973-4945.  

Oakley B.; Barber G.; Worden T.; Hanna D. (2003). Ultrasonic parameters as a function of 
absolute hydrostatic pressure. I. A Review of the data for organic liquids. Journal of 
the Physical and Chemical References Data, Vol. 32, (April 2003) (1501-1533), ISSN: 
0047-2689.  

Oakley B.; Hanna D.; Shillor M.; Barber G. (2003). Ultrasonic parameters as a function of 
absolute hydrostatic pressure. II. Mathematical models of the speed of sound in 
organic liquids. Journal of the Physical and Chemical References Data, Vol. 32, (April 
2003) (1535-1544), ISSN: 0047-2689.  

Philippoff W. (1963). Viscoelasticity of polymer solution at high pressures and ultrasonic 
frequencies. Journal of Applied Physics, Vol. 34, (May 1963) (1507-1511), ISSN: 0021-
8979.  

Plantier F.; Daridon J.L.; Lagourrette B. (2002). Measurement of the B/A nonlinearity 
parameter under high pressure: Application to water. Journal of the Acoustical 
Society of America, Vol. 11, No 2, (February 2002) (707-715), ISSN: 0001-4966.  

Ripple D. (1992). A compact high-pressure capillary viscometer. Review of Scientific 
Instruments, Vol. 63, (May 1992), (3153-3155), ISSN: 0034-6748.  

Rostocki A.J.; Wiśniewski R.; Wilczyńska T. (2007). High-pressure transition in rape seed oil. 
Journal of Molecular Liquids,  Vol. 135, (February 2007) (120-122), ISSN: 0167-7322.  

Rostocki A.J.; Siegoczyński R.M.; Kiełczyński P.; Szalewski M. (2010). An application of Love 
waves for the viscosity measurement of triglycerides at high pressure. High Pressure 
Research, Vol. 30, No 1, (January 2010), (88-92), ISSN: 0895-7959. 

Royer D.; Dieulesaint E. (2000). Elastic waves in solids. Springer, ISBN 3-540-65932-3, Berlin.  

www.intechopen.com



 Acoustic Waves 

 

340 

Royer J.R.; Gay Y.J; Adam M.; Simone de J.M.; Hakan S.A. (2002). Polymer melt rheology 
with high-pressure CO2 using a novel magnetically levitated sphere rheometer. 
Polymer, Vol. 43, No 8, (April 2002) (2375-2383), ISSN: 0032-3861.  

Ruttle S.G.R.; Stephenson M.I. (1975). A high-pressure ultrasonic viscometer. Ultrasonic 
International Conference Proceedings, IPC Sci. Technol., (1975) (224-227), Ed. Browne 
L.J., Guilford, England.  

Schaschke C.J.; Abid S.; Flether J.; Heslop M.J. (2008). Evaluation of a falling sinker-type 
viscometer at high pressure using edible oil. Journal of Food Engineering, Vol. 87, No 
1, (January 2008) (51-58), ISSN: 0260-8744.  

Schettino V.; Bini R.; Ceppatelli M.; Citron M. (2008). Activation and control of chemical 
reactions at very high pressure. Physica Scripta, Vol. 78, No. 5, (November 2008) 
(058104-1-15), ISSN: 0031-8949.  

Shames I.H. (2002). Mechanics of Fluids. Mc Graw-Hill, ISBN: 0071198899, New York.  
Sha Zhen-Shun. (1997). The improvement on the falling ball viscometer. Review of Scientific 

Instruments, Vol. 68, (April 1997), (1809-1811). ISSN: 0034-6748.  
Sonneville-Aubrun O.; Simonnet J.T.; L’Alloret F. (2004). Nanoemulsions: a new vehicle for 

skincare products. Advances in Colloid and Interface Science, Vol. 108-109, No 1-3, 
(May 2004) (145-149), ISSN: 0001-8686.  

Stallard J.M.; Rosenbaum I.J.; Davis C.M. (1969). Ultrasonic method for determining 
thermodynamic properties of liquids with results for mercury. Journal of the 
Acoustical Society of America, Vol. 45, No 3, (March 1969) (583-586), ISSN: 0001-4966. 

Sugasawa S. (2002). Time difference measurement of ultrasonic pulses using cross-
correlation function between analytic signals. Japanese Journal of Applied Physics, Vol. 
41, part 1, No 5B, (May 2002) (3299-3307), ISSN: 0021-4922.  

Viola F.; Walker W. (2003). A comparison of the performance of time-delay estimators in 
medical ultrasound. IEEE Trans. on Ultrasonics, Ferroelectric and Frequency Control, 
Vol. 50, No. 4, (April 2003) (392-401), ISSN: 0885-3010.  

Zhang C.; Caron J.J.; Vetelino J.F. (2001). The Bleustein-Gulyaev wave for liquid sensing 
applications. Sensors&Actuators B, Vol. 76, No 1-3 (June 2001) (64-68), ISSN: 0925-
4005.  

Zhao S.Y.; Yan J.N.; Shu Y.; Zhang H.X. (2008). Rheological properties of oil-based drilling 
fluids at high temperature and high pressure. Journal of South University of 
Technology, Vol. 15, No 1, (September 2008) (457-461), ISSN: 1005-9784. 

www.intechopen.com



Acoustic Waves

Edited by Don Dissanayake

ISBN 978-953-307-111-4

Hard cover, 434 pages

Publisher Sciyo

Published online 28, September, 2010

Published in print edition September, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

SAW devices are widely used in multitude of device concepts mainly in MEMS and communication electronics.

As such, SAW based micro sensors, actuators and communication electronic devices are well known

applications of SAW technology. For example, SAW based passive micro sensors are capable of measuring

physical properties such as temperature, pressure, variation in chemical properties, and SAW based

communication devices perform a range of signal processing functions, such as delay lines, filters, resonators,

pulse compressors, and convolvers. In recent decades, SAW based low-powered actuators and microfluidic

devices have significantly added a new dimension to SAW technology. This book consists of 20 exciting

chapters composed by researchers and engineers active in the field of SAW technology, biomedical and other

related engineering disciplines. The topics range from basic SAW theory, materials and phenomena to

advanced applications such as sensors actuators, and communication systems. As such, in addition to

theoretical analysis and numerical modelling such as Finite Element Modelling (FEM) and Finite Difference

Methods (FDM) of SAW devices, SAW based actuators and micro motors, and SAW based micro sensors are

some of the exciting applications presented in this book. This collection of up-to-date information and research

outcomes on SAW technology will be of great interest, not only to all those working in SAW based technology,

but also to many more who stand to benefit from an insight into the rich opportunities that this technology has

to offer, especially to develop advanced, low-powered biomedical implants and passive communication

devices.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Piotr Kielczynski (2010). Application of Acoustic Waves to Investigate the Physical Properties of Liquids at High

Pressure, Acoustic Waves, Don Dissanayake (Ed.), ISBN: 978-953-307-111-4, InTech, Available from:

http://www.intechopen.com/books/acoustic-waves/application-of-acoustic-waves-to-investigate-the-physical-

properties-of-liquids-at-high-pressure

www.intechopen.com



Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

Phone: +86-21-62489820 

Fax: +86-21-62489821



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


