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1. Introduction 

The ability of acoustic waves to pass through a slot or vacuum (air) gap between 
piezoelectric crystals which are not contacting with each other, for the first time has noted   
Kaliski (Kaliski, 1966). In those years the interest of a researchers to the phenomenon first of 
all was connected to the being widely discussed problem of generation and amplification of 
ultrasonic waves that propagate along boundary of a piezoelectric medium adjoining semi-
conductor with a drift current (Gulyaev, 2005). More important it turned out to use Kaliski's 
idea of acoustic wave passage through a gap of piezoelectric crystals in metrological 
purposes. Firstly for development of contactless measurements of electro-acoustic fields in 
crystals, at which are excluded or minimized the distortions caused by own loading action 
of transducer. Secondly for search of effective ways of contactless excitation of acoustic 
oscillations in solids.  
Because of anisotropy and of weakly expressed transversal piezoelectricity the case of cubic 
piezoelectric crystals that has considered Kaliski for shear waves of horizontal polarization 
(Kaliski, 1966) have not shown the proper efficiency of wave passage through a gap even 
with very small thickness and under condition of almost sliding incidence. Therefore in 
subsequent this phenomenon due to similarity to tunnel transition in the quantum 
mechanics (Landau & Lifshitz, 1991) named by acoustic tunneling (Balakirev & Gilinskii, 
1982), began to be considered for more suitable crystals of tetragonal and hexagonal  
systems.  The being reviewed cycle of investigations for case of strictly plane boundaries (a 
Balakirev & Gorchakov, 1977; Balakirev & Gorchakov, 1986), was finished (Balakirev et al., 
1978) by experimental detection of effect.   
By common result of the quoted works was the conclusion that the efficiency of acoustic 
tunneling is caused essentially by electromechanical coupling factor of crystals H, and with 

growth of thickness of a gap is very decreasing. The passage of an acoustic wave through a 

gap will be especially appreciable at angle of incidence α∼π/2−H 2(1+H 2)−1. So, even for such 

strong piezoelectric, as BaTiO3, we have H 2< 0.4 (Royer & Dieulesaint, 2000) with a 

following from here estimation α>75°. Therefore the opportunity of acoustic tunneling to 
using is very being complicated.    

Source: Acoustic Waves, Book edited by: Don W. Dissanayake,  
 ISBN 978-953-307-111-4, pp. 466, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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The first attempt of overcoming this difficulty of practical realization of the phenomenon of 
acoustic tunneling was connected with known opportunity to control by coupling of 
acoustic and electric oscillation in crystal with high electrostriction by an external electrical 
field (Gulyaev, 1967; a Gulyaev & Plessky, 1977). In particular, for shear waves with 
horizontal polarization of displacement (SH-waves) that propagate across applied field, its 
action is similar to piezoelectricity of 6mm (4mm)-class crystals with piezoelectric modulus 

e15=aE0/2, where a is the coefficient of electrostriction, and E0 is the strength of electric field. 
However the simple reproduction of the above results for this case takes place (Filippov, 
1985) as the increase of piezoelectric activity of crystal with escalating of an electrical field 
almost up to a voltage of dielectric breakdown only a few decrease the suitable angles of 
incidence. The case, when the incident shear wave has vertical polarization and the external 
field is lying in a plane of incidence, also was considered by Filippov (Filippov, 1985). It is 
more interesting as in such conditions the acceptable for practical purposes angles of 
incidence can be lowered up to forty degrees. 
Results received in (Filippov, 1985), have encouraged the researchers of the phenomenon of 
acoustic tunneling, but have not brought the complete satisfaction because of necessity in 
using a source of a high voltage. The attention has been addressed to other opportunity to 
increase the efficiency of tunneling of waves through a gap not only on intermediate angles 
of incidence, but also small ones. In its basis is laid the account of resonant properties of a 
gap as a waveguide of the slotted electroacoustic wave (Balakirev & Gorchakov, 1977 b;  
Gulyaev & Plessky, 1977 b). For achievement of declared object it was necessary to change 
resonant properties of a gap appreciably. As an effective way it was offered the using of 
piezocrystals with a periodic shape of surfaces (Gulyaev & Plessky, 1978) or with periodic 
inertial loading in form of guideway layer from other dielectric material (Gulyaev et al., 
1978).  
At a geometrical resonance of incident wave with the period of profile or loading impedance 
of boundaries the effective excitation of the appropriate mode of a slotted electroacoustic 
wave took place. In a result the complete passage through a gap, possible on conditions of 
excitation even at normal incidence, will be achieved. As in a gap there are two modes of 
slotted electroacoustic wave (Gulyaev & Plessky, 1977 b), for the given configuration of 
slotted structure it was possible to determine two frequencies ensuring for a wave the 
complete passage through a gap. In case of guidway boundary layers of an other dielectric 
with periodic inertial loading (Gulyaev et al., 1978) slotted electroacoustic waves of a gap 
are being replaced, as a matter of fact, by surface Love waves (Royer & Dieulesaint, 2000), 
which connect through a gap by an electrical field. The advantage of use of surface Love 
waves before slotted electroacoustic waves consists in much stronger boundary localization 
and, as a consequence, in their ability to form on appreciably smaller distances along 
guidway boundary. Due to this the resonant tunneling of waves through a gap "adjusted" 
on Love waves, can be carried out with the appreciably smaller apertures of an incident 
acoustic beam. Idea to take advantage of resonant properties of a gap for achievement of 
complete passage of a wave through a gap experimentally was realized in work 
(Grigor'evskii, 1987) for waves of vertical polarization, when resonant modes of a gap with a 
periodic profile of boundaries are surface Releigh-type waves. It is necessary to note, that in 
this experiment the passage of a wave through a gap of piezoelectrics with rectangular 
grooves was not quite complete. The authors have explained it by partial transformation in 
transversal waves of a longitudinal wave, which is falling normally on a gap with periodic 
grooves. 
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The concept of acoustic tunneling is successfully applied now to interpretation of transfer 

effects of wave disturbances between phononic crystals (Qui et al, 2005; Van Der Biest et al, 

2005; Pennec et al, 2009). Strictly speaking, there is not here the obvious analogy to acoustic 

tunneling of waves through a slot between piezoelectric crystals because of absence of a 

vacuum gap. Instead of it in respect to tunneling phonons consider the forbidden zone of 

phononic crystals, and role of the electric-field coupling between piezoelectric crystals begin 

to play the allowed states, which arise in the forbidden zone because of infringements of 

Bragg interference requirements by discrepancy of the periods of lattices or by introduction 

of artificial defects of periodic structure of phononic crystals. 

Other direction of modern researches of acoustic tunneling, which directly continues early 

works (Balakirev & Gorchakov, 1977 a; Balakirev & Gorchakov, 1986; Balakirev et al, 1978; 

Filippov, 1985), is connected with taking into account the relative longitudinal displacement 

of piezoelectric crystals divided by a gap. As we know, earlier in all works on acoustic 

tunneling in piezoelectric layered structures with a gap the crystals always relied fixed. 

There are, however, some reasons, on which the acoustic tunneling in conditions of relative 

longitudinal displacement of piezoelectric crystals represents doubtless interest. So, in 

practice the relative moving of bodies is one of the main occasions for using of contactless 

ways of introduction of acoustic oscillations. On the other hand, in sphere of high 

technologies (robotics, mechatronics) the important place occupies monitoring relative 

moving of elements of designs that, in particular, means development of sensor controls 

using piezoelectric effect. At last, the relative longitudinal displacement of piezoelectrics in 

slot-type structures is possible to consider and as the additional factor of the processing of  

signal information by standard means of acoustoelectronics. 

Present article is written on materials of the publications (Gulyaev et al, 2007 a; Gulyaev et 

al, 2007 b; Maryshev & Shevyakhov, 2007), concerning only of case of shear waves of 

horizontal polarization in piezoelectric crystals of some classes of crystallographic symmetry 

with ideal plane boundaries of a gap, which are not subjected to any periodic impedance 

loading. The appropriate generalizations, for example, account not only electrical, but also 

magnetic connection of crystals (piezomagnetics) by fields through a gap are represented by 

matter of the nearest future. Confirming it we shall refer to work (Vilkov et al, 2009), in 

which tunneling of shear magnetoelastic waves through a gap of ferromagnetic crystals 

testing relative longitudinal displacement recently was considered. 

2. Tunneling of a shear wave through a gap of piezoelectric crystals with 
relative longitudinal motion  

2.1 Shear elastic wave in a moving crystal 

The typical geometry of boundary problem of acoustic tunneling through a gap of pair 

piezoelectric crystals with relative longitudinal motion is submitted on Fig. 1. On it one of 

crystals (bottom) moves with the given constant velocity V, whereas other (top) is in rest. 

Generally crystals can differ in the parameters, have various orientations of crystallographic 

axes and belong to various classes of crystal symmetry. However, it is important, that falling 

on a gap on the part of immobile crystal the acoustic wave was a piezoactive wave, i.e. was 

accompanied in its deformations by electric fields, and the surfaces of crystals – boundaries 

of a gap, were not covered with metal electrodes.  

www.intechopen.com



 Acoustic Waves 

 

162 

 

Fig. 1. Geometry of acoustic wave tunneling through a gap of piezoelectric crystals with 
relative longitudinal motion 

From elementary reasons the following way of consideration of acoustic tunneling in 
conditions of relative longitudinal motion of piezoelectric crystals arises. It is necessary to 
connect with each of crystal own system of coordinates. For immobile crystal "1" it is the 

laboratory system of coordinates x0yz. For a moving crystal "2" it is the passing coordinate 

system x̐0y̐z ̐. The propagation of acoustic waves in own coordinate systems of crystals, 
where both of them are immobile, is being described, obviously, by the standard manner 
(Balakirev & Gilinskii, 1982; Royer & Dieulesaint, 2000). However, because of coupling by 
electric fields through a gap it is impossible already to consider these wave processes  as 
isolated ones and refraction of waves by a gap must be described in one common coordinate 
system. For this purpose any of own coordinate systems of crystals is suitable, but more 
preferably to use  the laboratory system of coordinates, as according with logic of subject 
matter just with the one are connected the acoustic radiator and detector of a reflected wave. 
Thus, we need to describe waves, passing into a moving crystal, with a point of the observer 
of laboratory system of reference. In language of mathematics it means that in equations for 
moving crystal we transfer from coordinates  x̐, y̐, z  to coordinates  x, y, z.  

If to accept reasonable restriction V<<c, where c is velocity of light, the transfer of 
disturbances by electric fields through a gap can rely instantaneous. It will be first and 
foremost is in accordance with usually used quasistatic approximation for determination of 
the electric fields, which accompany the acoustic waves in piezoelectric crystals (Balakirev & 
Gilinskii, 1982; Royer & Dieulesaint, 2000). Secondly, we then may be limited by mechanical 

relativity and to use for connection of coordinate systems x0yz and x0̐yz̐̐ Galilean 
transformation  

 ttzzyytVxx
~

,~,~,
~~ ===+= .  (1) 

Here t ̐ and t is the time, which has equal duration in both systems of reference. 

Let's consider identical piezoelectric crystals of a class 6 (4, 6mm, 4mm, ∞m) with common 
orientation of axes of symmetry of high order 6 (4), along coordinate directions z and z. In 
shear waves of horizontal polarization the elastic displacement uj (here and everywhere are 
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lower j=1, 2 is the number of a crystal) also are parallel these directions: u1=u1(x,y,t)||z and 

u2=u2(x,y,t)||z . Therefore according to the equations of state for a piezoelectric material the 
working components of stress tensor Tik and vector of an electrical induction D for a moving 
crystal have in the passing system of coordinates the form (Balakirev & Gilinskii, 1982; 
Royer & Dieulesaint, 2000) 
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The similar expressions, but already in laboratory system of coordinates, turn out for the 
immobile crystal. They directly follow from the formulas (2), (3), if in them to change 

number of a crystal j=2 for number j =1 and instead of coordinates x, y  to use accordingly 

laboratory coordinates x, y. In the formulas (2), (3) ϕ is the potential of an electrical field, λ is 
shear modulus, e15 and e14 is the piezoelectric modules of longitudinal and transverse 

piezoelectric effect, ε is the permittivity of a crystal. 
By the initial equations for electroelastic fields of SH-waves propagating in a plane x̐0y ̐of a 
moving piezoelectric crystal, are the equations 
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where ρ is density. First of them represents the equation of elastic medium motion, and 
second expresses the fact of absence of free carriers of a charge in piezoelectric crystal and in 
quasi-static approximation with high accuracy replaces with itself complete system of the 
Maxwell equations for determination of an electrical field. For immobile piezoelectric in 
view of the above-stated replacement of number of a crystal and use of laboratory 
coordinates we have the similar equations. Let's remind that partial derivatives on spatial 
variables in the equations (4) are summarized on a repeating index, forming tensor 
convolutions. 
Result of substitution of expressions (2), (3) in the equations (4) will be well known 
(Balakirev & Gilinskii, 1982; Royer & Dieulesaint, 2000) the equations of piezocrystal 
acoustics for waves of a SH-type 
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Similarly for immobile crystal is received 
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The difference between the equations (5), (6) is defined by differences in pairs of differential 

operators: ∂/∂t , ∂/∂t and ∇ 2=∂2/∂x2+∂2/∂y2, ∇2=∂2/∂x2+∂2/∂y2. By rule of indirect 
differentiation of functions with many variables the connection between them it is possible 
to open, using relations 
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As from (1) follows, that 1~,~,1~,1~ =
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(7) are equal to zero, on the basis (7) we come to equalities 
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From here it is visible, that in the equations (5) transitions from coordinates of passing 

system of reference to laboratory coordinates are reduced to the following replacement of 

the differential operators: ∇2→∇2, ∂/∂t →∂/∂t+V∂/∂x. On this basis the equations (5) can 

give a form 
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We shall be interested in propagation of plane monochromatic SH-waves in moving 

piezoelectric from a position of the observer to laboratory system of reference, not accepting, 

while, in attention limitation of the sizes of a crystal. Then according to second of the 

equations (8) we have ϕ2=u2(e15/ε2), where u2∼exp[i(k2r−ωt)]  is the solution of the wave 

equation 
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Further, noticing, that VEx and using replacements ,ω−=
∂
∂

i
t

,2Vk
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2
22
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we come to next dispersion relation for SH-waves in a moving crystal 

 2
2

2
2

2 )( Vkk −ω=tс . (10) 

In expressions (9), (10) ct is the velocity of shear waves in a piezoelectric material, λ* is the 
shear modulus modified by piezoelectric effect. 
The formula (10) establishes connection of a SH-wave frequency in laboratory system of 

reference ω with wave number k2, and also shows dependence of phase velocity of a wave 

v2=ω/k2 from a direction of propagation in relation to a direction of a crystal motion. Thus, a 

consequence of a crystal motion concerning the observer is the anisotropy of propagation of 

SH-waves. If the left side of equality (10) to transfer to the right, the dispersion relation will 

accept a form of a difference of two squares with a zero right part: 
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Accordingly, it will break up to two independent equations 

 2
22 kVk tc±=ω .  (11) 

The presence of two various dispersion branches has basic meaning for understanding of 
specificity of acoustic tunneling of waves through a gap of piezoelectrics, undergoing the 
relative longitudinal displacement. In the beginning we shall notice, that the ray or group 
velocity of waves can be defined on known (Balakirev & Gilinskii, 1982; Royer & 

Dieulesaint, 2000) to the formula Vg =∂ω/∂k2. From (11) differentiation ω on k2 and taking 

into account, that 2
22 k=k , we receive 

 2nVV tg c±= ,  (12) 

where the value n2=k2/k2 is the vector of wave normal of a SH-wave. On the other hand, 

expression (11) it is possible to write as ω=k2V±ctk2 and after division on k2 to receive 
expression for phase velocity 

 tc±= 22v Vn .  (13) 

Multiplying both sides (13) on n2, we come to a conclusion, that the phase velocity of a wave 

v2=v2n2 coincides with its group velocity Vg and for the observer of laboratory system of 
reference represents expected result of Galilean addition of velocity of wave propagation 
concerning a crystal with velocity of moving of the  crystal. 
Pair of signs in expressions (11) - (13) should not cause bewilderment, as the propagation of 
plane monochromatic waves along any elected direction in a crystal can occur by a counter 

manner. For an immobile crystal direct and return propagation of waves (+n2 is the wave 

normal for a wave direct, and −n2 - for a wave of return propagation) are made equally with 
velocity ct. The crystal motion brings in a difference to their propagation, indicating about 
acquisition by a crystal of such quality, as nonreciprocity of propagation. An evident picture 
of nonreciprocity of wave propagation because of a crystal motion demonstrate on Fig. 2, 3 
polar curves of the reduced phase velocity  

 1cos
v2 ±θβ=

tc
,  

tc

V
=β , (14)  

where θ is the angle between vectors n2 and V. At construction the polar curves we were 
guided by a rule to correlate to waves of direct propagation orientation wave normal in side 
from pole and, opposite, for waves of return propagation to consider as it oriented along a 
direction of wave propagation in the side of a pole. We agree also to represent the polar 
curves of phase velocity of waves of direct propagation by continuous lines, and polar 
curves of phase velocity of waves of return propagation - dashed lines. Let's notice, that the 
equality (13), resulting to the formula (14), represents balance of projections of velocities 
participating in Galilean addition, on a direction of wave propagation. In this connection the 
value v2 for waves of return propagation turned out negative, and at construction of the 
polar curves its modulus was used.    
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Fig. 2. Polar curves of phase velocity of SH-wave propagation at subsonic velocities of a 
crystal motion 

The accepted way of graphic representation of polar curves excludes mess in definition of 

types of waves (direct or return propagation) and choice of the appropriate orientation wave 

normal. For an example, on Fig. 2 thin straight line allocates a direction of propagation of a 

SH-wave, which in the top point is crossed with dashed polar curve of return propagation  

(v2<0) for β=0.3. Thus, this point we correlate a return wave with wave normal, as shown by 

arrow directed to a pole. The same wave, but only direct propagation, we have the right to 

connect with the bottom point laying in crossing of a line of propagation with curve 2, 

which is mirror reflection of dashed polar curve concerning a vertical line passing through a 

pole. Last circumstance is a geometrical consequence of rearrangement by places of waves 

of direct and return propagation at inversion of velocity of a crystal motion of what it is 

uneasy to be convinced by substitution β→−β in (13), (14). 

0 0.5 1 1.5 2 2.5

-2

-1

0

1

β=1.5

 

Fig. 3. Polar curve of phase velocity of a SH-wave propagation at supersonic crystal motion 
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At subsonic velocities of a crystal motion (β<1, Fig. 2) circular at β=0 polar curve 1, identical 
at direct and return propagation, is horizontal stretched (is compressed) for waves of direct 

(return) propagation in sector of polar angles |θ|<π/2. In sector of angles |θ|>π/2 takes 
place opposite. Such deformation of polar curves, reflecting property of nonreciprocity of 
SH-wave propagation in a moving crystal, is expressed, naturally, the more strongly, than 

above velocity of a crystal. At supersonic velocities (β>1, Fig. 3) the change of polar curves 
by motion of a crystal is complicated by an opportunity of mutual transformation of waves 
of direct and return propagation. On mathematical language it will be expressed by change 

of sign of phase velocity v2 in the formula (14). So, at β>1 and angles θ>π/2 the first term 

βcosθ of the right side of expression for the phase velocity of a wave of direct propagation 

will be negative and, since an angle of transformation θ*+=arccos(−1/β), begins to surpass in 

magnitude unit. Thus instead of former values v2>0 we shall receive, as the certificate of the 

come transformation of a wave in a wave of return propagation, v2<0. On the polar curves of 
phase velocity the range of transformation will settle down of a symmetrically horizontal 
axis and it will found in sector of obtuse (acute) angles between two thin straight lines, 
crossed in a pole, on Fig. 3 for waves of direct (return) propagation. 
The parts of polar curves of phase velocity appropriate to the transformed waves, look like 
petals. On Fig. 3 such petals appropriate to transformation of a wave of direct propagation 
to a wave of return propagation, is shown by a dashed line. Instead of it the directly 
propagating waves receive mirror imaged concerning a vertical and shown continuous line 
a petal of waves, which are transformed by a crystal motion from waves of return 
propagation in waves of direct propagation. Certainly, that in the crystal, i.e. in a passing 
system of coordinates any transformation of waves does not occur. It appears possible only 
with transition to a position of the observer of laboratory system of reference, and in this 
sense is effect typically of a relativistic nature. As at transformation of a wave there is an 
inversion its wave normal, this phenomenon can be classified as specific, relativistic version 
of the known phenomenon of conjugation of wave front (Fisher, 1983; Brysev et al, 1998; 
Fink et al, 2000). But if in a basis of the processes, described in the literature, the 
parametrical effects put, nonlinear first of all, here conjugation of wave front is provided 
with the linear laws of Galilean kinematics.                        

2.2 Refractive properties of a gap 

After we have established characteristics of shear wave propagation caused by relative 
motion of a crystal, it is possible to begin definition of those waves, which arise in crystals 
on the different sides of a gap under action of a wave, falling on it. As shown in Fig. 1, we 
shall believe, that the incidence of a shear wave on a gap occurs on the side of immobile 

crystal. Then, it is necessary to understand frequency ω as a frequency of incident wave. 
Standard for the wave refraction problems (Balakirev & Gilinskii, 1982; Royer & Dieulesaint, 

2000) the need of phase conjugation of harmonic fields on boundaries of a gap y=±h follows 
from boundary conditions (will be discussed more in details in section 2.3) and means 
identical concurrence of phases of oscillations in all arising waves and near-boundary 
electrical fields with a phase of oscillations of incident wave. Or else, if the incident wave 

has a phase multiplier exp[i(kxx−ωt)], the same phase multiplier will characterize oscillations 
with change of longitudinal coordinate x and time t in all other arising waves. Accordingly, 
the law of wave refraction is formulated as equality of frequencies of waves to frequency of   
incident wave 
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 ω≡ω=ω=ω TRi , (15) 

and as the predefiniteness of projections of wave vectors to a direction of boundaries of a 
gap by a projection of a wave vector of incident wave 

 xkkkk ≡== )T(
||

)R(
||

)i(
|| . (16) 

In expressions (15), (16) indexes i, R, T show an belonging of examined parameter according 
to incident, reflected (arising in immobile crystal) and refracted (arising in a moving crystal) 
to waves.  
In view of equality (6) for waves in immobile crystal we have a dispersion relation 

 22
1

2 ω=ktc . (17) 

From two its possible branches ctk1=±ω for incident wave we, actually, elect a branch of 
directly propagating wave ctk1=ω. It specifies a positive sign in (15). Thus, in the subsequent 
transformations with use of expressions (15), (16) we accept, that ω>0, k1>0 and accordingly 
kx=k1sinα>0, where α is the angle of incidence (see Fig. 1). 

As k1= n1ω/ct , where n1 is the vector of a wave normal, the refractve curve, described by a 

vector k1=k1(n1) in the incident plane x0y, has for waves in immobile crystal the form of a 

circle of radius ω/ct . In particular, the incident wave has the wave normal n1(i)=(sinα, 

−cosα). In view of (16) a wave normal n1(R)=(nx(R), ny(R)) any other wave arising in immobile 

crystal, also is characterized by value nx(R)=sinα and noticing further, that nx(R)2+ny(R)2=1, we 

have ny(R)=±cosα. The negative sign here actually is already used for an incident wave, so on 
reasons connected with causality, we are compelled to stop the choice on a positive sign. 
Thus, in immobile crystal in addition to the incident wave there is only one reflected wave 

with the wave normal n1(R)=(sinα, cosα), which is propagated in side from the boundary y=h. 
It is obvious, that in complete conformity with Mandelstam' principle of radiation the 
following from dispersion relation (17) the expression for the group velocity of waves in 

immobile crystal Vg(1)=n1ct is confirmed with ability of this wave to take aside energy from 
boundary.  
For waves arising in a moving crystal under action of incident wave, it is easier all to 
proceed from expression (13) and formula for a wave vector k2=ωn2(T)/v2 , where n2=(nx(T), 
ny(T)) - vector of wave normal. Meaning, that in examined case Vn2=Vnx(T)=Vsinαt (αt - angle 
of refraction), we receive 
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According to (18) there are two refraction branches, appropriate to signs "plus" (k2+) and 

"minus" (k2
−) in the formulas (12) - (14). The conditions of existence of the branches express 

the mentioned above requirement of positive values of wave numbers k2
±>0 at the elected 

way of representation of problem solution in laboratory system of reference by means of 

waves of direct propagation ω>0. In this sense the formula (18) does not add the new 
information that was received in the previous section, and only translates its in the terms of 
wave vectors more convenient for consideration of refractive effects.  
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The first refraction branch with wave number k2+  we arrange to name as a usual branch, as 
for it the waves in a moving crystal represent waves of a direct propagation irrespective of a 
choice of system of reference. Really, if, using (1) to compare phases of oscillations of a wave 

in passing exp[ikxx̏−Ωt ̏] and laboratory system of reference exp[ikxx−ωt], for frequency of a 
wave in passing system of reference it is not difficult to receive expression 

 Vk 2−ω=Ω .  (19) 

It shows Doppler shift of frequency of a wave and at substitution k2+ from (18) determines 

always positive values of frequencies Ω+=Ω(k2+)=ω(1+βsinαt)
−1. On the contrary, at the 

substitution in (19) k2
−, we receive Ω−=Ω(k2

−)=−ω(βsinαt−1)−1 and for the second refraction 

branch we have Ω−<0, whereas ω>0. Thus, in case of this refraction branch, the waves, 
refracted in a moving crystal, are in relation to the crystal waves with the reversed wave 
front, but are perceived in laboratory system of reference as waves of direct distribution. 

Therefore it is possible to name a refraction branch k2
−  as a reverse refraction branch. 

As against known results (Fisher, 1983; Brysev et al, 1998; Fink et al, 2000) the phenomenon 
of conjugation of wave front, examined by us, has of a purely kinematic origin. It is caused 
by drift action of a medium moving at a transonic velocity along the wave incident from the 
immobile crystal, which exhaustively compensates the reverse propagation of a refracted 
wave relative to the crystal and eventually provides its spatial synchronism (by means of 
electrical fields induced via the gap) with waves that are true of direct propagation in the 
immobile piezoelectric crystal.   
On Fig. 4, 5 solid lines show typical refraction curves of direct propagating waves which are 
described by the ends of wave vectors k2 from (18) at change of a direction of a vector wave 
normal n2 in a plane of incidence. They correspond to two qualitatively different cases of 

SH-wave refraction by a gap at subsonic (β<1, Fig. 4) and very supersonic (β>2, Fig. 5) 
velocities of relative crystal motion. Simultaneously with it the dashed circles represent on 

Fig. 4, 5 dependences k1(n1)  for SH-waves in immobile crystal. At β<1 takes place only 
usual refraction (refraction curve is marked "plus"). The incident wave with a wave vector  
 
 

 

Fig. 4. Polar curves of refraction for the case β<1. 
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Fig. 5. Polar curves of refraction for the case β>2. 

kI=(k1sinα, −k1cosα) defines valid (16) identical in all other waves a horizontal projection kx. 
The wave vectors reflected kR and refracted in a moving crystal kT of waves will be, 
therefore, are directed from the origin 0 to points of crossing of appropriate refraction 
curves by a thin vertical line cutting on a horizontal a segment, equal kx, so that the energy 
was removed by waves on a direction of their propagation from boundaries of crystals. 

Thus, we have kR=(k1sinα, k1cosα), kT=(k2sinαt, −k2cosαt). 

In case of β>1 branch usual refraction exists in intervals 0<θ<θ1* and θ2*<θ<2π  of polar angle 

θ=π/2−αt, where θ2*=2π−θ1*, θ1*=arccos(−1/β). In addition to it, as shown in Fig. 5, in the 

sector of angles |θ|<arccos(1/β) there is a branch inversed refraction, marked by sign 

"minus". However, if β<2, its curve lays more to the right of a dashed circle for a refraction 
curve of immobile crystal. For this reason appropriate inversed refraction of a wave are not 
capable to be raised in a moving crystal by incident wave and refraction picture does not 
differ that is submitted on Fig. 4. At velocities of relative motion of crystals is twice higher 
sound usual refraction will be replaced, as shown in Fig. 5, inversed refraction. It will take 

place, since the angle of incidence α0, at which  

 
1

1
sin 0 −β

=α . (20) 

In order to conclude this condition in expression (18) for wave number of the inversed wave 

k2
− it is necessary to accept αt=π/2 and to take into account following from (16) equality 

k2
−=k1sinα. In passing we shall notice, that in a regime of sliding propagation αt=π/2   

difference of longitudinal projections kx of wave vectors for inversed and usual refracted 
waves is given by the formula  
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From (21) we have Δkx>0 at any finite values of quantity β. On geometry this fact means 

absence of crossing of usual and inversed refraction curves. Physically it shows existence of 

the refracted wave always in a form of single wave, fist (at α<α0) as usual, and then (at α>α0, 

if α0∈[0, π/2]),), - as the inversed wave. As the transition from usual to inversed refraction is 

reached by change of a sign cosαt (at an invariance of all other parameters of a wave), at 

construction of the solution there is a temptation to describe it in the terms of usual 

refraction, not resorting to consideration of two separate solutions. By an implicit manner 

such opportunity contains in refractive relations. Really, at usual refraction from (16), (18) 

the expression turns out 

 
αβ−

α−αβ−
=α

sin1

sin)sin1(
cos

22

t . (22) 

According to the requirement k2
−>0, that is equivalent also to following from (16), (18) 

condition βsinα>1, the actual inclusion by the formula (22) case not only usual, but also 

inversed refraction (cosαt→−cosαt) is obvious. Thus, not ordering beforehand to cosαt of a 

negative sign, i.e. describing refraction of a SH-wave in a moving crystal as usual, with use 

of the formula (22) it is possible automatically to take into account transition to inversed 

refraction.  

2.3 Solution of a boundary problem 

The connection between crystals is carried out by electrical fields penetrating through a gap. 
Therefore it is necessary to consider the equations (6), (8) together with the Laplace equation 

for potential ϕ of an electrical field in a gap 

 02 =ϕ∇ . (23) 

It is got, if, considering a gap as very rarefied material medium with permeability εg, instead 

of the equations (4) to use in laboratory system of coordinates the equation ∇D=0, where 

D=εgE is the induction, and E=−∇ϕ is the strength of a field. According to the equation (6)   

and accepted on a Fig. 1 picture of incidence, for immobile crystal we have 
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In the moving crystal on base of equations (8) and stated above idea to consider the 
tunneling wave as a single wave of usual refraction, we have 
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To the expressions (24), (25) we shall add expression for an electric field potential in a gap 

 )]exp()exp()][(exp[ ykDykCtxki xxx −+ω−=ϕ . (26) 

This expression follows from the equation (23). 

In the formulas (24) - (26) values Φj represent potentials of fields of near-boundary electrical 
oscillations, U is the known amplitude of incident wave. The coefficients of reflection (R) 
and passage of incident wave through the gap (T), and also amplitude of potentials of near-
boundary electrical oscillations F1, F2, C, D are subject still to determination. With this 
purpose we use boundary conditions of a problem, which mean a continuity of electrical 

potentials, y-components of an electrical induction and absence of shear stresses Tzy at y=±h. 
As the values Dy(2), Tyz(2) included in boundary conditions, do not contain derivative on time, 
they will not change at transitions from passing system of reference to laboratory system of 
reference. In result the boundary conditions will accept in laboratory system of reference the 
form 
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After substitution (24) - (26) in (27) and solution of forming system of the nonhomogeneous 

algebraic equations we shall receive representing for us interest coefficients 
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where we have 
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In these formulas, H 2 and H⊥2 are the square coefficients of electromechanical coupling for 

the longitudinal and transverse piezoeffect respectively, ξ=kxh is wave half-width of the gap, 

and gεε=ε / . In a particular case β=0 when the relative longitudinal motion of piezoelectric 

crystals is absent, we have ky(1)=ky(2)≡ky, ky/kx=tanθ (θ=π/2−α is the glancing angle) the 
expression (28)-(30) leads in earlier known results (Balakirev & Gilinskii ,1982).  

2.4 Discussion of results 

The main attention we shall concentrate here on angular spectra of coefficients of reflection 
and passage of waves through a gap. For the beginning we shall notice, that in limiting cases 

h→∞ and εg→∞ ( )0→ε  the expressions (28) - (30) show absence of passage T→0. In the first 

case it is caused by the disappearance of coupling of crystals by electrical fields through a 
gap in process of increase of its thickness. In the second case takes place a shielding of fields 
of a gap due to metallization of crystal surfaces. 
Typical behaviour of angular dependences of modules of reflection coefficient |R| and the 
passage coefficient |T|, calculated on the formulas (28) - (30) for pair of crystals LiIO3 with 

parameters H 2=0.38, H ⊥2=0.002, 2.8=ε , demonstrate Fig. 6 and 7. As can be seen, a general 

tendency in the case of usual refraction is a decrease in the extent of wave tunneling into the 
moving crystal with increasing angle of incidence. This trend is more pronounced in the 
angular dependences of the reflection coefficient R. Indeed, even at relatively small 

velocities, the opposite (antiparallel) relative longitudinal displacement (RLD) (β=−0.05, see 
curve 1 in Fig. 6) lead to extension of the wedge of transparency (depicted by the dashed 

curve in the region of large α) by more than a half toward greater angles (|R|min>0.6). 
However, a nearly complete extension of this wedge (Fig. 7, curve 3) takes place only for  
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Fig. 6. Plots of reflection coefficient |R| versus angle of incidence α for a pair of 

piezoelectric LiIO3 with an extremely thin (ξ=10−6) gap for an RLD velocity of β=−0.05 (1), 

0.05 (2), −2.5 (3), and 2.5 (4). The inset shows the angular dependence of the reflection 

coefficient in the case of reverse refraction for β=2.05 and various gap thicknesses ξ=10−3 (1), 

10−2 (2), 0.06 (3), and 10−6 (dashed curve). 
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Fig. 7. Plots of the transmission coefficient |T| versus angle of incidence α for a pair of 

piezoelectric LiIO3 crystals with a thin (ξ=10−3) gap for an RLD velocity of β=−0.5 (1), 0.1 (2), 
0.5 (3) and 2.01 (dashed curve). 

ultrahigh velocities of the opposite RLD (β<0, |β|>2). However, a comparison of curves 1 – 

3 in Fig. 7 shows that no significant decrease in the transmission of waves through the gap 

takes place and the possibility of practical application of the effect of wave tunneling is 

retained. 

In the case of parallel RLDs (β>0) the transparency wedge under the usual refraction 

conditions is not only extended with increasing β, but is additionally shifted toward smaller 

incidence angles by the appearing region of total reflection (Fig. 6, curves 2). The angular 

dependences of transmission (Fig. 7, curves 2 and 3) show well-pronounced peaks at the 

limiting angles α* of total reflection (sinα*=(1+β)−1).  The left sides of these peaks apparently 

correspond to the conditions of effective tunneling of incident wave into the moving crystal. 

However, it should be taken into account that, in view of the proximity to α*, the tunneling 

waves will have very small transverse components (ky(2)≥0) of the wave vector. Thus, the 

effective tunneling of waves into the moving crystal is possible, but only for small (or very 

small) angles of refraction for moderate (Fig. 7, curve 3) and even small (Fig. 7, dashed 

curve) angles of incidence. 

In the latter case, ultra-high RLD velocities (β>2) are necessary, which make possible the 

reverse refraction. As for the phenomenon of tunneling as such, the region of reverse 

refraction α>α** (sinα**=(β−1)−1, α**∼82° for the dashed curve in Fig. 7) does not present much 

interest because formula (13) implies "closing" of the gap for ky(1)+ ky(2)=0 with significant 

decrease in the transmission coefficient |T | in the vicinity of the corresponding incidence 

angle. On the other hand, there is an attractive possibility of enhancement of the reflected 

wave for |R|>1 (see Fig. 6, curve 4 and the inset to Fig. 6, curves 1 – 3), which is related to 

the fact that the wave in a moving crystal in the case of reverse refraction propagated (as 

indicated by dashed arrow in Fig. 1) toward the gap and carries the energy in the same 

direction. Naturally, an increase in the gap width leads to decrease in electric coupling 

between crystals and in the enhancement of reflection (see the inset to Fig. 6, curves 1 – 3).  
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3. Tunneling of shear waves by a vacuum gap of piezoelectric 6- and 222-
class crystal pair at the uniform relative motion 

In this section we consider the effect of tunneling of shear waves in the layered structure of 

piezoelectric crystals with a gap for the crystal pair of  6 (6mm, 4, 4mm, ∞m) and 222 (422, 

622, 4 2m, 4 3m, 23) class symmetry, undergoing relative longitudinal motion. This case 

allows, to estimate influence of elastic and electric anisotropy on tunneling of SH-waves in a 

moving crystal in conditions of difference of its symmetry from symmetry of an immobile 

crystal. We assume that the shear wave falls on the part of the immobile crystal of a class 6. 

Now, instead (8) we shall have in laboratory system of reference the equations 
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The equations (6) remain in force, but with a clause, that in them all parameters of a crystal 

are marked by an index "1", i.e. ρ→ρ1, λ→λ55(1), e15→ e15(1) and ε→ε1(1). 
Following from (6), (31) the dispersion relation of SH-waves and Snell’s condition (16) allow 
to establish the refraction low in form of the inverse dependence 
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Here v1=(λ55(1)*/ρ1)1/2 is the velocity of SH-waves in immobile crystal, λ55(1)*= λ55(1)+ 

e15(1)2/ε1(1), v2||=(λ55(2)/ρ2)1/2 is the velocity of SH-wave propagation in a moving crystal 

along [100]-direction (axis x̐), a=λ44(2)/λ55(2) is the elastic anisotropy factor of moving crystal. 

Function Q2(αt), determinated by equality 
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is the square of electromechanical coupling factor for SH-waves propagating in (001)-plane 
of a crystal.  
The expression (32) shows that at subsonic velocities of crystal motion there exists only 

usual refraction, corresponding to the top sign. It is not accompanied by the inversion of 

wave fronts and has the top threshold of incident angle α*, such that sinα*=v1/(V+v2||). At 

the supersonic velocities of crystal motion V>v2|| total reflection for the usual refraction 

(α*<α<α**) becomes possible even at smaller rigidity of a moving crystal. Second refraction 

branch appropriate to the bottom sign in formula (32) and accompanied by the inversion of 

wave fronts, is possible only at supersonic velocities of crystal motion and additional 

condition V>v1+v2||. The bottom threshold of this branch α** exceeds the value α* is 

determined by equality sinα**=v1/(V−v2||). On Fig. 8, 9 the curves usual and inversed 

refraction, received by calculation under the formulas (32), (33) for pair of crystals Pb5Ge3O11 

– Rochell salt with parameters taken from (Royer & Dieulesaint, 2000; Shaskolskaya, 1982) 

are submitted accordingly. 
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Fig. 8. Curves usual refraction of a wave by a gap Pb5Ge3O11 – Rochell salt: 1 – β=V/v2||=0.5, 

2 – β=1.5, 3 – β=1.8 (β=0 – dashed curve).   
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Fig. 9. Curves reversed refraction of a wave by a gap Pb5Ge3O11 – Rochell salt: 1 – 

β=V/v2||=2.35, 2 – β=2.4, 3 – β=2.5, 4 – β=2.6 (β=0 – dashed curve).   
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The solutions of the equations (6), (20) will keep the form (24), (26), and instead of (25) from 

the equations (31) we shall receive 
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The values ky(2) and s in expressions (34) are accordingly imaginary q=−iky(2) (for solution (34) 

in writing we chose the case of usual refraction) and real q=s a root of the characteristic 

equation [(ω−kxV)2v2||
−1a−1+q2−akx2](bkx2−q2)+Q02kx2q2=0, where b=ε1(2)/ε2(2) is the factor of 

electric anisotropy of a crystal, and Q0=Q(0). As against the solution (25) for pair of identical 

hexagonal crystals the near-boundary oscillations any more are not only electrical. They are 

the connected electro-elastic oscillations, which are made with amplitude A and phase 

φ=kxx−ωt. 

The physical sense of boundary conditions will not change. For the top boundary y=h on 

former it is possible to use conditions (27). On the bottom boundary y=−h their change will 

be caused by the appropriate differences of the state equations for 222-class crystals from the 

equations (2), (3) (Royer & Dieulesaint, 2000). After substitution of expressions (24), (26), (34) 

in boundary conditions and solutions of system of the algebraic equations we shall receive 

expressions for amplitude coefficients. For example, in the case of a very thin gap (kxh→0) 

we have 
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The value Ψ characterizes mutual piezoelectric connection of crystals through a gap and is 

defined by equalities 
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There are f1=e14(1)/e15(1), f2=e14(2)/e25(2), and Q12=e15(1)2/[ε1(1)λ55(1)*]. 
The numerical accounts show, that elastic and electrical anisotropy of a moving crystal does 

not cause essential changes in angular spectra of reflection and passage of SH-waves 

through a gap. The distinctions of symmetry of the crystals in addition to their relative 

motion are reduced by efficiency of acoustic tunneling. Thus, the assumption, that in a slot 

structure of crystals, from which one with strong longitudinal, and another with strong 

transverse piezoelectric effect, is possible appreciable shift of effective acoustic tunneling in 

area of moderate incident angles, has not found confirmation. The amplitude A of near-

boundary electro-elastic oscillations is usually small and does not vary almost under 

influence of crystal motion. In a considered case of crystals of various classes of symmetry 

amplification the reflected wave in conditions inversed refraction (superreflection) also 

takes place. However, similarly to acoustic tunneling the superreflection appears well 

appreciable only at sliding angles of incidence.       
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4. Conclusion  

In this article we have touched upon the poorly investigated problem of refraction of 

acoustic waves by a gap of piezoelectric crystals with relative longitudinal motion. By the 

basic result was the conclusion about existence not only usual, but also so-called inversed 

refraction, capable to replace the usual refraction at superfast motion of a crystal with 

velocity twice above velocity of a sound. We have shown, that if usual refraction underlies 

representations about the tunneling of acoustic waves through a gap, with the inversed 

refraction the opportunity of amplification of reflection is connected.  

Both these phenomena, however, provide essential changes of a level of the reflected signals 

because of a crystal motion (it is interesting to applications), only at the sliding angles of 

incidence. It is represented, therefore, most urgent search of conditions and means, which 

would allow to advance in area of moderate or small angles of incidence. With this purpose, 

as we have found out, is unpromising to use anisotropy of elastic and electrical properties of 

a moving crystal or distinction in classes of symmetry of crystals. 

We believe that there are two approaches to the decision of a problem. It is, first, search and 

use of hexagonal piezoelectric crystals with equally strong both longitudinal, and trasverse 

piezoactivity. Secondly, it is the application already of known piezoelectric materials, but 

having not a plane, and periodically profiled boundaries of a gap. It is doubtless, that the 

appropriate theoretical researches of effects acoustic refraction by a gap of piezoelectric 

crystals with relative motion are required. In particular, it is desirable to consider a case of 

refraction of piezoactive acoustic waves of vertical polarization. We hope, that present 

article will serve as stimulus for the further study of acoustic refraction in layered structures 

of piezoelectric crystals with relative motion. 
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