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Acoustic Waves in Phononic Crystal Plates 

Xin-Ye Zou, Xue-Feng Zhu, Bin Liang and Jian-Chun Cheng 
Nanjing University, 

People’s Republic of China 

1. Introduction 

Recently, the study on elastic waves in phononic crystal plates is becoming a research 
hotspot due to its potential applications, especially in wireless communication, transducer 
and sensor system [1-10]. The phononic crystal plates commonly consist of two materials 
with large contrast in elastic properties and densities, arranging in a periodic (or 
quasiperiodic) array. The absolute band gaps in composite plates can forbid the propagation 
of all elastic wave modes in all directions. Comparing with the bulk wave and surface 
acoustic wave devices, phononic crystal plates have better performance in elastic wave 
propagation since the phase speed of most Lamb wave modes (except for A0 mode) is faster 
than surface wave mode, and also the wave energy in plates is totally confined between the 
upper and nether free-stress boundaries regardless of the air damp and self-dissipation, 
which provides a special potentiality in micro-electronics in wireless communication.  
The propagation of Lamb waves is much more complicated than bulk wave and surface 
acoustic wave in terms of the free-stress boundaries which can couple the longitudinal and 
transversal strain components. The first attempt to describe the propagation of Lamb waves 
with wavelength comparable with the lattice is due to Auld and co-workers [11-12], who 
studied 2D composites within the couple-mode approximation. Alippi et al. [13] have 
presented an experimental study on the stopband phenomenon of lowest-order Lamb 
waves in piezoelectric periodic composite plates and interpreted their results in terms of a 
theoretical model, which provides approximate dispersion curves of the lowest Lamb waves 
in the frequency range below the first thickness mode by assuming no coupling between 
different Lamb modes. The transmissivity of the finite structure to Lamb wave modes was 
also calculated by taking into account the effective plate velocities of the two constituent 
materials [14]. Based on a rigorous theory of elastic wave, Chen et al.[1] have employed 
plane wave expansion (PWE) method and transient response analysis (TRA) to demonstrate 
the existence of stop bands for lower-order Lamb wave modes in 1D plate. Gao et al.[8] have 
developed a virtual plane wave expansion (V-PWE) method to study the substrate effect on 
the band gaps of lower-order Lamb waves propagating in thin plate with 1D phononic 
crystal coated on uniform substrate. They also studied the quasiperiodic (Fibonacci system) 
1D system and find out the existence of split in phonon band gap [2]. In order to reduce the 
computational complexity without losing the accuracy, Zhu et al.[9] have promoted an 
efficient method named harmony response analysis (HRA) and supercell plane wave 
expansion (SC PWE) to study the behavior of Lamb wave in silicon-based 1D composite 
plates. Zou et al.[10] have employed V-PWE method to study the band gaps of plate-mode 
waves in 1D piezoelectric composite plates with substrates. 

Source: Acoustic Waves, Book edited by: Don W. Dissanayake,  
 ISBN 978-953-307-111-4, pp. 466, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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The chapter is structured as follows: we firstly introduce the theory and modeling used in 
this chapter in Section 2. In Section 3, we focus on the band gaps of lower-order Lamb waves 
in 1D composite thin plates without/with substrate. In Section 4, we study the lamb waves 
in 1D quasiperiodic composite thin plates. In Section 5, we focus on acoustic wave behavior 
in silicon-based 1D phononic crystal plates for different structures, and finally in Section 6, 
we study the band gaps of plate-mode waves in 1D piezoelectric composite plates 
without/with substrates. 

2. Theory and modeling of phononic crystal plates 

In this section, we give the theory and modeling of phononic crystal plates with different 
structures: the periodic structure without/with substrate, and the quasiperiodic structure.  

2.1 Periodic structure without substrate by PWE method  

As shown in Fig. 1, the periodic composite plate consists of material A with width Ad , 

material B with Bd , lattice spacing A BD d d= + , and filling rate defined by A /f d D= . The 

wave propagates along the x  direction of a plate bounded by planes 0z =  and z L= .  
 

 

Fig. 1. 1D periodic composite plate consisting of alternate A and B strips. 

In the periodic structure, all field components are assumed to be independent of the y  

direction. In an inhomogeneous linear elastic medium with no body force, the equation of 

motion for displacement vector ( , , )x z tu  can be written as 

   ( ) [ ( ) ],p q pqmn n mx c xρ = ∂ ∂$$u u  ( 1,2,3),p =  (1) 

where ( )xρ  and ( )pqmnc x  are the x -dependent mass density and elastic stiffness tensor, 

respectively. Due to the spatial periodicity in the x direction, the material constants, ( )xρ  

and ( )pqmnc x  can be expanded in the Fourier series with respect to the 1D reciprocal lattice 

vectors (RLVs), as follows 

 ( ) ,jGx
G

G

x eρ ρ=∑  (2) 

 ( ) ,jGx G
pqmn pqmn

G

c x e c=∑  (3) 

where Gρ and G
pqmnc are expansion coefficients of the mass density and elastic stiffness 

tensor, respectively. From the Bloch theorem and by expanding the displacement vector 

( , , )x z tu  into Fourier series, one obtains  
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 ( , , ) ),x zjk x j t jGx jk z
G

G

x z t e e e
ω−=∑ (u A  (4) 

where xk  is a Bloch wave vector and ω  is the circular frequency, 1 2 3( , , )G G G GA A A=A  is the 

amplitude vector of the partial waves, and kz  is the wave number of the partial waves along 

the z direction. Substituting Eqs. (2)-(4) into Eq. (1), one obtains homogenous linear 

equations to determine both 1 2 3( , , )G G GA A A  and kz .  

'

'

'

1' 2 2 '
11 44 12 44

' 2 2 2
44 44

' ' 2 2 3
12 44 44 11

( )( ) 0 ( ) ( )

0 ( )( ) 0 0,

( ) ( ) 0 ( )( )

x x z x x z G

x x z G

x x z x x z G

Ac k G k G c k c k G c k G k

c k G k G c k A

c k G c k G k c k G k G c k A

ρω

ρω

ρω

⎛ ⎞⎛ ⎞+ + + − + + + ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

+ + + − =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ + + + + + −⎝ ⎠⎝ ⎠

 (5) 

Supposing that the materials A and B are cubic materials, it is obvious that the wave motion 
polarized in the y-direction, namely SH wave, decouples to the wave motions polarized in 
the x- and z-directions, namely, P and SV waves. It is relatively simple to discuss the SH 
wave so that we focus our attentions to P and SV waves, and the equation of motion for 
Lamb waves becomes 

 

'

'

1' 2 2 '
11 44 12 44

' ' 2 2 3
12 44 44 11

( )( ) ( ) ( )

0 ,

( ) ( ) ( )( )

x x z x x z G

x x z x x z G

Ac k G k G c k c k G c k G k

c k G c k G k c k G k G c k A

ρω

ρω

⎛ ⎞⎛ ⎞+ + + − + + + ⎜ ⎟⎜ ⎟
⎜ ⎟ =⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + + + + + −⎝ ⎠⎝ ⎠

 (6) 

If one truncates the expansions of Eqs. (2) and (3) by choosing n  RLVs, one will obtain 4n  

eigenvalues ( )l
zk , ( 1 4 )l n= − . For the Lamb waves, all of the 4n  eigenvalues ( )l

zk  must be 

included. Accordingly, displacement vector of the Lamb waves can be taken of the form 

 
( ) ( )4 4

( )( ) ( )' '

1 1

( , , ) ,
l l

x z x z

n n
i k G x i t iK z i k G x i t ik z

G G
G l G l

x z t e e e X eω ω ε+ − + −

= =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ l

lu A  (7) 

where ( )l
Gε  is the associated eigenvector for the eigenvalue ( )l

zk , lX  is the weighting 

coefficient to be determined, and the prime of the summation expresses that the sum over 

G  is truncated up to n .  
The boundary conditions are the stress-free on the upper (z = 0) and rear (z = L) surfaces 

 3 0, 3 0 , 0p z L p mn n m z Lc u= == ∂ =T     ( 1,3).p =  (8) 

which Tp3 is the stress tensor and L is the plate thickness. Eq. (8) leads to 4n homogeneous 
linear equations for Xl l = (1- 4n), as follows 

 

(1) (2) (4 )
11, 1, 1,

(1) (2) (4 ) 2
2 , 2 , 2 ,

(1) (2) (4 )
3, 3, 3 ,

(1) (2) (4 )
4 , 4 , 4 , 4

0,

n
G G G

n
G G G

n
G G G

n
G G G n

XH H H

X
H H H

HX
H H H

H H H X

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

…

A #B
A

…

 (9) 
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where H#  is a 4 4n n×  matrix with components 

 ' ' '

( ) 3( ) 1( )( )44 '
1, [( ) ],l l ll

x zG G G G G
C k G kε ε−= + +H  (10a) 

 ' '' '

( ) 3( ) 1( )( )11 12 '
2, ( ) ,l l ll

z xG G G G GG G
H C k C k Gε ε− −= + +  (10b) 

 ' ' '

( ) 3( ) 1( )( ) ( )44 '
3, [( ) ] exp( ),l l ll l

x z zG G G G G
H C k G k jk Lε ε−= + + ×  (10c) 

 ' '' '

( ) 3( ) 1( )( ) ( )11 12 '
4, [ ( ) ] exp( ).l l ll l

z x zG G G G GG G
H C k C k G jk Lε ε− −= + + ×  (10d) 

From Eq. (9) one notes that to obtain nontrivial solution for the lX , the determinant of the 

boundary condition matrix should be equal to zero. The ω  of the Lamb wave modes are 

thus found by searching for the values of ω  that simultaneously make the Eq. (6) and 

det(  )#H  equal to zero. In practice, an iterative search procedure is usually required to find 

these ω  [15-16]. 

2.2 Periodic structure with substrate by V-PWE method 

As shown in Fig.2, the composite plate with substrate consists of the 1D phononic crystal 

(PC) layer coated on C substrate. The PC layer consists of the material A with the width Ad  

and the material B with the width Bd . 
 

 

Fig. 2. The 1D periodic composite plate consisting of alternate A and B strips with a 
substrate C. 

We develop a V-PWE method to calculate the dispersion curves of Lamb wave modes 
propagating along the x direction in the presence of the uniform substrate. Here, we give the 
equations of V-PWE method for the piezoelectric periodic structure with substrate. One can 
have the equations for non-piezoelectric situation by omitting the piezoelectricity 
components and the electrical boundary conditions. 
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In the situation of piezoelectric composite plate with substrate, the equations governing the 

motion of lattice displacement ( , , )m x z tu  and electrical displacement ( , , )m x z tD in this 

inhomogeneous system are given by 

 ( ) ,m m m
j i ijx u Tρ = ∂$$  (11) 

 0,m
i iD∂ =   (12) 

 ( ) ( ) ,m m m m m
ij ijkl l k lij lT c x u e x φ= ∂ + ∂  (13) 

 ( ) ( ) ,m m m m m
i ikl l k il lD e x u xε φ= ∂ − ∂  (14) 

where , , , , ;i j k l x z= 1,2m= (1 represents phononic layer; 2 represents the substrate, 

respectively). ( , , ),x z tm
ijT  ( , , ),m x z tD  ( , , ),m x z tu  ( , , ),m x z tϕ  ( ),m xρ  ( ),m

ijklc x  ( ),m
lije x  and 

( )m
il xε  are the stress vector, electrical displacement vector, displacement vector, electric 

potential, x-dependent mass density, elastic stiffness, piezoelectric, and dielectric constant 

tensors, respectively. It comes into notice that in fact the material constants depend on the z-

direction due to the existence of the substrate, as follows 

 
1

1

2
2

( ),     (0 )
( , )

,       ( 0)

x z h
x z

h z

α
α

α

⎧ < <⎪= ⎨
− < <⎪⎩

 (15) 

where ( , , , )ijkl lij ilc eα ρ ε= , 2 2 2 2( , , , )ijkl lij ilc eρ ε  are the material constants for the substrate.  

Due to the spatial periodicity, the Bloch theorem can be applied to the PC layer, but it 
cannot be simply applied to the substrate layer. However, one notice that the triangle basic 
function set in the Fourier series is an orthogonal and complete set, each components in the 
Fourier series must satisfied the boundary conditions at the interface between the PC layer 
and the substrate at z = 0, namely the continuities of the normal stress, normal displacement, 
normal electrical displacement and electric potential.   

 1 2
0 0 ,iz z iz zT T= ==  1 2

0 0 ,iz z iz zu u= ==  1 2
0 0 ,z z z zD D= ==  1 2

0 0 ,z zφ φ= ==  ( , )i x z= . (16) 

Therefore, the displacement and electric potential fields in the substrate layer also must be 
expanded to the Fourier series with the period that is same as the PC layer in order to satisfy 
the boundary conditions. Then the substrate layer can be treated as a virtual periodic 
structure that has the same filling fraction and period as the PC layer. Thereupon, the Bloch 
theorem can be applied to both the PC and the substrate layers. 
Due to the spatial periodicity in the x direction, the material constants can be expanded in 
Fourier series with respect to the 1-D reciprocal-lattice vector (RLV) G, as follows: 

   ( ) ,jGx
G

G

x eα α=∑  (17) 

where αG is the corresponding Fourier coefficient. Utilizing the Bloch theorem and 
expanding the displacement vector and electric potential into Fourier series in the PC and 
the substrate layers, one obtains 
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 ( )( , , ) ( A ),
m

x zj k x t jGx jk zm m
G

G

x z t e e e
ω−=∑u  (18) 

 ( )
3( , , ) ( ),

m
x zj k x t jGx jk zm m

G
G

x z t e e A e
ωφ −=∑  (19) 

where xk  is a Bloch wave vector, ω  is the circular frequency, and m
zk  is the wave number 

along the z-direction, 1 2( , )m m m
G G GA A=A  and 3

m
GA  are the amplitude vectors of the partial 

waves and electric potential, respectively. Substituting Eqs. (17)-(19) into Eqs. (11)-(14), one 

can obtain the eigenvalue problem with respect to m
zk : 

 2( ) U 0,m m m m m m
z zk k+ + ⋅ =A B C  (20) 

where 1 2 3{ , , }m m m m T
G G GA A A=U is called the generalized displacement vector, the 3 3n n×  

matrices m
A , m

B , and m
C are functions of xk , G , ω , m

Gρ , ijklm
Gc , lijm

Ge , ilm
Gε , and n is the 

number of RLV.  
Here, we consider the stress-free boundary conditions and two kinds of the electrical 

boundary conditions. For the 1-D problem, we have 

the stress free boundary conditions: 

 
1

1 0,iz z hT = =   
2

2 0,iz z hT =− =  ( , ),i x z=  (21) 

the OC boundary conditions: 

1 1

1 ,air
z z

z h z h
D D

= =
=   

1 1

1 ,air

z h z h
φ φ

= =
=  

               
2 2

2 ,air
z z

z h z h
D D

=− =−
=

2 2

2 ,air

z h z h
φ φ

=− =−
=  (22) 

        ( 0 ,
air

air
zD

z

φε ∂
= −

∂
  11

0 1 10 F/m,ε −= × ) 

the SC boundary conditions: 

 
1

1 0,
z h

φ
=

=       
2

2 0.
z h

φ
=−

=  (23) 

 

Putting ( ) ( )j l j lm m m
lG GA X β=  ( 1 3j = − , 1 6 ,l n= − 1,2m= ), where ( )j l m

Gβ  is the associated 

eigenvector of the eigenvalue ( )l m
zk , and m

lX  is the weighting coefficient that can be 

determined from the boundary conditions for different layers, one obtains: 0⋅ =H X  from 

the equations (16), (21) and (22) [or (23)], where H  is a 12 12n n×  matrix. The existence of a 

nontrivial solution of m
lX  needs the determinant of matrix H  to be zero 

 det( ) 0.=H  (24) 

Then one can obtain the dispersion relations of the Lamb waves propagating in a 1-D PC 
layer coated on a substrate. 
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2.3 Periodic structure without/with substrate by FE method 
In order to study the elastic wave in the phononic crystal plates, transient response analysis 
(TRA) and the harmony response analysis (HRA) are presented here by finite element (FE) 
method.  
First, the TRA is employed to calculate the transmitted power spectra (TPS) for the finite 
periodic structure. The FE solution involves the discretization of the domain into a number 
of elements, approximating the displacement values interior to the elements in term of its 
nodal value through the shape functions of the chosen element and the determination of 
nodal values [17]. 

 

Fig. 3. Modified plate geometry in the Finite Element calculations 

Fig. 3 shows the configuration of the modified composite plate in the Finite Element 

calculations, in which the superlattices with ten periods (the length is 20 mm) is bounded by 

two pure tungsten plates (the length is 100 mm) at two sides. Lamb waves are excited by the 

force function ( )f t  that is a triangle wave at 0x = , and are received at 140x =  mm [18]. 

The generation source is far from the periodic structure in order to obtain approximate 

plane waves when the wavefronts reach it. The step sizes of temporal and spatial 

discretization in the finite model are fine enough for the convergence of the numerical 

results (increasing the number of elements of the finite element mesh is equivalent to 

increasing the number of harmonics in PWE method). The vertical displacement of a node at 

upper surface of the plate behind the superlattices array at 140x =  mm is collected as 

function of time. For a sufficiently large number of these vertical displacement data on the 

time axis, the displacement fields are Fourier transformed into the frequency domain to 

yield the TPS.  
We also promote an efficient method named HRA to study the propagation and 
transmission of acoustic waves in 1D phononic crystal plates. Comparing with TRA [1,2,8], 
HRA is more time-saving due to its direct calculation in frequency domain and more 
powerful for the acquirability of displacement field under certain frequency load, which can 
be further employed to the designation of various phononic crystal functionalities such as 
filters, resonators and waveguides. With this method, we can study the cases both without 
and with substrates. Taking the gradient of the displacement fields, we can further study the 
strain distribution in the plates, and it is really a very direct way to understand how the 
band gaps form in phononic crystal plates by comparing displacement fields under different 
frequency loads (inside/outside band gaps).  

www.intechopen.com



 Acoustic Waves 

 

98 

Any continual periodic loads can produce continual periodic response (harmony response) 

in phononic crystal plates. HRA is a method used to define the stabilized response of linear 

structures under time-harmonic loads. By calculating the responses (usually displacement 

fields) under different frequency loads, we can obtain the transmitted power spectra in the 

detected region. HRA is a linear analysis regardless of any nonlinear characteristics. For 

multi-element structure, the Newton’s second law can be expressed as follows:  

 { } { } { } { }=int ext+ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
$$ $M D C D R R  (25a) 

 { } { }=int ⎡ ⎤⎣ ⎦R K D  (25b) 

 { } { } ( )= expext i tΩR F  (25c) 

where ⎡ ⎤⎣ ⎦M , ⎡ ⎤⎣ ⎦C  and ⎡ ⎤⎣ ⎦K  are general mass matrix, damping matrix and stiffness matrix, 

respectively; { }D  and { } ( )exp i tΩF  are nodal degree of freedom vector and nodal external 

load vector, respectively. Eq (25a) describes a dynamic balance among inertial force, 

damping force, inner force { }int
R  and external load force { }ext

R . The forced vibration of the 

structure will finally come to a stabilized status in which every node moves in harmonic 

motion with the same frequency (Ω ). Further, we can express { }D  into: 

 { } { } ( )exp i t= ΩD D  (26) 

where { }D  is the complex nodal degree of freedom vector. By substituting Eq (26) into Eqs 

(25a)-(25c), we can obtain: 

 ( ){ } { }2i+ Ω −Ω =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦K C M D F  (27) 

where { }D  can be obtained using Frontal solver. We choose imaginary component of { }D  

to build up the stabilized displacement field under different frequency loads. It is necessary 

to mention that TRA requires much more substeps to obtain the nodal degree of freedom 

vector at certain detected time for the reason that the time step tΔ  should obey the 

following criterion for numerical convergence in Newmark method: [19]  

 
2

crit

max

t
fπ

Ω
Δ ≤  (28) 

where maxf  is the maximum frequency of interest. critΩ  is defined to be: 

 
2

2
crit

γ β⎛ ⎞Ω = −⎜ ⎟
⎝ ⎠

 (29) 

where β  is chosen to be ( )2
1 2 4γ +  with 1 2γ ≥  to achieve as large high frequency 

dissipation as possible. We choose 0.2756β = , 0.55γ =  in the numerical calculation of TRA. 

In each substep, a very complex iteration is employed, which takes the form: 
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{ } { } { } { } { } ( )

{ } { } ( ) { } ( )

1
21 1

1 2

2

2

2

eff ext n n n

n+ n+

n n n

tt

t

t

β

β ββ

γ β γ βγ

β β β

+
⎛ ⎞−
⎜ ⎟⎡ ⎤ = + + +⎡ ⎤⎣ ⎦⎣ ⎦ ⎜ ⎟ΔΔ⎜ ⎟
⎝ ⎠

⎛ ⎞− Δ −
⎜ ⎟+ + +⎡ ⎤⎣ ⎦⎜ ⎟Δ⎜ ⎟
⎝ ⎠

$ $$

$ $$

D DD
K D R M

D DD
C

 (30a) 

 { } { } { }( ) { } ( ) { } ( )
1

1

2

2

n n n n

n

t

t

γ β γ βγ

β β β
+

+

− Δ −−
= − −

Δ

$ $$
$

D DD D
D  (30b) 

 { }
{ } { } { }( ) { } ( )1

21

1 2

2

n n n n

n

t

t

β

ββ
+

+

− − Δ −
= −

Δ

$ $$
$$

D D D D
D  (30c) 

where ( ) ( )2eff t tβ γ β⎡ ⎤ = Δ + Δ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦K M C K . The initial condition for Eqs (30a)-(30c) is 

shown as follows: 

 { } { } { } { }( )1

00 00

ext−= − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
$$ $D M R K D C D  (31) 

With Eqs (30a)-(30c) and (31), we can obtain { }
1

D , { }
2

D , { }
3

D , and so forth. From the 

above-mentioned details, it is obvious that the numerical calculation of TRA is more 

complicated than that of HRA and therefore requires more computation resources when the 

model being larger. 
In TRA or HRA, we need to suppress reflections from the hard boundary to get rid of the 
unwanted resonance peaks. Based on the wave equation in spherical coordinate, artificial 
boundary can be equivalent to many continuous distribution parallel viscous-spring 
systems. The coefficients of stiffness and damping are given as follows: 

 T
T

G
K

LN

α
= ; N

N

G
K

LN

α
=  (32a)                          

 T

G
C

N

ρ
= ; N

E
C

N

ρ
=  (32b) 

where TK  and NK  are tangential and normal stiffness coefficients of springs, respectively; 

ρ  is the material density of matrix silicon; TC  and NC  are tangential and normal damping 

coefficients, respectively; G  and E  are shear modulus and Young’s modulus of matrix 

silicon, respectively; L  and N  are the distance from exciting source to artificial boundary 

and number of viscous-spring systems attached to the boundary, respectively; Tα  and Nα  

are the tangential and normal modified coefficients for artificial boundary, respectively. Tα  

and Nα  are assigned with 0.67 and 1.33, respectively [20]. 

2.4 Periodic structure without/with Substrate by SC-PWE method 
The super-cell plane wave expansion (SC-PWE) method is another efficient way to calculate 
the plate-mode waves of the phononic crystal plates. As shown in Fig. 4, we establish a 3D 
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model in Cartesian coordination to calculate the elastic band structures of 1D phononic 
crystal plates, where the periodic composite plate consists of alternate A and B strips, C is 
the LIM layer, and D is the substrate, respectively [21]. 

 

Fig. 4. (a) 1D Lamb wave phononic crystal plate sandwiched between two layers of 
homogeneous materials, and (b) 3D super-cell used in the computation. 

The LIM is an imaginary material with relatively low elastic moduli for approximately 

meeting the requirement of free boundary condition and an extremely low mass density, 

which leads the sound speed in the LIM to be much larger than that in usual solid material. 

In this chapter, the LIM is assumed as an isotropic material with 6
11 2 10C = ×  N/m2, 

6
44 1 10C = ×  N/m2, 12 0C =  N/m2 and 41 10ρ −= ×  kg/m3. The choice of such unphysical 

high sound speeds for the LIM is in good agreement with the numerical condition derived 

by Tanaka et al [22]. With these values, both good numerical convergence and computing 

accuracy can be achieved. The thickness of plate h  is assumed to be 2 mm and 2 3h h h= +  

where 3 0h =  mm for the case without substrate. The thickness of the LIM layer 1h  is 

defined to be 25h  to reduce unexpected wave coupling between two nearest phononic 

layers in z direction [23]. In the absence of body force and strain in y  direction, the SH 

mode wave in 1D plate can be decoupled. Regardless of the wave propagating in y  

direction, the elastic wave equations of phononic crystal are given by: 

 ( ) [ ( ) ]p q pqmn n mu C uρ = ∂ ∂$$r r  ( 1,2,3)p =  (33) 

where ( , )x z=r . This equation can be solved by a standard Fourier expansion to ( )ρ r , 

( )pqmnC r  and ( , )u tr , which are all position-dependent values. For convenience, we put 

( , )pqmnCα ρ=  and then we can obtain the following equations: 

 ( ) exp[ ( )]
x z

x z
G

i G x G zα α= +∑∑ G

G

r  (34) 
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 ( )( , ) exp[ ( )]
x z

i t
x z

G

u t u i G x G z e ω⋅ −= +∑∑ k r
G

G

r  (35) 

where ( , )x zk k=k  is the Bloch wave vector and the 2D reciprocal-lattice vector ( , )x zG G=G , 

respectively. Substituting equations (34) and (35) into wave equation (33), we can obtain: 

 

11 12 13

2 21 22 23

31 32 33

M M M

u uM M M

M M M

ρ
ω ρ

ρ

′− ′ ′ ′

′ ′ ′− ′ ′ ′

′− ′ ′ ′

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G G,G G,G G,G

G G G GG,G G,G G,G

G G G,G G,G G,G

 (36a) 

The explicit expressions of the matrix elements lm
M ′G,G

, ( 1 3l m= = − ) are:   

11 11 44
, ( )( )x x x x z zk G k G G GM C C′ ′ ′− −′ ′= + + +

G G G G G G
        12

, 0M ′ =G G                

 13 12 44
, ( ) ( )z x x x x zG k G k G GM C C′ ′ ′′ ′= + + +G G G-G G-G         21

, 0M ′ =G G  (36b) 

22 44 44
, ( )( )x x x x z zk G k G G GM C C′ ′ ′′ ′= + + +G G G-G G-G         23

, 0M ′ =G G                 

31 44 12
, ( ) ( )z x x x x zG k G k G GM C C′ ′ ′′ ′= + + +G G G-G G-G         32

, 0M ′ =G G                 

                              33 44 11
, ( )( )x x x x z zk G k G G GM C C′ ′ ′′ ′= + + +G G G-G G-G                                    

where the Fourier coefficients pq
C ′G-G are related to ( )pqmnC r  in a conventional manner. As 

shown in equation (36a), characteristic frequency ω  is exactly the squared generalized 

eigenvalue of density matrix and elastic constant matrix. The coefficients pq
C ′−G G  and ρ ′G-G  

takes the form: 

 3

( )

1
( )exp[ ( ) ]

Supercell
c

i d
V

α α′ ′= − − ⋅∫∫∫G-G r G G r r  (37) 

where Vc is the volume of super-cell. With the above-mentioned equations, we can easily 
obtain the band structure of 1D phononic crystal plate. 

2.5 Quasiperiodic structure by FE method 

As shown in Fig.5, the quasiperiodic composite plate consists of material A of width Ad  and 

material B of width Bd . The lattice spacing is A BD d d= + . When the distribution of 

materials A and B is arranged according to the Fibonacci sequence, one obtains a 

quasiperiodic system [24]. We create the Fibonacci sequence B, BA, BAB, BABBA, 

BABBABAB, BABBABABBABBA, … according to the production rule 1 2|j j jS S S− −=  for 

3j ≥  with 1S B=  and 2S BA= . When A and B are put along the chain alternately, a 

periodic model is obtained. We introduce parameter /A Bd dΦ =  to describe the ratio of the 

two components. Φ  is fixed at 1.0 and the number of layers N is 13 throughout the section 

unless otherwise stated. The wave propagates along the x direction of the plate bounded by 

planes 0z =  and z L= . We consider a 2D problem, in which all field components are 

assumed to be y independent. 
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Fig. 5. The configuration of 1D quasiperiodic composite plate consisting of Tungsten and 
Silicon strips arranged following the Fibonacci sequence. 

To demonstrate the structures of the band gaps for Lamb waves in the 1D quasiperiodic 

systems and the difference from that of periodic systems, we calculate TPS of the transient 

Lamb waves by using the TRA. We suppose that a Lamb wave is excited by a line laser 

pulse with a spatial Gaussian distribution (Gaussian radius = 0.2 mm). The laser pulse, 

which is normally incident to the surface of the studied plates, generates the Lamb wave 

propagating along the x direction. The laser-generated force source f(t) is simulated as a 

delta function, which is perpendicular to the surface of the plate [25]. 

The elastic properties of the materials in the numerical calculations are the same as 

mentioned in above sections; and the thickness of the plates (L) of 1.0 mm. The step sizes of 

temporal and spatial discretization in the FE calculations are fine enough for the 

convergence of the numerical results. Lamb waves are excited by the force function f(t) at 

x=0, and are received at the point 10 mm away from the superlattices array. The generation 

source is far from the Fibonacci superlattices in order to obtain approximately plane waves 

when the wave fronts reach the plate. The received vertical displacement in time domain is 

Fourier-transformed into the frequency domain to yield the TPS. 

We also adopt the HRA to study three quasiperiodic systems. Two Generalized Fibonacci 

Systems (Type A and Type B) [26] are obtained inductively through the following 

transformations: 

 A AAB→ , B A→  for Type A Fibonacci System (38a) 

 A ABB→ , B A→  for Type B Fibonacci System (38b) 

We can generate the two quasiperiodic systems, as shown as follows:  

 …AABAABAAABAABAAABAAB  for Type A Fibonacci System (39a) 

 …ABBAAABBABBABBAAABBA  for Type B Fibonacci System (39b) 
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It is interesting to find out that Generalized Fibonacci Systems are very flexible in forms and 

by changing the transformations ( A ABA→ , B A→ …) we can obtain many other 

quasiperiodic systems.  

Then, we can introduce the third quasiperiodic system (Double-period System) into this 

model. The recursion relation for Double-period System is A AB→ , B AA→  [27]. With the 

recursion relation, we can obtain the sequence of the Double-period System: 

 …ABAAABABABAAABAAABAA for Double-period System (40) 

 

 

Fig. 6. The schematic diagram of the four systems: Periodic System, Type A Fibonacci 
System, Type B Fibonacci System and Double-period System, respectively. 

Fig. 6 shows the scheme of the four different systems, namely, Periodic System, Type A 
Fibonacci System, Type B Fibonacci System and Double-period System, respectively. In 
numerical simulations, the homogeneous media A and B are gold and silicon, with the 
thicknesses of media A and B are 2 mm, and the widths of media A and B are 0.4 and 1.6 
mm, respectively. 

www.intechopen.com



 Acoustic Waves 

 

104 

3. Lower-order lamb waves in 1D composite thin plates without/with 
substrate 

In order to demonstrate the existence of band gaps for low-order Lamb wave modes in the 
1D periodic structure as shown in Fig.1, we have calculated the dispersion curves for a cubic 
medium (silicon) of a l mm thick plate by considering only the fundamental term in the 
Fourier and Floquet series [16], as shown in Fig. 7(a).  Fig. 7(b) displays the dispersion  
 

 

 

Fig. 7. Schematic representation of the Lamb wave dispersion curve for (a) a homogeneous 

Si plate with 1.0L= mm (b) composite thin plate (W / Si)  with 0.5f = , 1.0L= mm, and 

2.0D = mm. 
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curves of four lower-order modes along the boundary of the mini-Brillouin zone with filling 

ratio 0.5f = , 1.0L=  mm, and 2.0D =  mm. One can obviously observe the modifications 

produced by resonant reflections in the strip lattice. The dashed vertical line identifies the 

frequency zone where all the Lamb wave modes are resonantly reflected by the periodic 

lattice of strips. The proposed approach allows one to identify that the forward propagating 

Lamb wave modes are not coupled with the backward propagating modes.  

By comparing Fig. 7(a) with Fig. 7(b), one can easily find that there exists a band gap from 

1065 to 1642 kHz for the lower-order Lamb wave modes propagating in the 1D periodic 

structure. The gap width ( ΔΩ ) is 577 kHz and the corresponding gap/midgap ratio 

( / mΔΩ Ω , mΩ  is the midgap frequency) is approximately 0.426. In order to analyze the 

influence of the ratio L /D  for the band gap width, we also calculate the dispersion curves 

of the lower-order modes with 0.5f = , 2.0L=  mm, and 2.0D =  mm, as shown in Fig. 8. It 

is apparent that there are two band gaps (from 806 to 1167 kHz and from 1438 to 1863 kHz, 

respectively) for the ratio 1L /D = . The gap widths are 361 and 425 kHz, and the 

corresponding gap/midgap ratios are about 0.366 and 0.255, respectively. 
 

 

Fig. 8. Dispersion curves of Lamb wave modes for 1D finite thickness composite plate with 

filling ratio 0.5f = , 2.0L=  mm, and 2.0D =  mm. 

Basically, there are three parameters that influence the formation of band gaps, i.e., /L D , 

f , and the contrast between the physical parameters of the constituents. It is rather 

intuitive that /L D  is very crucial for the formation of a band gap. If it is either too small or 

too large, there should be no band gaps for lower-order modes. Fig. 9 depicts the gap width 

of the lowest band gap as a function of /L D  with 0.5f =  and 2D =  mm for 

tungsten/silicon supperlattices. It is noteworthy to point out that the lowest band gap opens 

up over a domain of the ratio of /L D  defined by 0.15 / 1.64L D≤ ≤ . The maximum value 

of gap width appears at / 0.53L D ≈  for the lowest band gap and reaches 610 kHz as shown 

in Fig. 9. 
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Fig. 9. The width of the lowest band gap at the filling fraction f = 0.5 versus the value of  L/D. 

It is noted that the value of the normalized gap width of the lowest band gap in the systems 

increases progressively with the increase of the value of the ratio of /L D  until a critical 

value and then decreases. In fact, a plate can support a number of Lamb wave modes 

depending on the value of the ratio /L λ , where λ  is the acoustic wavelength. When the 

periodicity of these Lamb waves matches the lattice spacing, stop bands appear in the Lamb 

wave dispersion curves [28]. There is a high interaction when the wavelength of Lamb wave 

is close the lattice constant, which induces mode conversion and reflections. When the 

wavelength of Lamb wave is different from the periodicity of the lattice constant, the 

interaction is weak. On the another hand, the midgap frequency of forbidden gap is 

inversely proportional to the lattice constant D  [29], therefore, the value of the ratio of 

/L D  is important for the width of the band gap for the Lamb waves in the periodic 

composite systems. 
In order to demonstrate further the existence of the band gaps for the lower-order modes in 
the 1D periodic structure, the finite element method (FEM) is employed to calculate the 
transmitted power spectra (TPS) for the finite periodic structure as shown in Fig.3.  

Fig. 10 shows the TPS for the 1D composite structure plate with 0.5f = , 1.0L=  mm, and 

2.0D =  mm. There is a broad region from 1060 to 1630 kHz that is less than –30dB. The 

result shows good agreement with that by PWE method. The TPS is also depicted in Fig. 10 

from a pure Tungsten plate with the same dimensions, and no sharp attenuation in any 

frequency domain is observed. 

For the second sample, ,f  ,D  and the configuration are the same with the first one, and 

only the thickness of the plate is different (L=2 mm). Fig. 11 depicts the TPS for 1D plate 

with periodic structure and without periodic structure. The frequency range of the gaps of 

Lamb waves by PWE is almost the same with those of large attenuation in the calculated 

TPS .The first gap extends from the frequency of 804 up to 1176 kHz and the second from 

1436 to 1869 kHz, which are less than –45dB. 
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Fig. 10. The TPS computed by the FE method with 0.5f = , 1.0L=  mm, and 2.0D =  mm 

through the composite pate (solid line) and a pure Tungsten plate (dashed line). 
 

 

Fig. 11. The TPS computed by the FE method with 0.5f = , 2.0L=  mm, and 2.0D =  mm: 

through the composite plate (solid line) and through a pure Tungsten plate (dashed line). 

It is interesting to notice that there are some slight dips centered at about 0.4MHz in Fig. 6, 

or 0.5MHz and 1.3MHz in Fig. 11. These dips attribute to the band gaps of antisymmetric 

modes, but not absolute band gap of both symmetric and antisymmetric modes, which can 

be observed in Figs. 7(b) and 8, indicated by the arrows 1, 2 and 3. On the other hand, the 
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lower frequency components of the modes is mainly excited for the thin plate [30], so that 

the TPS energy displays a monotonic decrease as the frequency increases as shown in Fig. 

10. When the plate is thicker, the higher frequency components increase, which makes the 

attenuation of the TPS energy less, as shown in Fig. 11.  

Since various modified photonic crystal structures, such as regular arrangements of 

individual metal nanoparticles on dielectric substrate, have been the subject of extensive 

research in recent years, it is meaningful to study the elastic modes in the system with PC 

layer coated on uniform substrate [31]. In fact, from the application point of view, when the 

thickness of the periodic thin plate is of the order of magnitude of several hundred 

micrometers, one needs to use substrate to support such a plate. Therefore, the effect of the 

substrate is important and cannot be neglected. 

We study the influence of substrate on the band structure of the Lamb wave in PC layer by 

FEM. We also employ V-PWE to calculate the dispersion curves of Lamb wave. As we shall 

demonstrate that the locations and widths of band gaps on the dispersion curves from the 

V-PWE method are in good agreement with the results from the TPS by FEM. 

In order to demonstrate the influences of different substrates on band gaps in the PC layer 

with substrate, we study three types substrate: hard material (Tungsten), soft material 

(Rubber) and medium hardness material (Silicon). The corresponding TPS (in green, blue, 

and red, respectively) are shown in Fig. 12 (a-b) for different h2. For comparison, we also 

show the case without substrate (black). 

It can be easily seen that there exist two band gaps for the Lamb modes propagating in the 

1D periodic model. The first gap extends from the frequency of 820 kHz up to 1160 kHz and 

the second one from 3050 kHz to 3360 kHz, which is less than –38 dB, as shown in Fig. 12 

(black line). 

Comparing the TPS of the 1D PC layer without substrate (black line) with that of coated 

Tungsten substrate (green line) [Fig. 12(a)], we can see that the width of the first band gap 

decreases to some slight dips centered at about 1.0MHz (green line). The second band gap 

has a little decay in frequency domain (from 2850 to 3250 kHz). This demonstrates that the 

influence of hard substrate on band gaps is strong even when the substrate is very thin. The 

band gaps disappear rapidly when the substrate becomes thicker as shown in Fig. 12(b). It is 

because when the substrate becomes thicker, more energy will go via the substrate instead 

of via the PC, so that the interference from different periodic layers becomes less important. 

The TPS for the 1D PC layer coated on Rubber substrate with different thickness h2 are also 

shown in Fig. 12(a-b) (blue line). It is seen that there is no obvious change in the band gaps 

when the substrate is thin, especially, for the first band gap at low frequency region. 

However, as the thickness of substrate increases, interesting things happen, as shown in Fig. 

12(b) (h2=0.5mm). The band gap in the PC layer coated on Rubber substrate does not 

disappear but becomes smoother in the band gaps domain. Three band gaps appear, 

namely, from 750 kHz up to 1200 kHz, from 1720 kHz up to 1950 kHz and from 2920 kHz 

up to 3640 kHz, respectively. Compared with the band gap of the PC plate without 

substrate, we can see a broad band appears in the range of 1720 kHz and 1950 kHz. From 

Fig. 12(b), it is clearly seen that more band gaps appear, such as some band gaps in low 

frequency domain, which is opposite to the hard substrate. The appearance of more bands is 

due to the more interference from the boundary as Rubber is softer than Tungsten and 

Silicon, therefore there is more reflection at the interface between the PC and the substrate.  
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Fig. 12. (color online) The TPS for the 1D PC layer without substrate (black line), and for  

the 1D PC layer coated on Tungsten substrate (green line), Rubber substrate (blue line), 

Silicon substrate (red line), respectively, with different 2h : (a) 2 0.125h =  mm;  

(b) 2=0. 50h  mm 
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We also show the TPS for the 1D PC layer coated on Silicon substrate with different 
substrate thickness h2. From Fig. 12(a) (red line), it can be easily found that there exist two 
band gaps for the Lamb modes propagating in the 1D PC layer coated on Silicon substrate. 
The first gap extends from 920 kHz up to 1280 kHz and the second from 3050 kHz to 3400 
kHz, which are less than –40dB. Compared with Fig. 12(a) (black line and red line), we can 
see there is no obvious change between the band gaps when the substrate is thin. Although 
there are some band gaps appearing like some band gaps in low frequency domain when 
the thickness of substrate increases, the depth of band gap decreases. For example, one can 
see that although there is a band gap at about 1.5 MHz, the depth of band gaps for the 
model of Silicon substrate becomes very small as the thickness of substrate increases. 
Therefore, the influence of the Silicon substrate is between those of the hard substrate and 
the soft substrate. 
To verify our numerical results, we calculate the dispersion curves of Lamb wave modes 
propagating along the x direction in the presence of the uniform substrate by V-PWE 
method. 
Fig. 13 displays the dispersion curves of the lower-order modes of the 1D PC layer coated on 
Silicon substrate with different substrate thickness h2. It is apparent that there are two band 
gaps (from 980 to 1285 kHz and from 3020 to 3380 kHz, respectively) for the h2=0.125mm, as 
shown in Fig. 13(a). The gap widths are 305 kHz and 360 kHz, respectively, and the 
corresponding gap/mid-gap ratios are about 0.269 and 0.112, respectively. The results 
calculated by the V-PWE method show that the locations and widths of band gaps on the 
dispersion curves are in good agreement with the results on the transmitted power spectra 
by FEM, as shown in Fig. 12(a) (red line). 
Some band gaps appear in low frequency domain with the increase in the thickness of 
substrate, which is also found by V-PWE method. For example, we can see that there are 
three band gaps (from 685 to 820 kHz, from 1320 to 1590 kHz and from 3120 to 3250 kHz) 
for the model of Silicon substrate with the thickness of 0.5mm as shown in Fig. 13(b), which 
is in good agreement with the results by FEM as shown in Fig. 12(b) (red line).  
Here, we give a qualitative physical explanation of above results. When the substrate is 
Tungsten material, because the ratio of acoustic impedances of Tungsten and Silicon 

/ 0.2S S T TC Cρ ρ ≈  (where ( )S SCρ  and ( )T TCρ  are the mass densities (the acoustic 

velocities of longitudinal wave) of Silicon and Tungsten, respectively), the interface between 
the PC layer and the substrate is equivalent to a hard boundary condition, at which the 

phase change of the reflected wave pressure is less than 90°. The superposition of the 
reflective wave will destroy the formation condition of band gap, as the formation of band 
gap is due to the destructive interference of the reflective waves. Therefore, the influences 
on band gaps are significant even when the substrate is very thin. On the other hand, due to 
the interface is not strictly strong, the Lamb wave can transmit partially to the uniform 
substrate, and then the band gaps disappear rapidly when the substrate becomes thicker.  
In contrast, when the substrate is Rubber material, because the acoustic impedances of 
Silicon is approximately seven times of that of Rubber, the interface between the PC layer 
and the substrate can be approximately considered a soft boundary, at which the phase 

change of the reflected wave is larger than 90°. The superposition of the reflective waves 
will lead to the band gap. As the substrate is very thin, the influences on band gaps are 
negligible. On the other hand, as the interface is not strictly a pressure-released boundary, 
the Lamb wave can transmit partially to the uniform substrate. Because the mass density 
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and the elastic constants of Silicon are much larger than that of Rubber, the acoustic wave 
will be localized in the soft Rubber material. Therefore, band gaps become deeper as the 
thickness of substrate increases. If the substrate is Silicon, which is the same as the matrix 

material, the acoustic wave does not reflect at 0z = , In this case, the influence of the 

substrate is between those of the hard substrate and the soft substrate. 

 

Fig. 13. The dispersion curves of Lamb modes of the 1D PC layer coated on Silicon substrate 

with different 2h : (a) 2=0.125h  mm; (b) 2=0.50h  mm 
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4. Lamb waves in 1D quasiperiodic composite thin plates 

In this section, we study numerically the band gaps of Lamb waves in 1D quasiperiodic thin 
plate. The motivation of the study lies in the factor that a lot of real-world materials are 
quasiperiodic [32-33]. In particular, since Merlin et al.[34] reported the realization of 
Fibonacci superlattices, a lot of interesting physical phenomena have been observed in x-ray 
scattering spectra, Raman scattering spectra, and propagating modes of acoustic waves on 
corrugated surfaces [35-37]. 
First, we show the dependence of TPS on L/D. From Fig. 14(a-e), the TPS are shown for the 
periodic and quasiperiodic composite plates with L/D= 0.3, 0.5, 0.54, 0.6, and 0.68, 
respectively. For comparison, the TPS for a pure Silicon plate of 1 mm thickness is also 
shown in order to demonstrate the band gaps. Fig. 14(a) shows that for such a pure silicon 
plate there is no band gap at all. However, two band gaps are clearly seen in the periodic 
system. The first band extends from frequency of 570 up to 760 kHz and the second one 
from the 1550 up to 1960 kHz. With the same parameters, the two bands are not so obvious 
in a quasiperiodic plate. 
When L/D is increased to 0.5 [see Fig. 14(b)], interesting things happen. It is evident that for 
the periodic model there exists a band gap from 1050 up to 1615 kHz. However, for the 
quasiperiodic plate, a clear band split is seen from 1085 up to 1286 kHz and from 1460 up to 
1710 kHz, and a new band appears in the range of 2010-2275 kHz. 
As L/D is increased to 0.54 [Fig. 14(c)] and 0.6 [Fig. 14(d)], the only band gap in the periodic 
system does not change too much; it just shifts a little toward the high frequency. However, 
the situation changes in the quasiperiodic system. In the case of / 0.54L D = , the band gap 

is split into two subbands, namely, from 1210 up to 1380 kHz and from 1505 up to 1780 kHz. 
Two more new bands appear from 2050 up to 2420 kHz and from 2750 up to 2950 kHz. In 
the case of / 0.6L D = , only two bands appear, namely, from 1360 up to 1949 kHz and from 

2205 up to 2685 kHz. 
From the results shown in Figs. 14(a)-(d), we can say that the band structures of a 
quasiperiodic system depend strongly (or sensitively) on the parameter L/D, whereas that 
in a periodic system does not. A quasiperiodic system has more forbidden gaps than that a 
periodic system has. This can be explained from the following. The 1D Fibonacci sequence is 
the project of the 2D square periodic lattice; it implicitly includes the periodicity of a 
multidimensional space. In fact, a quasiperiodic structure may be considered as a system 
made up of many periodic structures [38].  
Moreover, the change of the ratio L/D also leads to the changes of the number of splitting 
band gaps. Physically, as the ratio L/D changes to an appropriate value, due to reflections at 
the plate boundaries, the interaction between longitudinal and transversal strain 
components becomes strong. For the Lamb modes, the restriction of boundary conditions 
leads to intermode Bragg-like reflections in the quasiperiodic superlattices [39]. As a result, 
much more physical phenomena are present compared with the bulk wave propagation in 
the Fibonacci chains. 
In general, there are three parameters that influence the formation of band gaps, namely, 

L/D, Φ , and λ  (the acoustic wavelength). The number of Lamb wave modes in a plate 

depends on the value of /L λ . The midgap frequency of forbidden gap is inversely 

proportional to the lattice spacing D  [29]. Therefore, it is rather intuitive that L/D is very 
crucial for the formation of band gaps for Lamb waves. In fact, it is also found that the 
difference between the forbidden gaps in quasiperiodic and periodic systems disappears  
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Fig. 14. (color online) The TPS for the periodic plate (blue), the quasiperiodic plate (red), and 
a pure Silicon plate (dashed black), respectively. (a) L/D=0.3, (b) L/D=0.5, (c) L/D=0.54, (d) 
L/D=0.6, (e) L/D=0.68. 
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Fig. 15. (color online) The TPS of the quasiperiodic plate with N=21 (blue) and N=34 (red), 
and a pure Silicon plate (dashed black); L/D =0.5. 

when the ratio L/D is larger than 0.68, as shown in Fig. 14(e). In this figure, one can see that 
there is only one forbidden gap in both the periodic and quasiperiodic systems. The gap 
extends from 1350 (1570) up to 1970 (2136) kHz for the periodic (quasiperiodic) system, 
respectively. It means that the difference of band gaps between quasiperiodic and periodic 
systems basically disappears as the lattice spacing decreases. 

Furthermore, in order to investigate the finite size effect on band gaps, we calculate the TPS 

for 21N =  and 34 for / 0.5L D = . The results are shown in Fig. 15, which tells us that the 

number of splitting band gaps in quasiperiodic superlattices does not increase with the 

addition of the layer number of Fibonacci sequences. The result is quite different from those 

in the quasiperiodic photonic and phononic crystals of the bulk waves [40-41].  

Lastly we study the influence of the thickness of sublattices on the band gap. We calculate 

the TPS for the cases of / 0.618Ad D =  and / 0.618Bd D = . The results are shown in Fig. 16. 

There is only one band gap in the structure of / 0.618Ad D =  ( / 0.382Bd D = ). The gap 

extends from the frequency of 1565 up to 1790 kHz. However, four band gaps are observed 

in the systems with / 0.382Ad D =  ( / 0.618Bd D = ). The four bands are from 950 up to 1130 

kHz, from 1310 up to 1550 kHz, from 1780 up to 2030 kHz, and from 2250 up to 2530 kHz, 

respectively. One can easily find that the material (Tungsten) with larger values of the 

elastic constant and mass density influences the band gap more than the material (Silicon) 

with smaller values of the elastic constant and mass density. 
In conclusion, we have examined the band gap structures of Lamb waves in the 1D 
quasiperiodic composite thin plates by calculating the TPS from the FEM. The band gap 
structures of the Lamb waves are quite different from those of bulk waves. Specifically, the 
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Fig. 16. (color online) The TPS of the quasiperiodic plate / 0.618Ad D =  (blue) and 

/ 0.618Bd D =  (red), and a pure Silicon plate (dashed black); L/D =0.5. 

number of splitting band gaps depends strongly on the values of L/D  owing to resonance 
of the coupling of the longitudinal and transversal strain components at the plate 
boundaries. However, the split of band gaps is independent of the layer number of 
Fibonacci sequences. Moreover, we have found that the structure of the band gaps depends 
very sensitively on the thickness ratio of the sublattices A and B in the quasiperiodic 
structures which might find applications in nondestructive diagnosis. 

5. Acoustic wave behavior in silicon-based 1D phononic crystal plates 

In this section, we employ HRA to study the propagation and transmission of acoustic waves 
in silicon-based 1D phononic crystal plates without/with substrate. We also employ HRA to 
study quasiperiodic systems such as Generalized Fibonacci Systems and Double-period 
System, and the results show that some new phononic band gaps form in quasiperiodic 
systems, which hold the potential in the application of acoustic filters and couplers. 

In Fig. 17, the parameters of finite element models for both TRA and HRA are set to be: the 

plate thickness 2H =  mm, the distance from exciting source to the left edge of plate (also 

the distance from the receiver to the right edge of plate) 1 15L =  cm, the length of 

superlattice 20S=  cm, the number of finite elements per meter 10000N =  m-1, the distance 

between exciting source and receiver 2 30L =  cm, the width of the exciting source region 

(source function is Guassian function) 4δ =  mm. In fact, the theoretical models for TRA and 

HRA are analogous to laser-generated Lamb wave system and piezoelectricity-generated 

Lamb wave system, respectively.   
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Fig. 17. The plate geometry in the finite element models for both TRA and HRA method; the 
upper surface is located at z = H. 

We choose two cases (without/with substrate and different quasiperiodic systems) to 
investigate the acoustic wave behavior in phononic crystal plates. 

For the plate without substrate, we set filling factor 0.2f = , lattice constant 2a=  mm, plate 

thickness 2H =  mm, without substrate. The number of inclusions is 100 and all the 

inclusions are embedded periodically in the middle of plate. 

 
Fig. 18. (a) The transient vertical displacement at the upper surface of phononic crystal plate 
without substrate, calculated by TRA method; (b) Normalized transmitted power spectrum 
for phononic crystal plate without substrate. 
In TRA, as seen in Fig. 18(a), the transient vertical displacement at the upper surface of 
phononic crystal plate is shown when the time ranges from 0 to 200 μs. Transforming the 
vertical displacement from time domain to frequency domain and normalizing by the 
transmitted power spectrum of homogeneous plate, we can obtain the normalized 
transmitted power spectrum of phononic crystal plate with periodic superlattice, as shown 
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in Fig. 18(b), and an obvious band gap is observed in the range from 0.9512 to 1.047 MHz, 
which means the elastic wave located in this gap is extremely attenuated. Applying the 
Super-cell PWE or HRA, we recalculate the band structure and normalized transmitted 
power spectrum, respectively for comparison and the data are shown in Fig. 19. 

 

Fig. 19. (a) Dispersion curves of Lamb wave modes for phononic crystal plate without 
substrate, calculated by Super-cell PWE; (b) Normalized transmitted power spectrum for 
phononic crystal plate without substrate, calculated by HRA method. 

From both Fig. 19(a) and 19(b), we can see a main band gap located around 1 MHz 
(0.9511~1.1300 MHz in Fig. 19(a); 0.9510~1.0560 MHz in Fig. 19(b)), which accords with the 
Fig. 18(b). Note that there exists a very narrow band gap in low frequency zone as shown in 
Fig. 19(a) (0.7332 MHz~0.762 MHz), or the D point (0.7335 MHz) in Fig. 19(b). Therefore, the 
result of HRA is more consistent with Super-cell PWE than of TRA, and importantly the 
HRA method is more efficient in calculations of not only normalized transmitted power 
spectrum but also space distribution of elastic wave field for the reason mentioned above. 
Hereon we choose three points (A: 0.9 MHz, B: 1 MHz, C: 1.1 MHz) in Fig. 19(b) for the 
study of propagation of Lamb waves under different frequency loads (inside/outside the 
band gap).  
As seen from Fig. 20, the displacement fields under different frequency loads are quite 
different. In Fig. 20(b), the load frequency locates inside the band gap and the displacement 
field seems like being blocked by the superlattice, in which the periodic structure forbids the 
propagation of elastic waves along the plate. However, when the load frequency locates 
outside the band gap in Fig. 20(a) and 20(c), the elastic waves propagate without any 
obvious attenuation. 
Then, we add an extra substrate to the established model. The thickness of substrate is set to 
be 0.2 mm. Applying the Super-cell PWE and HRA, we can obtain the dispersion curves of 
Lamb wave modes and normalized transmitted power spectrum, respectively, as shown in 
Fig. 21, in which the first band gap exists in low frequency zone (0.7413~0.7767 MHz in Fig. 
21(a); 0.7520~0.7730 MHz in Fig. 21(b)) and the main band gap (second band gap) locates at 
high frequency zone (0.9852~1.1240 MHz in Fig. 21(a); 0.9853~1.0580 MHz in Fig. 21(b)). 
Comparing Fig. 21 with Fig. 19, one can observe that the first band gap width in the plate 
with substrate is larger than that of the plate without substrate and main band gap (the 
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second band gap) width is narrowed and shifted towards high frequency zone, which 
accord with previous works [4,23,42]. 
In addition to the periodic systems, we adopt the HRA to study the quasiperiodic systems. 
The normalized transmitted power spectra are calculated for phononic crystal plates with 
the above three quasiperiodic systems, as shown in Fig. 22(a)-(c), in which the normalized 
transmitted power spectrum of periodic system is also plotted for comparison. 

 

 

 

 

Fig. 20. The displacement fields at the frequency loads of 0.9 MHz (A point in Fig. 19(b)) (a), 
1 MHz (B point in Fig. 19(b)) (b) and 1.1 MHz (C point in Fig. 19(b)) (c), respectively. 
Corresponding plot in each figure is enlarged. 
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Fig. 21. (a) Dispersion curves of Lamb wave modes for phononic crystal plate with substrate, 
calculated by Super-cell PWE; (b) Normalized transmitted power spectra for phononic 
crystal plates both with and without substrate (substrate thickness: 0.2 mm), calculated by 
HRA method. 

 

 
Fig. 22. Normalized transmitted power spectra for Type A Fibonacci System (a),  
Type B Fibonacci System (b) and Double-period System (c), respectively. 
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As shown in Fig. 22(a), for Type A Fibonacci System, a new band gap is opened in low 

frequency zone (0.7925~0.8622 MHz) and the main band gap (corresponding to the one in 

the periodic system) splits into two separated sub-band gaps (0.9282~0.9667 MHz and 

0.9942~1.0730 MHz). In addition, an obvious attenuation is observed in lower frequency 

zone (0.276~0.384 MHz). 

For Type B Fibonacci System, the main band gap shifts to the low frequency zone 

(0.8915~0.9978 MHz) with its gap width almost unchanged, as shown in Fig. 22(b), and three 

new band gaps form in lower frequency zone (0.114~0.162 MHz, 0.192~0.288 MHz and 

0.498~0.57 MHz). 

For Double-period System, the main band gap shifts to high frequency zone (1.0180~1.1340 

MHz) and four new band gaps are opened in the low frequency zone (0.216~0.294 MHz, 

0.336~0.468 MHz, 0.6238~0.7265 MHz and 0.792~0.84 MHz), as shown in Fig. 22(c). 

From the above-mentioned information, we convincingly demonstrate the band gap 

distribution of quasiperiodic systems is more complicated and meaningful than of periodic 

systems and the reason is supposed to be that quasiperiodicity unlike periodicity can 

provide more than one reciprocal lattices. 

6. Band gaps of plate-mode waves in 1D piezoelectric composite  
plates without/with substrates 

As well known, the ceramic material will have the piezoelectricity only after it is polarized. 
In convenience, we define the non-polarized PZT-5H ceramic as the non-piezoelectric 
material, which has the same elastic constants as the polarized PZT-5H. Fig. 23 provides five 
schematic representations of the plate-mode waves for non-polarization, x-polarization with 
OC, x-polarization with SC, z-polarization with OC, and z-polarization with SC, 
respectively. The first band gaps (FBG) widths shown by the gray area in Fig. 23(a)-(e) are 
2.088, 2.072, 2.368, 2.368, and 2.6 MHz, respectively. On the whole, the FBG are always 
broadened by polarizing piezoelectric ceramics at the same values of f and h/D. Comparing 
the Fig. 23(b) and (c) (or Fig. 23(d) and (e)), the FBG width with SC is larger than that with 
OC for the same polarized direction, whereas the FBG width of z-polarization with SC is the 
largest. In our example, the FBG width of z-polarization with OC is equal to the FBG width 
of x-polarization with SC, which means the z-polarized PZT-5H ceramics is easy to produce 
a larger FBG width. 

The V-PWE method is applied to calculate the dispersion curves of Lamb wave propagating 

in the x-direction when the existence of uniform substrate. Since the substrate affects the 

width and starting frequency of the PC layer, the thickness of the substrate will be an 

important parameter of the system. Meanwhile, the filling fraction f is another critical 

parameter that affects the formation, width and starting frequency of the FBG [43,44]. Fig. 24 

(a) and (b) display the dependence of the FBG widths and starting frequencies with the 

filling fraction f and the ratio of 2h to 1h at 1h =0.8mm, D =2mm with OC when the PC 

layer is coated on an epoxy substrate. As shown in Fig. 24(a), the FBG width increases 

progressively with the increase of the value of f  at a certain value of 2 1/h h  until a critical 

value then decreases and the width decreases gradually with the increase of the value of 

2 1/h h  at a certain value of f . The FBG width takes the maximum value when there is no 

substrate, and decreases with the increase of the substrate’s thickness at any values of f . 

The FBG width takes a larger value when f and 2 1/h h  take values in the domain 0.45-0.65 

www.intechopen.com



Acoustic Waves in Phononic Crystal Plates   

 

121 

and 0-0.8, respectively. This domain is useful in the engineering field. The FBG width 

decreases slowly when 2 1/h h  takes values from 0 to 0.4 ( slowhΔ ) and decreases rapidly 

when 2 1/h h  takes values from 0.4 to 0.80 ( rapidhΔ ) as f  takes values from 0.45 to 0.65( fΔ ). 

As shown in Fig. 25(b), the FBG starting frequency decreases gradually with the increase of 

the value of f  at a certain value of 2 1/h h  until a critical value then increases. The starting 

frequency increases progressively with the increase of the value of 2 1/h h  at a certain value 

of f  until a critical value then decreases, but the change of the starting frequency is small. 

On the whole, the epoxy substrate reduces the FBG width obviously and has little influence 

on the FBG starting frequency. 
 
 
 
 

 

 

Fig. 23. The 1D plate-mode waves for different polarizations under different boundary 

conditions with 0.5f =  and /h D =0.8 (D=2mm): (a) Non-polarization, (b) x-polarization 

with OC, (c) x-polarization with SC, (d) z-polarization with OC, and (e) z-polarization with SC. 
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Fig. 24. The FBG widths (a) and starting frequencies (b) versus f  and 2 1/h h  ( 1h =0.8mm, 

D =2mm) with OC coated on epoxy substrate. 

7. Conclusions 

In this chapter, we first examine the band structures of lower-order Lamb wave modes 
propagating in the 1D periodic composite thin plate based on the PWE for infinitely long 
periodic systems and have calculated the TPS for finite systems by using the FE method. As 
shown, the TPS through a superlattice with ten periods has prominent dips at frequencies 
corresponding to the gaps in band structure. A crucial parameter, namely, the ratio of L/D, 
was discussed, and the value of the ratio of L/D was emerging as critical parameters in 
determining the existence of band gaps for the Lamb waves in the periodic structures. Thus, 
we can achieve the needed width of band gap for Lamb wave by varying the thickness of 
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plate. Then, we study the substrate effect on the band gaps of lower-order Lamb waves 
propagating in thin plate with 1D phononic crystal layer coated on uniform substrate. The 
results show that when the substrate is hard, the influences on band gap are significant, and 
the band gaps disappear rapidly as the substrate becomes thicker. However, when the 
substrate is soft, the depth of band gaps becomes larger as the thickness of substrate 
increases. A virtual plane wave expansion method is developed to calculate the dispersion 
curves of Lamb wave. The locations and widths of band gaps on the dispersion curves are in 
good agreement with the results from the transmitted power spectra by FEM. 
The band gap structure of Lamb waves in the 1D quasiperiodic composite thin plate is also 

studied by calculating the TPS from the FEM. The band gap structures of the Lamb waves 

are quite different from those of bulk waves. Specifically, the number of splitting band gaps 

depends strongly on the values of L/D owing to resonance of the coupling of the 

longitudinal and transversal strain components at the plate boundaries. However, the split 

of band gaps is independent of the layer number of Fibonacci sequences. Moreover, we have 

found that the structure of the band gaps depends very sensitively on the thickness ratio of 

the sublattices A and B in the quasiperiodic structures which might find applications in 

nondestructive diagnosis. 

We have promoted an efficient HRA method to investigate the acoustic wave behavior in 

silicon-based 1D phononic crystal plates. The HRA method can not only save much time in 

the calculation of transmitted power spectrum but also acquire information of the 

displacement field under different frequency loads at the same time. Applying HRA and 

supercell PWE, we have studied the periodic structures both without and with substrate. 

From the displacement field map, we find that the elastic wave is completely blocked by the 

superlattice when the load frequency is inside the acoustic band gap. After introducing 

different kinds of quasiperiodic structures, we studied the normalized transmitted power 

spectra in details and find out that the original main band gap in periodic structure may 

split or shift to low or high frequency zones in different quasiperiodic structures. 

Furthermore, new band gaps in low frequency zone may be opened which provide potential 

application in the field of wave filtering as well as sound isolation. 

Finally, we study the band gaps of plate-mode waves in 1D piezoelectric composite plates 
without/with substrates. We found that the FBG is always broadened by polarizing 
piezoelectric ceramics, and the FBG widths with SC are always larger than that with OC for 
the same polarization. The FBG width decreases gradually as the substrate’s thickness 
increases and the FBG starting frequency increases progressively as the thickness increases 
on the whole. Our researches show that it is possible to control the width and starting 
frequency of the FBG in the engineering according to need by choosing suitable values of 
the substrate’s thickness, the filling fraction with different electrical boundary conditions. 

8. References 

[1] J. J. Chen, K. W. Zhang, J. Gao, and J. C. Cheng, Phys. Rev. B 73, 094307 (2006). 
[2] J. Gao, J. C. Cheng, and B. W. Li, Appl. Phys. Lett. 90, 111908 (2007). 
[3] J. H. Sun and T. T. Wu, Phys. Rev. B 74, 174305 (2006). 
[4] J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, and A. -C. Hladky-Hennion, 

Phys. Rev. B 77, 085415 (2008). 

www.intechopen.com



 Acoustic Waves 

 

124 

[5] S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, Appl. Phys. Lett. 92, 
221905 (2008). 

[6] S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, Appl. Phys. Lett. 94, 051906 (2009). 
[7] C. J. Rupp, M. L. Dunn, and K. Maute, Appl. Phys. Lett. 96, 111902 (2010). 
[8] J. Gao, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 92, 023510 (2008). 
[9] X. F. Zhu, T. Xu, S. C. Liu, and J. C. Cheng, J. Appl. Phys. 106, 104901 (2009). 
[10] X.-Y. Zou, B. Liang, Q. Chen, and J.-C. Cheng, IEEE Trans. Ultrason. Ferroelectr. Freq. 

Control 56, 361 (2009). 
[11] B. A. Auld, Y. A. Shui, and Y. Wang, J. Phys. (Paris) 45, 159 (1984). 
[12] B. A. Auld and Y. Wang, Proc.-IEEE Ultrason. Symp. 528 (1984). 
[13] A. Alippi, F. Craciun, and E. Molinari, Appl. Phys. Lett. 53, 1806 (1988). 
[14] A. Alippi, F. Craciun, and E. Molinari, J. Appl. Phys. 66, 2828 (1989). 
[15] S. G. Joshi and Y. Jin, J. Appl. Phys. 69, 8018 (1991). 
[16] M. Wilm, S. Ballandras, V. Laude, and T. Pastureaud, J. Acoust. Soc. Am. 112, 943 (2002). 
[17] S. Zhang and J. C. Cheng, Phys. Rev. B 68, 245101 (2003). 
[18] F. Moser, L. J. Jacobs, and J. M. Qu, NDT & E Int. 32, 225 (1999). 
[19] K. J. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ, 1996. 
[20] Y. Gu, J. Liu and Y. Du, Engineering Mechanics 24, 12 (2007) (Chinese). 
[21] X. F. Zhu, S. C. Liu, T. Xu, T. H. Wang, and J. C. Cheng, Chin. Phys. B 19, 4 (2010). 
[22] Y. Tanaka, Y. Tomoyasu, and S. I. Tamura, Phys. Rev. B 62, 7387 (2000). 
[23] Z. L. Hou and B. M. Assouar, Phys. Lett. A 372, 2091 (2008). 
[24] Y. Zhang and H. Zhao, Phys. Rev. E 66, 026106 (2002). 
[25] J. C. Cheng, S. Y. Zhang, and L. Wu, Appl. Phys. A: Mater. Sci. Process. 61, 311 (1995). 
[26] Y. J. Cao and Y. Xu, Actra Physica Sinica 57, 3620 (2008). 
[27] E. L. Albuquerque and M. G. Cottam, Physics Reports 376, 225 (2003). 
[28] W. A. Smith and B. A. Auld, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 40 (1991). 
[29] M. S. Kushwaha, Appl. Phys. Lett. 70, 3218 (1997). 
[30] J. C. Cheng and S. Y. Zhang, Appl. Phys. Lett. 74, 2087 (1999). 
[31] S. Linden, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 86, 4688 (2001). 
[32] S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D. Siggia, Phys. Rev. Lett. 50, 

1873 (1983). 
[33] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984). 
[34] R. Merlin, K. Bajema, R. Clarke, F. -Y. Juang, and P. K. Bhattacharya, Phys. Rev. Lett. 55, 

1768 (1985). 
[35] J. Todd, R. Merlin, R. Clarke, K. M. Mohanty, and J. D. Axe, Phys. Rev. Lett. 57, 1157 (1986). 
[36] C. Wang and R. A. Barrio, Phys. Rev. Lett. 61, 191 (1988). 
[37] J. -P. Desideri, L. Macon, and D. Sornette, Phys. Rev. Lett. 63, 390 (1989). 
[38] M. W. C. Dharma-Wardana, A. H. MacDonald, D. J. Lockwood, J. -M. Baribeau, and D. 

C. Houghton, Phys. Rev. Lett. 58, 17 (1987). 
[39] S. Tamura and J. P. Wolfe, Phys. Rev. B 36, 6 (1987). 
[40] Y. E. Hassouani, H. Aynaou, E. H. E. Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. 

Velasco, Phys. Rev. B 74, 035314 (1990). 
[41] J. Q. You, Q. B. Yang, and J. R. Yan, Phys. Rev. B 41, 11 (1990). 
[42] Z. Hou and B. M. Assouar, J. Phys. D: Appl. Phys. 42, 0850103 (2009). 
[43] X.-Y. Zou, Q. Chen, B. Liang, and J.-C. Cheng, Smart Mater. Struct. 17, 015008 (2008) 
[44] X.-Y. Zou, Q. Chen, and J.-C. Cheng, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 

1430 (2007). 

www.intechopen.com



Acoustic Waves

Edited by Don Dissanayake

ISBN 978-953-307-111-4

Hard cover, 434 pages

Publisher Sciyo

Published online 28, September, 2010

Published in print edition September, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

SAW devices are widely used in multitude of device concepts mainly in MEMS and communication electronics.

As such, SAW based micro sensors, actuators and communication electronic devices are well known

applications of SAW technology. For example, SAW based passive micro sensors are capable of measuring

physical properties such as temperature, pressure, variation in chemical properties, and SAW based

communication devices perform a range of signal processing functions, such as delay lines, filters, resonators,

pulse compressors, and convolvers. In recent decades, SAW based low-powered actuators and microfluidic

devices have significantly added a new dimension to SAW technology. This book consists of 20 exciting

chapters composed by researchers and engineers active in the field of SAW technology, biomedical and other

related engineering disciplines. The topics range from basic SAW theory, materials and phenomena to

advanced applications such as sensors actuators, and communication systems. As such, in addition to

theoretical analysis and numerical modelling such as Finite Element Modelling (FEM) and Finite Difference

Methods (FDM) of SAW devices, SAW based actuators and micro motors, and SAW based micro sensors are

some of the exciting applications presented in this book. This collection of up-to-date information and research

outcomes on SAW technology will be of great interest, not only to all those working in SAW based technology,

but also to many more who stand to benefit from an insight into the rich opportunities that this technology has

to offer, especially to develop advanced, low-powered biomedical implants and passive communication

devices.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Xin-Ye Zou, Xue-Feng Zhu, Bin Liang and Jian-Chun Cheng (2010). Acoustic Waves in Phononic Crystal

Plates, Acoustic Waves, Don Dissanayake (Ed.), ISBN: 978-953-307-111-4, InTech, Available from:

http://www.intechopen.com/books/acoustic-waves/acoustic-waves-in-phononic-crystal-plates

www.intechopen.com



Fax: +385 (51) 686 166

www.intechopen.com

Fax: +86-21-62489821



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


