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1. Introduction  

Modern technologies require new materials of special properties. One of the reasons for 
interest in materials of unusual mechanical properties comes from the fact that they can be 
used (either as inclusions or as matrices) to form composites of required properties.  
There is a number of physical properties that we implicitly assume to be positive. However, 
one may be surprised to discover that they can also be negative. Negative materials include, 
amongst other ones, those having negative stiffness (Lakes et al., 2001), negative thermal 
expansion (Hartwig, 1995), negative refractive index (Sang & Li, 2005), negative permittivity 
(Ruppin, 2000) and/or negative permeability (Ruppin, 2000). It is worth to add that in 
presence of some constrains even the compressibility can be negative (Lakes & 
Wojciechowski, 2008).  
A new field of challenge are studies of materials exhibiting negative Poisson’s ratio. The 
latter is a negative ratio of relative transverse dimension change to relative longitudinal 
dimension change of a body when an infinitesimal change of a stress acting along the 
longitudinal direction occurs whereas the other stress components remain unchanged. Such 
materials, first manufactured by Lakes (Lakes, 1987) and coined auxetics by Evans (Evans, 
1991), are a subject of intensive studies both in the context of fundamental research and 
applications (Remillat et al., 2009).  
The aim of this chapter is to demonstrate recently discovered anomalous deformation of an 
auxetic plate, constrained by fixing two opposite sides, which is loaded by uniform tension 
(or compression) applied perpendicularly to two other opposite sides of the plate. The 
problem was studied both in three dimensions (3D) by Strek et al. (Strek et al., 2008) and in 
two dimensions (2D) by Pozniak et al. (Pozniak et al., 2010) by finite element methods. In all 
the cases studied it has been assumed that the material was isotropic.  
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The paper (Strek et al., 2008) dealt with computer simulations of mechanical behaviour of a 
thick elastic plate. Simulations have been done for Poisson’s ratio from interval 501 .   
using COMSOL (Comsol, 2007). An anomalous feature of the plate deformation for negative 
Poisson’s ratio values compared to classical positive values has been observed at strongly 
negative Poisson’s ratios, 70. . For such values of   the displacement vector has 
components which are anti-parallel to the direction of loading. 
2D version of this system, described in (Poźniak et al., 2010), allowed one for more precise 
computations using much finer meshes than those used in the 3D case. In consequence, the 
2D simulations performed with FEniCS (Logg & Wells 2010) revealed the anomalous 
behaviour of the displacement vector already at 250. .  
The anomalous behaviour of the displacement vector, which in some parts of the plate has 
components opposite to the direction of the applied force can be thought of as locally 
negative compliance. Systems with negative compliance have been recently studied by 
Lakes and co-workers (Lakes, 2001; Lakes et al., 2001; Jaglinski et al., 2007). The reason is 
that combination of such (negative) materials with common ones (of positive compliance) of 
the same absolute value offers composites of zero compliance, i.e. of infinite elastic moduli. 
In the present chapter we briefly review the results obtained in (Strek et al., 2008) and 
(Pozniak et al., 2010). By studying larger meshes in 3D and finer ones in 2D we extend those 
investigations to computationally ‘larger’ systems. This allows one to study, respectively, 
thicker plates in 3D and more subtle effects both in 3D and 2D cases. In consequence, we get 
a better insight in the unusual phenomenon under study.  

 
2. Modelling methods and tools 

A great deal of computational research has been undertaken and published in the field of 
computational mechanics since the advent of the digital computer. Before 1970, the Finite 
Difference Method (FDM) was almost universally used as a computer based numerical 
method in modeling dynamics process. Since then there has been a revolution in the general 
area of mathematical modeling. Highly sophicticated and detailed analysis of many 
engineering problems has become possible. However, it can be argued that the last three 
decades have in many ways belonged to the Finite Element Method (FEM) as the method of 
choice among the currently available numerical methods for solving mathematical equations 
(Huebner ,1975; Hinton and Owen, 1979).  
All mechanical problems considered in this work are governed by equations with 
appropriate boundary and initial conditions. Numerical results for 3D systems are obtained 
using standard computational code COMSOL Multiphysics (Comsol, 2004; Comsol, 2007). 
As COMSOL implicitly simulates 3D systems, to study 2D cases another package, known as 
FEniCS, was applied. ABAQUS was used to test the obtained results both in 3D and 2D. 

 
2.1 Comsol Multiphysics  
Theory in this section is based on COMSOL Multiphysics manual (Comsol, 2007).  COMSOL 
Multiphysics is a powerful interactive environment for modelling and solving all kinds of 
scientific and engineering problems based on partial differential equations (PDEs) using the 
finite element method. One can access the power of COMSOL Multiphysics as a standalone 
product, by script programming in the COMSOL Script language or in the MATLAB 
language (Comsol, 2007). 

 

A general time-dependent PDE problem in the coefficient form used by COMSOL results in 
the following equation system (Comsol, 2007) 
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with boundary conditions 
 

  μhguqγuαucn T    (2) 
 
and 

rhu  . (3) 
 

The first equation (1) is satisfied inside the domain, whereas the second (2), representing so 
called generalized Neumann boundary condition, and the third (3) – so called Dirichlet 
boundary condition, are both satisfied on the boundary of domain. In this work all 
governing equations obey a general time-dependent PDE problem in the coefficient form 
reduced to equation 
 

  Fuc   (4) 
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where iu  are column vectors. The flux matrix or flux tensor is a column vector in this 
work. For anisotropic materials, each of the components of c  can be a matrix. 
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thicker plates in 3D and more subtle effects both in 3D and 2D cases. In consequence, we get 
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engineering problems has become possible. However, it can be argued that the last three 
decades have in many ways belonged to the Finite Element Method (FEM) as the method of 
choice among the currently available numerical methods for solving mathematical equations 
(Huebner ,1975; Hinton and Owen, 1979).  
All mechanical problems considered in this work are governed by equations with 
appropriate boundary and initial conditions. Numerical results for 3D systems are obtained 
using standard computational code COMSOL Multiphysics (Comsol, 2004; Comsol, 2007). 
As COMSOL implicitly simulates 3D systems, to study 2D cases another package, known as 
FEniCS, was applied. ABAQUS was used to test the obtained results both in 3D and 2D. 

 
2.1 Comsol Multiphysics  
Theory in this section is based on COMSOL Multiphysics manual (Comsol, 2007).  COMSOL 
Multiphysics is a powerful interactive environment for modelling and solving all kinds of 
scientific and engineering problems based on partial differential equations (PDEs) using the 
finite element method. One can access the power of COMSOL Multiphysics as a standalone 
product, by script programming in the COMSOL Script language or in the MATLAB 
language (Comsol, 2007). 

 

A general time-dependent PDE problem in the coefficient form used by COMSOL results in 
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where iu  are column vectors. The flux matrix or flux tensor is a column vector in this 
work. For anisotropic materials, each of the components of c  can be a matrix. 
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2.2 FEniCS 
To study 2D systems FEniCS was applied. FEniCS Project (Logg & Wells 2010) is a software 
suite dedicated to Finite Element Analysis laying emphasis to partial differential equations. 
DOLFIN may be regarded as its central part being responsible for dealing with the FEM 
issues. All components of FEniCS are released under GNU General Public License or GNU 
Lesser General Public License. The sources as well as compiled packages are freely available 
through  http://www.fenics.org. 
As mentioned, FEniCS is not a monolithic project but consists of a few components. FIAT is 
responsible for finite element basis function evaluation. Variational forms coming from 
weak formulations of PDEs are handled by the Unified Form Language and the FeniCS 
Form Compiler. 
Dealing with FEniCS requires knowledge of the weak forms written in the Unified Form 
Language in order to let the FEniCS form compiler generate the low level code. Here the 
bilinear form is written as  a=inner(epsilon(v), sigma(u))*dx  which stands for the integral 

dX
X
  , the linear form is  L=inner(v,f)*dx,  representing dXFv

X
  , v and u are trial and test 

functions respectively defined in UFL  v=TrialFunction(element),  u=TestFunction(element).  
Element definition is as simple as previous ones, namely 
element=VectorElement("Lagrange","triangle", 1)  for the first order Lagrange element. Putting   
a=L  one gets the weak form of differential equation of elasticity. 

 
3. Elastic deformations  

3.1 3D case 
It is possible to completely describe the strain conditions at a point with the deformation 
components,  w,v,u  in 3D and their derivatives (Landau and Lifshits, 1986). One can 
express the shear strain in a tensor form, xy , yz , xz  or in an engineering form, xy , yz , 

xz . Following the small-displacement assumption, the normal strain components and the 
shear strain components are given from the deformation as follows 
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The symmetric strain tensor,   Tuuε 
2
1 , consists of both normal and shear strain 

components 
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The stress in a material is described by the symmetric stress tensor σ  
 



















zzyzx

yzyyx

xzxyx





σ  (8) 

 
consisting of three normal stresses  zyx ,,   and six, or if symmetry is used, three shear 

stresses  xzyzxy ,,  . The stress-strain relationship (the constitutive law) for linear 

conditions reads 
 

Dσ   (9) 
 
where D  is a 6 x 6 elasticity matrix, and the stress and strain components are described in 
vector form with the six stress and strain components in column vectors defined as  
 

 Txzyzxyzyx ,,,,,   , 

 Txzyzxyzyx ,,,,,   . 
(10) 

 
For static conditions Navier’s equation reads (Landau and Lifshits, 1986) 
 

Fσ   (11) 
 
where u denotes the displacement and F denotes the volume forces (body forces). 
 
Lamé’s constants   and   in terms of Young’s modulus, E , and Poisson’s ratio,  , are the 
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then the elastic matrix D  reads 
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shear strain components are given from the deformation as follows 
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The symmetric strain tensor,   Tuuε 
2
1 , consists of both normal and shear strain 

components 
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The stress in a material is described by the symmetric stress tensor σ  
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consisting of three normal stresses  zyx ,,   and six, or if symmetry is used, three shear 

stresses  xzyzxy ,,  . The stress-strain relationship (the constitutive law) for linear 

conditions reads 
 

Dσ   (9) 
 
where D  is a 6 x 6 elasticity matrix, and the stress and strain components are described in 
vector form with the six stress and strain components in column vectors defined as  
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 Txzyzxyzyx ,,,,,   . 
(10) 

 
For static conditions Navier’s equation reads (Landau and Lifshits, 1986) 
 

Fσ   (11) 
 
where u denotes the displacement and F denotes the volume forces (body forces). 
 
Lamé’s constants   and   in terms of Young’s modulus, E , and Poisson’s ratio,  , are the 
following 
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then the elastic matrix D  reads 
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The use of (7)–(10) in (6) leads us to Navier’s equation - the final form of the equation 
(Comsol, 2004; Comsol, 2007) 
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where c  is the flux matrix. The flux matrix c  reads 
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Dij in the c  matrix is referring to the component in the elasticity matrix (13) in the stress-
strain relation for 3D.  
 
In this case, the diffusive flux, reads 
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After some mathematical calculations one can write equation (16) in the following form 
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For example, the component 11  reads 
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The remaining components ij  one can calculate similarly. 

For the flux terms the divergence operator works on each row separately. The divergence of 
the conservative flux source reads 
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3.2 2D case 
In consequence of the dimension reduction from 3D to 2D one has to modify eq. (12). In a 
two-dimensional world  λ takes the following form  
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The use of (7)–(10) in (6) leads us to Navier’s equation - the final form of the equation 
(Comsol, 2004; Comsol, 2007) 
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Dij in the c  matrix is referring to the component in the elasticity matrix (13) in the stress-
strain relation for 3D.  
 
In this case, the diffusive flux, reads 
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After some mathematical calculations one can write equation (16) in the following form 
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For example, the component 11  reads 
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The remaining components ij  one can calculate similarly. 

For the flux terms the divergence operator works on each row separately. The divergence of 
the conservative flux source reads 
 











































































































































































































































3

33

2

32

1

31
3

23

2

22

1

21
3

13

2

12

1

11

33

32

31

23

22

21

13

12

11

33

32

31

23

22

21

13

12

11

xxx

xxx

xxx



























α . (19) 

 
3.2 2D case 
In consequence of the dimension reduction from 3D to 2D one has to modify eq. (12). In a 
two-dimensional world  λ takes the following form  
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as Poisson's ratio fits the range .;  11  Expression for μ remains unchanged. 
Obviously, in 2D, vectors have two components, instead of three, and one works with 2x2 
matrices, instead of 3x3. 

 
4. Numerical results 

4.1 3D case 
The object of our interest is a box in 3D, fixed at two parallel lateral surfaces (see Fig. 1C) 
and loaded at front and back (see Fig. 1A) parallel opposite surfaces. The top and the bottom 
(parallel) walls are free (Fig. 1B). Four cases of box shape have been considered (see Table 2). 
Boxes were made either of classic (Poisson’s ratio: 0 and +0.3) or auxetic material (Poisson’s 
ratio: -0.999999 and -0.7), isotropic and elastic loaded. In all cases extensions of the box were 
considered. Numerical data necessary to perform the calculations are collected in Table 1.  
All the calculations have been done by Comsol Multiphysics code (Comsol, 2007). Finite 
element calculations are made with second-order tetrahedral Lagrange elements with mesh 
statistics collected in Table 2.  
Firstly, static Navier’s equation is analyzed in this chapter. The following boundary 
conditions are assumed: 

 Loaded boundary - for 0x : Pnσ  , 0P  , 
 Loaded boundary - for Lx  : Pnσ  , 
 Fixed boundary - for 0y  and dy  :  0u  ,  
 Free boundary - for 0z  and hz  ,  

where n  is the normal unit vector to boundary. 
There is no initial stress and strain in the considered boxes.  
Results concerning the simulations of the stretched boxes are shown in Fig 3-12. An 
anomalous feature of the box deformation for negative Poisson’s ratio values compared to 
classical positive values has been observed. At extremely negative Poisson’s ratios the 
displacement vector has components which are anti-parallel to the direction of loading. This 
feature is present for all considered boxes with different ratios of height to depth. 
 

Quantity Symbol Unit Value 
Density   kg/m3 7850 
Young’s modulus E  Pa 2.1·1011 

Poisson’s ratio   - -0.999999, -0.7, 0, 0.3 
Pressure – force per area 
(stretch) 

P  N/m2 104 

Table 1. Numerical data 
 
 
 
 
 

 

Quantity Symbol Unit Box-1 Box-2 Box-3 Box-4 
Height (z-direction) h m 2 1 0.5 0.005 
Width (x-direction) L m 1 1 1 1 
Depth (y-direction) d m 1 1 1 1 
Number of mesh points - - 27642 12186 6096 139386 
Number of elements - - 143682 61126 29605 523183 
Number of  DOF - - 607137 262377 129219 2675307 

Table 2. Dimensions of boxes and mesh statistics 
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Fig. 1. Boundary conditions on box surfaces: A) loaded, B) free, C) fixed 
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Fig. 2. Shapes of meshed boxes: A) Box-1, B) Box-2, C) Box-3, D) Box-4 
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Fig. 1. Boundary conditions on box surfaces: A) loaded, B) free, C) fixed 
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Fig. 2. Shapes of meshed boxes: A) Box-1, B) Box-2, C) Box-3, D) Box-4 
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Fig. 3. Total displacement of the box-1 for different Poisson’s ratios ν: A) ν  = -0.999999,  
B) ν = -0.7, C) ν = 0, D) ν = 0.3. The initial shape of the plate is marked by a thin continuous 
line 
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Fig. 4. XY-view of total displacement of the box-1 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 5. YZ-view of total displacement of the box-1 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 3. Total displacement of the box-1 for different Poisson’s ratios ν: A) ν  = -0.999999,  
B) ν = -0.7, C) ν = 0, D) ν = 0.3. The initial shape of the plate is marked by a thin continuous 
line 
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Fig. 4. XY-view of total displacement of the box-1 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 5. YZ-view of total displacement of the box-1 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 6. Total displacement of the box-2 for different Poisson’s ratios ν: A) ν  = -0.999999,  
B) ν = -0.7, C) ν = 0, D) ν = 0.3  
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Fig. 7. XY-view of total displacement of the box-2 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 8. YZ-view of total displacement of the box-2 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 6. Total displacement of the box-2 for different Poisson’s ratios ν: A) ν  = -0.999999,  
B) ν = -0.7, C) ν = 0, D) ν = 0.3  
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Fig. 7. XY-view of total displacement of the box-2 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 8. YZ-view of total displacement of the box-2 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3 
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Fig. 9. Total displacement of the box-3 for different Poisson’s ratios ν: A) ν  = -0.999999,  
B) ν = -0.7, C) ν = 0, D) ν = 0.3  
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Fig. 10. XY-view of total displacement of the box-3 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3  
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Fig. 11. YZ-view of total displacement of the box-3 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3  
 
The table below (Table 3) shows maximum value of the deformation on the surface to which 
the load is applied and average value of the deformation for different Poisson’s ratios. One 
can see that with growing height, h, of the box for given Poisson’s ratio and pressure the 
maximum deformation increases and the average deformation decreases. For a given shape 
of the box the maximum deformation increases with increasing Poisson’s ratio. 
 
 ν  = -0.999999 ν = -0.7 ν = 0 ν = 0.3 
 Max. Avg. Max. Avg. Max. Avg. Max. Avg. 
Box-1 9.754e-14 3.557e-14 1.607e-8 8.585e-9 2.348e-8 1.772e-8 2.743e-8 1.635e-8 
Box-2 9.371e-14 4.272e-14 1.536e-8 9.360e-9 2.348e-8 1.783e-8 2.567e-8 1.707e-8 
Box-3 9.086e-14 4.898e-14 1.425e-8 9.729e-9 2.348e-8 1.783e-8 2.355e-8 1.713e-8 

Table 3. Maximum and average total displacements of loaded boundaries of boxes 
 
In Fig. 12 the deformation of the thinnest of the studied boxes is shown for the lowest 
Poisson’s ratio and the finest mesh studied. Some oscillations of the loaded surface can be 
seen there. This new phenomenon, shown in more detail in Fig. 13, will be even better seen 
in the 2D case discussed in the next subsection. 
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Fig. 9. Total displacement of the box-3 for different Poisson’s ratios ν: A) ν  = -0.999999,  
B) ν = -0.7, C) ν = 0, D) ν = 0.3  
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Fig. 10. XY-view of total displacement of the box-3 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3  
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Fig. 11. YZ-view of total displacement of the box-3 for different Poisson’s ratios ν:  
A) ν  = -0.999999, B) ν = -0.7, C) ν = 0, D) ν = 0.3  
 
The table below (Table 3) shows maximum value of the deformation on the surface to which 
the load is applied and average value of the deformation for different Poisson’s ratios. One 
can see that with growing height, h, of the box for given Poisson’s ratio and pressure the 
maximum deformation increases and the average deformation decreases. For a given shape 
of the box the maximum deformation increases with increasing Poisson’s ratio. 
 
 ν  = -0.999999 ν = -0.7 ν = 0 ν = 0.3 
 Max. Avg. Max. Avg. Max. Avg. Max. Avg. 
Box-1 9.754e-14 3.557e-14 1.607e-8 8.585e-9 2.348e-8 1.772e-8 2.743e-8 1.635e-8 
Box-2 9.371e-14 4.272e-14 1.536e-8 9.360e-9 2.348e-8 1.783e-8 2.567e-8 1.707e-8 
Box-3 9.086e-14 4.898e-14 1.425e-8 9.729e-9 2.348e-8 1.783e-8 2.355e-8 1.713e-8 

Table 3. Maximum and average total displacements of loaded boundaries of boxes 
 
In Fig. 12 the deformation of the thinnest of the studied boxes is shown for the lowest 
Poisson’s ratio and the finest mesh studied. Some oscillations of the loaded surface can be 
seen there. This new phenomenon, shown in more detail in Fig. 13, will be even better seen 
in the 2D case discussed in the next subsection. 
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Fig. 12. Total displacement of the box-4 with different Poisson’s ratio ν=-0.999999:  
A) XYZ-view, B) XY-view, C) corner view, D) slice at height h/2 
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Fig. 13. Displacement of loaded edge (contact: loaded with free boundary) of box-4 with 
different Poisson’s ratio ν=-0.999999: A) x-displacement, B) y-displacement, C) z-
displacement  

 
4.2 2D case 
The object of our interest is a 2D linear elastic continuum, given through Young modulus E  and 
Poisson's ratio  . The domain is simply a unit square and is subjected to mixed boundary 
conditions. First type is kinematic type, often called Dirichlet type and the other is Neumann (or 
natural) type boundary condition responsible for the traction. The boundary conditions of the 
system (see Fig. 14) are the following: 

 Loaded boundary R : Pnσ  ,  

 

 Loaded boundary L : Pnσ  , 
 Fixed boundaries T  and B : 0u  . 

 
Fig. 14. Geometry of the system. Arrows indicate the uniform stretching force applied. 
Oblique lines indicate the fixed edges 
 
To solve the problem, functions of the first order were taken as test and basis functions. It means 
that first order triangle Lagrange finite elements were taken. As the accuracy of finite element 
method depends on density of the mesh as well as on the degree of interpolating polynomial, the 
considered model was simulated with various mesh densities. Some calculations with higher 
order polynomials were also conducted and showed very good agreement with results obtained 
for first degree polynomials for dense enough meshes. 
The most limiting factor in FEM computation is the memory, needed to store and solve systems 
of algebraic equations. Here, the upper limit of mesh density due to the limit of 32 GB RAM 
available was 15 600 000 triangle elements of first order with 7 845 601 points, what equals 
N=2800 intervals at a square side. The constants defining material and simulation conditions are 
as follows: E=2.1x1011 [N/m], |P|=|σxx|=104 [N/m] and ν varying from 0.7 down to -0.999. 
The point of our interest will be only one component of the displacement field revealing the 
effect of interest. Fig. 15 shows details of the x-component of the displacement field u as 
function of y being position of the point on edge R . The x-component of displacement field 
is denoted by xu . 
As long as   is non-negative (0.7, 0.0) the sign of xu is the same as the sign of acting force, 
so the system behaves in a common way. But when   takes the negative values (-0.7, -0.999) 
it is clear to observe that the xu on some regions has negative values, what means that the 
body moves in opposite direction to the acting force! 
In the case of 70.  there is only one region on the boundary where the counterintuitive 
behavior is observed, but as   tends to its lower limit (-1) and takes value -0.999 it is easy to 
notice that depending on mesh density the number of isolated negative-valued xu varies 
from one (in case of N=250) to at least two (for N=2000). Obviously lower Poisson’s ratio 
values need finer meshes to precisely track the behavior near corners of the square. 
One would expect that there exist some critical value of   when the counterintuitive effect 
occurs. In terms of FEM simulation this value strongly depends on the density of the mesh. 
To estimate convergence of the critical   as function of the mesh density values, the values 
of )N(c were computed for certain N and plotted in Fig. 16. It can be seen that )N(c is an 
increasing function of N and is convex as a function of N-1 . The representation of )N(c as 
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Fig. 12. Total displacement of the box-4 with different Poisson’s ratio ν=-0.999999:  
A) XYZ-view, B) XY-view, C) corner view, D) slice at height h/2 
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Fig. 13. Displacement of loaded edge (contact: loaded with free boundary) of box-4 with 
different Poisson’s ratio ν=-0.999999: A) x-displacement, B) y-displacement, C) z-
displacement  
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Poisson's ratio  . The domain is simply a unit square and is subjected to mixed boundary 
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 Loaded boundary R : Pnσ  ,  

 

 Loaded boundary L : Pnσ  , 
 Fixed boundaries T  and B : 0u  . 

 
Fig. 14. Geometry of the system. Arrows indicate the uniform stretching force applied. 
Oblique lines indicate the fixed edges 
 
To solve the problem, functions of the first order were taken as test and basis functions. It means 
that first order triangle Lagrange finite elements were taken. As the accuracy of finite element 
method depends on density of the mesh as well as on the degree of interpolating polynomial, the 
considered model was simulated with various mesh densities. Some calculations with higher 
order polynomials were also conducted and showed very good agreement with results obtained 
for first degree polynomials for dense enough meshes. 
The most limiting factor in FEM computation is the memory, needed to store and solve systems 
of algebraic equations. Here, the upper limit of mesh density due to the limit of 32 GB RAM 
available was 15 600 000 triangle elements of first order with 7 845 601 points, what equals 
N=2800 intervals at a square side. The constants defining material and simulation conditions are 
as follows: E=2.1x1011 [N/m], |P|=|σxx|=104 [N/m] and ν varying from 0.7 down to -0.999. 
The point of our interest will be only one component of the displacement field revealing the 
effect of interest. Fig. 15 shows details of the x-component of the displacement field u as 
function of y being position of the point on edge R . The x-component of displacement field 
is denoted by xu . 
As long as   is non-negative (0.7, 0.0) the sign of xu is the same as the sign of acting force, 
so the system behaves in a common way. But when   takes the negative values (-0.7, -0.999) 
it is clear to observe that the xu on some regions has negative values, what means that the 
body moves in opposite direction to the acting force! 
In the case of 70.  there is only one region on the boundary where the counterintuitive 
behavior is observed, but as   tends to its lower limit (-1) and takes value -0.999 it is easy to 
notice that depending on mesh density the number of isolated negative-valued xu varies 
from one (in case of N=250) to at least two (for N=2000). Obviously lower Poisson’s ratio 
values need finer meshes to precisely track the behavior near corners of the square. 
One would expect that there exist some critical value of   when the counterintuitive effect 
occurs. In terms of FEM simulation this value strongly depends on the density of the mesh. 
To estimate convergence of the critical   as function of the mesh density values, the values 
of )N(c were computed for certain N and plotted in Fig. 16. It can be seen that )N(c is an 
increasing function of N and is convex as a function of N-1 . The representation of )N(c as 
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function N-1 takes the advantage of bringing infinity to zero and lets one to have a better 
view on the convergence. Looking at Fig. 16, one can state that  
 

)N(lim. cNc   2 . (21) 
 

Observing the behavior of xu for the case of 9990.  one expects existence of more points 
where xu  changes sign between positive and negative values when   tends to -1.  
It should be also stated that for the lowest studied   the closer to the korner, the worse the 
convergence is. To study models with extremely low   values, very dense meshes are 
essential and higher order interpolating polynomials should be also considered. 
To make clear that counterintuitive results are reliable some cases were checked using 
another FEM libraries - GETFEM++, FREEFEM and ABAQUS. These showed exactly the 
same unusual behaviour of the system. 
 

   

   

   

 

 
Fig. 15. xu being the x-component of the displacement vector multiplied by 109 (with 
exception of the last figure in which the factor was 1010) as a function of y for different 
Poisson's ratios. Figures show the dependence on the whole edge and its details near to the 
upper-right corner. The numbers in the legend describe the values of N for the meshes. 
 

 
Fig. 16. The N-1 dependence of )N(c . The dotted line goes through the points 
corresponding to the two largest values of  N=2000,2800. 

 
5. Conclusions 

In this chapter, results of studies described in (Strek et al., 2008) and (Poźniak et al., 2010) 
have been reviewed and extended. By considering simple 2D and 3D examples, it has been 
shown that constrained auxetics can exhibit (locally) negative compliance. This unusual 
effect – material moving in the direction opposite to the force acting – is observed in 2D near 
the corners of the deformed square whereas in 3D it can be seen near the edges of the fixed 
walls of the box. In 2D case, the calculations performed prove that the maximum Poisson’s 
ratio for which such a behaviour is found is not less than -0.2. In 3D, the corresponding 
Poisson’s ratio is not less than -0.7.  
The obtained results do not contradict the closure presented in (Poźniak et al., 2010) that the 
critical Poisson’s ratio for which such a behaviour can be observed is zero, i.e. any auxetic 
material in 2D and 3D may show locally negative compliance. Work is in progress to prove 
that hypothesis. 
In 3D case the authors have determined the maximum deformation and the average 
deformation of the box for different shapes of the box and for different values of the 
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Poisson’s ratio. It has been found that for a given Poisson’s ratio the maximum deformation 
grows and the average deformation decreases with increasing height of the box. For a given 
box shape the maximum deformation increases with increasing Poisson’s ratio. 
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