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1. Introduction 

Language modeling is a crucial component in natural language continuous speech 
recognition, due to the difficulty involved by continuous speech [1], [2]. Language modeling 
attempts to capture regularities in natural language for the purpose of improving the 
recognition performance. Many studies have shown that the word error rate of automatic 
speech recognition (ASR) systems decreases significantly when using statistical language 
models [3], [4], [5]. The purpose of language models (LMs) is to compute the probability 

of a sequence of words . The probability can be expressed as: 

, where is the history or the context of word .

The probability becomes difficult to estimate as the number of words in increases. 
To overcome this problem, we can introduce equivalent classes on the histories in order 
to reduce their cardinality. The n-gram language models approximate the dependence of 
each word (regardless of i) to the n — 1 words preceding it: . The 

probability can then be expressed as: 

The n-gram approximation is based on the formal assumption that language is generated by 
a time-invariant Markov process [6]. 
Word n-gram LMs (mainly 2-gram and 3-gram LMs) are the most commonly used approach 
in language modeling. When enough data is available, word n-gram LMs have proved 
extremely useful in estimating the likelihood of frequently occurring n-grams, (w1, . . . wn). 
When using this approach, estimating the probability of low-frequency and unseen n-grams 
is still inherently difficult. The problem becomes more acute as the vocabulary size increases 
since the number of low-frequency and unseen n-grams events increases considerably. 
Automatic continuous speech recognition systems still make errors especially on unseen 
and rare events. Because of the Zipf's law [7], we will always expect unseen and rare events 
during recognition. Hence, the data sparseness constitutes a crucial point to take into 
account when building language models. 

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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Many approaches have been reported to overcome the probability estimation problem of 
low-frequency n-grams. One of them is the class n-gram language models [1], [8]. Using this 
approach, words are partitioned into equivalence classes, and the inter-word transition 
probability is assumed to depend only on the word classes. Class n-gram language models 
are more compact and generalize better on unseen n-grams compared to standard word-
based language models. Nevertheless, for large training corpora, word n-gram language 
models are still better than class-based language models in capturing collocational relations 
between words. 
A better approach is to build a language model that is general enough to better model 
unseen events, but specific enough to capture the ambiguous nature of words. Our solution 
is to hierarchically cluster the vocabulary words, building a word tree. The leaves represent 
individual words, while the nodes define clusters, or word classes: a node contains all the 
words of its descendant nodes. The closer a node is to the leaves, the more specific the 
corresponding class is. At the top of the tree, the root cluster contains all the words in the 
vocabulary. The tree is used to balance generalization ability and word specificity when 
estimating the probability of n-gram events. Then, we build a hierarchical n-gram language 
models that take benefit of the different information in every node of the tree to estimate the 
probability of a word given its context . This
approach allows us to take advantage of both the power of word n-grams for frequent 
events and the predictive power of class n-grams for unseen or rare events. 
One way to benefit from the word class hierarchy is to use the backoff hierarchical class n-
gram language models (HCLMs) that we introduced recently [9], [10], [11], [12]. The backoff 
hierarchical class n-gram language models estimate the probability of an unseen event using 
the most specific class of the tree that guarantees a minimum number of occurrences of this 
event, hence allowing accurate estimation of the probability. This approach is a 
generalization of the well known backoff word n-gram language modeling technique [13]. 
The backoff word n-gram language modeling technique estimates the probability of an 

unseen n-gram using a more general context, which is the (n-l)-gram .

However, when using the backoff hierarchical class n-gram language models, the 

probability of an unseen n-gram is computed according to a more specific context 
than the (n-l)-gram: we use the class of the most distant word followed by the other 

words: . The function F(x) represents the class (parent) of x within the 
hierarchical word tree, where x can be a class itself, or a single word, depending on its 
location in the class hierarchy. 
In this chapter we introduce a novel language modeling technique named linearly 
interpolated hierarchical n-gram language models. This approach combine the power of 
word n-grams for frequent events and the predictive power of class n-grams for unseen or 
rare events. It linearly interpolate different n-gram LMs each one of them is trained on one 
level of the class hierarchy. The model trained on the leaves level (level 0) is the standard 
word n-gram language models. Those language models trained on a level in the class 
hierarchy greater than 0 are in fact the class n-gram language models. The higher the 
number of levels in the class hierarchy is, the more compact and general the class n-gram
language models become. 
In the next section we briefly describe previously published related works. In section III we 
introduce the linearly interpolated hierarchical n-gram language models (LIHLMs). We 
study the properties and parameters defining this model to show how it leads to better 
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estimate the probability of n-gram events. Section IV describes the backoff hierarchical class 
n-gram language modeling approach (HCLMs). The goal is to compute its performance to 
the performance of LIHLMs reported in section III. Section V presents the technique we use 
in building the class hierarchy. Section VI reports the data we used for training and 
evaluation and section VII describes the conducted experiments where we confirm the 
effectiveness of our approach to estimate the likelihood of n-gram events. Section VIII 
concludes the chapter. 

2. Previous works 

The idea of using classes to estimate the probability of unseen events in a backoff word n-
gram model was proposed by several scientists [14], [15]. The basic principle of these 
approaches is to estimate the likelihood of unseen n-grams based on the class n-gram model 
and then, if needed, the (n-l)-grams. The originality of our approach is to use a hierarchical 
representation of the classes rather than an unstructured set of classes. 
L. Bahl et al. proposed a tree-based statistical language model [16] where a linear 
interpolation is used to smooth the relative frequency at each node of the tree. L. Bahl et al. 
use information theoretic measures to construct equivalence classes of the context to cope 
with data sparseness. Using the approach of L. Bahl et al., the likelihood of an n-grams (wi,... 
wn) is computed as the linear interpolation of several word class language models extracted 
from the word class tree. P. Heeman investigated a similar hierarchical language modeling 
approach where POS tags, word identities, and a decision tree technique are used to 
estimate the probability distribution allowing generalization between POS tags and words 
[17]. Their tree-building strategy is based on the approach of L. Bahl et al. [16], and uses 
Breiman's decision tree learning algorithm [18] to partition the context into equivalence 
classes. P. Heeman uses a binary tree where at each node the clustering algorithm find a 
question about the POS tags and left context word identities in order to partition the node 
into 2 leaves. The approaches proposed by L. Bahl et al. in [16] and P. Heeman in [17] have 
some similarity with the technique of LIHLMs we propose. The main difference between 
LIHLMs and the approaches proposed by L. Bahl et al. in [16] and P. Heeman in [17] is in the 
technique we use for the interpolation scheme, the way we select active nodes, and the 
approach we use to build the class hierarchy. Also, the LIHLMs don't use POS information. 
In 2003, one year after we introduced the hierarchical class n-gram approach [19], J. Bilmes 
and K. Kirchhoff published a hierarchical language model [20] where the likelihood of a 
word given its context is computed based on a vector of factors, instead of the word history. 
Factors may represent morphological classes, stems, etc. In the approach we propose, we do 
not use syntactic and morphological features. One advantage of our approach compared to 
those cited before is the use of a data-driven method to build the class hierarchy, which 
eliminate the costly decision tree build step. 
P. Dupont and R. Rosenfeld proposed a multi-dimensional lattice approach where the 
likelihood of a word given a history is estimated based on multi-dimensional hierarchies. 
The strength of their approach lies in its generality and in the dynamic selection of a small 
subset of predictor contexts. An interpolation between these predictor contexts is then used 
to estimate the likelihood of a word given a history. However, the selection of these 
predictor nodes is still an open problem, which makes their approach difficult to use in real 
ASR applications. As stated by P. Dupont and R. Rosenfeld in [21], the reported results are 
preliminary and are based on perplexity only. The HCLMs we proposed in [9] shares some 
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similarities with the two-dimensional lattice technique of P. Dupont and R. Rosenfeld [21], 
where the first dimension is the length of the history equivalence class and the second 
dimension is the position in a word class hierarchy. Compared to P. Dupont and R. 
Rosenfeld, HCLMs do not need to select a subset of predictor contexts. Instead, HCLMs use 
the backoff technique and the most specific class to balances generalization ability and word 
specificity when estimating the likelihood of a word given a history. This makes HCLMs 
less complex and easy to integrate in real-time ASR applications. 
Recently, another tree-based language modeling approach is proposed by P. Xu and F. 
Jelinek [22]. It explores the use of Random Forests in the structured language model, which 
uses rich syntactic information in predicting the next word based on words already seen. 
The goal is to construct Random Forests by randomly growing decision trees using syntactic 
information. Random Forests are a combination of decision tree classifiers originally 
developed for classification purposes. 

3. Linearly interpolated hierarchical n-gram language models 

The conditional probability of a word w given a history h, , is in general obtained by 

combining two components: a discounting model and a redistribution model. Discounting is 
related to the zero-frequency estimation problem [23]. The idea behind discounting is that a 
probability for all the words never observed after the history h must be estimated by 
discounting the n-gram relative frequency: 

(1)

where N(.) denotes the frequency of the argument in the training data. By definition N(h) = 0
implies . Discounting produces a discounted conditional frequency ,

such that: 

(2)

The zero-frequency probability  is then defined as follows: 

(3)

The zero-frequency probability  is redistributed among the set of words never 
observed in the context h. Redistribution of the probability  is performed 
proportionally to a more general distribution , where h’ denotes a more general 
context. 
Using the linear interpolation smoothing technique [24], [2], the conditional probability of a 
word w given a history h, , is estimated as follows: 

 (4) 

where the same scheme applies to the lower-order distribution . The  are such 
that 0 <  1 if N(h) > 0, and  = 1 otherwize. The interpolation parameter is 
estimated using the expectation maximization algorithm [25]. 
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When using classical linearly interpolated word n-gram models, typically the more general 
(n-l)-gram distribution is used to estimate the n-gram distribution. We recursively estimate 
the (n-k)-gram distribution using (n-k-l)-gram distribution until we reach the uniform 
distribution. Linear interpolation can be seen as a general smoothing approach that allows 
the combination of an arbitrary number of distribution or even language models. The most 
known and original version of the linear interpolated trigram (3-gram) language model [1] 
was not defined recursively as described in equation 4. It was presented as a linear 
combination of all order empirical distributions: 

 (5) 

where (i = 1, 2, 3, 4) and .

Hence, using a recursive representation, the classical linearly interpolated word n-gram
language models estimate the conditional probability of a word w given a history h, ,
according to the (n-l)-gram distribution: 

 (6) 

To better explore the power of word n-grams for frequent events and the predictive power 
of class n-grams for unseen or rare events, we propose the linearly interpolated hierarchical 
n-gram language models (LIHLMs). LIHLMs combine discounting and redistribution 
according to the linear interpolation smoothing technique [24], [2]. These models estimate 

the conditional probability of an n-gram , according to more general 

distribution extracted from the class hierarchy: we use the class of the most distant word 
followed by the other words: 

The function F(x) represents the class (parent) of x within the hierarchical word tree, where x
can be a class itself, or a single word, depending on its location in the tree (cf. Section V). Let 

denote the jth parent of word :

The probability  is estimated as follows: 

 (7) 
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where  is recursively estimated according to more general distribution 

by going up one level at a time in the hierarchical word clustering tree: 

(8)

As a result, the whole procedure provides a consistent way to compute the probability of 
any n-gram event by exploring the classes that are in the hierarchical word tree. If the parent 

of the class (respectively, the word ) is the class root, the context becomes the 

last (n-2) words, which is similar to the traditional linearly interpolated word n-gram
models as described in equation 6. 
Based on this definition, the linearly interpolated hierarchical n-gram approach is a 
generalization of the classical linearly interpolated word n-gram language models: word n-
gram language models can be seen as linearly interpolated hierarchical n-gram language 
models with a single level (leaves) in the hierarchical word tree. 

4. Backoff hierarchical class n-gram language models 

The backoff hierarchical class n-gram models are introduced in [9]. The goal of this section is 
to briefly describe this approach in order to compare its performance to the performance of 
the linearly interpolated hierarchical n-gram language models. 
When using the backoff hierarchical class n-gram models, the conditional probability of an 

unseen n-gram  is estimated according to a more specific context than the (n-l)-

gram We use as context the class of the most distant word followed 

by the other words: 

We remind that F(x) denotes the class (parent) of x within the hierarchical word tree. 

The probability  is estimated as follows: 



Linearly Interpolated Hierarchical N-gram Language Models for Speech Recognition Engines 307

(9)

where  as stated before denotes the jth parent of word wi, N(.) denotes the frequency of 

the argument in the training data and  is a normalizing constant guaranteeing 
that all probabilities sum to 1 [13]: 

 (10) 

The  in equation 9 is estimated as follows: 

 (11) 

where the term dN(.) denotes the Turing's discounting coefficient [13]. 

If the event  is not found in the training data (N ( ) = 0), we 

recursively use a more general context by going up one level at a time in the hierarchical 
word clustering tree. This context is obtained by taking the parent of the first class in the 
hierarchy, followed by the n — 2 last words: 

(12)

where the normalizing constant is computed as follows to guarantee that 

all probabilities sum to 1: 
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(13)

The procedure provides a consistent way to compute the probability of rare or unseen n-
grams by backing-off along the classes that are defined in the hierarchical word tree. If the 

parent of the class (respectively, the word ) is the class root, the context 

becomes the last n — 2 words, which is similar to the traditional back-off word n-gram 
model [13]. Word n-gram language models are the backoff hierarchical class n-gram 
language models with a single level in the hierarchical word tree. 

5. Hierarchical word clustering algorithm 

The hierarchical approaches we propose relies on the design of a classifier that allows 
finding a parent (class) for a word w. It is important to note that the two hierarchical n-gram
languages describes in the two previous sections are able to integrate any classification 
approach. A better classifier will lead to a more accurate hierarchical model. The Maximum 
Mutual Information (MMI) clustering algorithm proposed by P. Brown et al. in [26] and by 
F. Jelinek in [1] has been widely adopted. Using the MMI approach, the computation 
required to obtain a language model with C classes using a vocabulary of V words is in the 
order of V3. A greedy merge method is also used, based on the MMI theory, and requires an 
order of V2C operations. Several iterations of the algorithm can be performed to improve 
performance. However, when using large vocabularies, this becomes quickly intractable 
given the computational complexity [27]. On the other hand, the minimum discriminative 
information (MDI) clustering approach proposed by S. Bai et al. gives similar results as the 
MMI method, while dramatically reducing the computation [27], as it only involves 
computing less than V2 logarithms; for comparison results between MDI and MMI 
approaches, readers may refer to [27]. Consequently, in our approach we adopted the 
clustering technique of S. Bai et al., which is based on minimum discriminative information. 
The hierarchical word clustering algorithm proceeds in a top-down manner to cluster a 
vocabulary word set V, and is controlled by two parameters: (1) the maximum number of 
descendant nodes (clusters) C allowed at each node, (2) the minimum number of words K in
one class ). In our case, K is set to 2. Starting at the root node, which 
contains a single cluster representing the whole vocabulary, we compute the centroid oi , of 
the entire space (word set). An initial codebook is then built by assigning the C closest 
words to oi, into C clusters, which define the immediate child nodes of the root node [9]. The 
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process is continued recursively on each descendant node to grow the tree. The algorithm 
stops when a predefined number of levels (depth) is reached or when the number of 
proposed clusters for one node Oc is equal to 1 [10]. Each word in the vocabulary constitutes 
a leaf in the tree, words are clustered into classes, and classes are recursively clustered into 
more general sets of classes, until the root. At the top of the tree, the root node is a class 
containing all the words in the vocabulary. A summary of the minimum discriminative 
information methods is presented in the next section, followed by a detailed description of 
the word clustering algorithm. 
A. Minimum Discriminative Information 
The left and right contexts are used to cluster a word set, meaning that words occurring 
frequently in similar contexts should be assigned to the same class. The contextual 
information of a word w, pd {w}, is estimated by the probability of w given its d left and right 
neighboring words. Given a set of V words, in the case of d = 1, we have: 

 (14) 

The terms p1l{w} and p1r{w} denote respectively the left-bigram and right-bigram contextual 

information of word w, given a vocabulary of V words l:

 (15) 

and

 (16) 

The clustering algorithm is based on two principles: (1) words with similar contexts are 
merged into the same cluster; (2) a word cluster is built according to the cluster of its 
neighboring words (contextual information). The contextual information of word w, p{w}, is 
represented by the probability of w given its right and left context bigrams. The problem is 
then to define the similarity of two words in terms of their contextual information. To define 
the similarity of two words w1 and w2 in terms of their contextual information, we use the 
Kullback-Leibler distortion measure D(w1, w2} [6]:

 (17) 

which is also known as relative entropy. The objective of partitioning the vocabulary is to 
find a set of centroids {oc} for clusters {Oc}, c = 1, ... C that leads to the minimum global 
discriminative information: 
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 (18) 

The term B(w) is a constant independent of the partitioning. Hence, R(w) is maximized when 
the global discriminative information is minimized. Each cluster Oc is represented by a 
centroid oc. According to equation 14, p1{w} is defined as a vector of dimension 2 • V, whose 
first V components are based on the left-context bigrams, and last V components are based 
on the last V right-context bigrams. For simplicity, let us drop the left/right indices, and 
represent p1{w} as follows: 

 (19) 

Given equation 19, the centroid of the class Oc = {wi, i = 1 . . . vc} is estimated as follows [28], 
[29]:

where is approximated by [27]: 

(20)

B. Word Clustering Algorithm 
We present in this section how to classify a word set into C classes, under the constraint that 
at least K words should appear in each class Oc. Our approach is based on the K-means
clustering technique [30], [31], where we define centroids and distances specific to words. 
We start at the root note by computing the centroid oi, of the entire space (word set). An 
initial codebook is then built by assigning the C closest words to oi, into C clusters. The 
centroids of each cluster are then re-computed, and the process is iterated until the average 
distortion GDI converges. This process is then recursively applied. The pseudo-code of the 
algorithm is as follows: 

• step 1: start with an initial codebook; 

• step 2: for each wi, i = 1,... V,
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• find the closest class O to wi using Kullback-Leibler distortion measure and add wi

to it [19]. 

• step 3: update the codebook using the minimum distance or nearest neighbor rule [9], 
[28];

• step 4: if GDI > t then go to step 2 

• where t is an experimentally tuned threshold controlling the convergence of the 
process; the current set of clusters may leads to the minimum global discriminative 
information (cf. equation 18). 

• step 5: if then and go to 1, otherwise stop. 
Step 5 is necessary since it is used to control the number of words in a class: if there are too 
few words in a class (N(OC) < K), that class is merged with another one. In practice, only a 
few iterations of the algorithm are required to achieve fairly good results [27]. Since each 
word is characterized by the contextual statistical vector pd{w}, the centroid of each class is 
easily found using equation 20. The advantage of this algorithm is its simplicity in finding 
centroids; the cost of merging words or classes becomes less expensive. Once C classes have 
been defined, the algorithm is recursively applied within each class to grow the tree. 

6. Corpus 

Experiments are performed on the Wall Street Journal 94-96 text corpus. This database is 
divided into training, development and test sets. For language modeling purposes, the 
training set contains 56 million words, and the test set contains approximately 6 million 
words. A development set of 5 million words is also used to tune the different parameters of 
the model, including the depth of the clustering tree. Two vocabulary sizes are used: a first 
one containing 5,000 words (5K) and a second one including 20,000 words (20K). Note that 
the 5K vocabulary leads to about 2% of out-of-vocabulary words on the test data, and in that 
regard differs substantially from the official WSJ 5K lexicon that was designed for a closed-
set evaluation (no OOV words). The 20K vocabulary has a 1.1% out-of-vocabulary rate on 
the test data. In our experiments, we use open vocabulary where the unknown word is part 
of the model [1]. 

7. Experiments 

Our objective is to show that the use of word class hierarchy in language modeling better 
handle the likelihood estimation of n-gram events. We show in this section the performance 
of linearly interpolated hierarchical n-gram language models as well as the performance of 
the backoff hierarchical class n-gram language models. We compare the performance of 
these two techniques to the performance of commonly used methods such as the linearly 
interpolated n-gram language models (LILMs) and the backoff n-gram language models. 
Performance is evaluated in terms of test perplexity and word error rate (WER) using Bell 
Labs' speech recognizer [32]. Both HCLMs and the backoff word n-gram LMs use the 
backing-off smoothing technique to estimate the likelihood of unseen events [13]. Also, both 
LIHLMs and LILMs combine discounting and redistribution according to the linear 
interpolation smoothing technique [24], [2]. 
As a reminder, HCLMs and LIHLMs with a number of levels in the class hierarchy equal to 
0 are in fact the classical backoff word n-gram LMs and LILMs respectively. Hence, we 
believe that it is fair to consider both backoff word n-gram LMs and LILMs as baselines for 
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comparison purpose. We also report in this section comparison results with word class n-
gram (n-class) LMs as well as a linear interpolation between word n-gram and n-class LMs 
[1]. In addition, we investigate how the number of levels defined in the class hierarchy 
impacts the performance of our approach. 
A. Perplexity Experiments 
Perplexity is typically used to measure the performance of language models. It is therefore 
interesting to look at the perplexity obtained by the two hierarchical n-gram models for 
different number of levels in the hierarchy. The number of levels in the hierarchy L
represents the depth of the word class tree. The maximum number of direct descendant of a 
class is fixed to C = 6 (cf. section 5). Experiments carried out with different values of C led to 
similar results [9]. The maximum number of classes generated when building the class tree is 

: e.g., for a word class tree of two levels, the root node is split into a maximum of C

classes and each class is split into C other classes, leading to a maximum of C2 clusters at the 
second level. This number is optimized at each level of the hierarchy by the classification 
algorithm in order to converge to an optimum (cf. section 5-B). 

Figure 1. Trigram and bigram test perplexity on WSJ using 5K vocabulary with different 
number of levels in the class hierarchy 

Figure 1 presents the performance of LIHLMs, HCLMs, LILMs and backoff word n-gram 
LMs when the 5K vocabulary is used. We remind that LILMs and backoff word n-gram LMs 
are respectively the LIHLMs and HCLMs with a number of levels in the class hierarchy 
equal to 0. Experimental results show that we do not need a large number of levels in the 
class hierarchy to improve upon the baseline: three or four levels are enough to achieve a 
good performance compare to baseline models. When using the 5K vocabulary, trigram 
LIHLM improves the baseline backoff word trigram language model by 10% (63.0 vs. 69.1). 
However, a very slight improvement of 3% in terms of perplexity is obtained by the trigram 
LIHLM when compared to trigram HCLM (63.0 vs. 64.6). A similar behavior is obtained for 
bigram events: a 6% improvement of the test perplexity on the whole test set is observed 
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(97.2 for bigram LIHLM vs. 103.0 for backoff word bigram model). A very small 
improvement of 3% is also obtained by the bigram LIHLM when compared to bigram 
HCLM (97.2 vs. 100.3). 
Performance in terms of perplexity when using the 20K vocabulary is presented in Figure 2. 
Results in Figure 2 again show the effectiveness of the LIHLMs in improving the perplexity 
value of the backoff word n-gram LMs: 7% improvement for bigrams (202.8 vs. 216.7) and 
10% improvement for trigrams (127.5 vs. 140.8). The LIHLMs also effectively improves the 
performance of HCLMs by 4% for both bigrams (202.8 vs. 210.6) and trigrams (127.5 vs. 
132.2).

Figure 2. Trigram and bigram test perplexity on WSJ using 20K vocabulary with different 
number of levels in the class hierarchy 

For both the 5K and 20K vocabularies, we notice that backoff word n-gram LMs are doing 
slightly better that classic linearly interpolated LMs. We believe that the difference is 
statistically insignificant, which will not allow us to draw any conclusion. Another 
important point to mention is that in both the 5K and 20K vocabularies, the perplexity value 
of the HCLMs decreased for the first three levels in the class hierarchy and then it starts to 
increase. This observation is not true for the LIHLMs, where the perplexity value achieves 
its optimum with four levels in the class hierarchy and doesn't increase afterward. One may 
conclude that, compared to HCLMs, LIHLMs are less sensitive to the depth of the tree 
(number of levels in the class hierarchy). 
Results reported in Figure 1 and Figure 2 are computed on the test data. We observed the 
same behavior on the development set: with (C = 6, the best performance in terms of 
perplexity on the entire development set is obtained with a maximum level in the class 
hierarchy set to L = 3. On 20K vocabulary, trigram perplexity of HCLMs decreased from 
142.4 for L = 0 (i.e., baseline backoff word n-gram LMs) to 134.6 for L = 3 and then it starts to 
increase. The same behavior is observed on the 5K vocabulary: trigram perplexity of 
HCLMs decreased from 71.0 for L = 0 to 66.7 for L = 3 and then starts to increase. 
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B. Comparison with Word Class n-gram Language Models 
As stated in the introduction, one of the approaches that can overcome the probability 
estimation problem of unseen n-grams event is the class n-gram language models [1], [8]. 
For sparse data, class n-gram language models usually generalize better on unseen n-grams 
than standard word-based language models. Nevertheless, for large training corpus, word 
n-gram LMs are still better in capturing collocational relations between words. To confirm 
this point, we built word class n-gram (n-class) LMs and compared their performance to the 
baseline n-gram models as well as the hierarchical approaches. We also investigate a 
comparison results with linear interpolation of word n-gram and n-class LMs. In the backoff 
n-class models, the conditional probability of the n-gram , is

estimated as follows: 

(21)

where the function F(x) represents the class of x. As stated by J. Goodman in [33], equation 
21 showed to give stronger class model than estimating the conditional probability as 
follows: 

 (22) 

Notice that the hierarchical class n-gram LMs is able to integrate any classification approach 
for building the class hierarchy. In order to make a fair comparison between the proposed 
hierarchical approach and the backoff n-class LMs, we should use the same classification 
technique. Hence, to build the class set, we use the MDI approach (cf. section 5-B) that 
assigns each word to a unique class. We initialize the MDI classifier with a maximum 
number of classes equal to 1200 assuming that one class should contains at least 5 words. 
We present in table I, the perplexity values obtained by the different LMs on the entire test 
set. The hierarchical approach uses a maximum number of direct descendant of a class fixed 
to C = 6 and a number of levels in the hierarchy set to L = 3; both values are tuned on the 
development set (cf. section 7- A). 

5K-WSJ 20K-WSJ

Bigram LMs 

Class 115.2 228.9
Word (Baseline) 103.0 216.7
LI (Word + Class) 102.2 215.8

HCLM 100.3 210.6
LIHLM 97.2 202.8
Trigram LMs 

Class 76.5 154.0
Word (Baseline) 69.1 140.8
LI (Word + Class) 68.2 138.6

HCLM 64.6 132.2
LIHLM 63.0 127.5

Table 1. Perplexity on WSJ of world class n-gram LMs (class), word n-gram LMs (word), 
linear interpolation of word n-gram and n-class LMS (LI), hierarchical class n-gram LMS 
(HCLM), and linearly interpolated hierarchical n-gram LMs (LIHLM) 
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As expected, the perplexity of the baseline word n-gram LMs is better than the class word n-
gram LMs: 216.7 vs. 228.9 for the bigram model and 140.8 vs. 154.0 for the trigram model 
with the 20K vocabulary (similar behavior was observed with the 5K vocabulary). Also, 
compared to the baseline word n-gram LMs, we notice that a linear interpolation of word n-
gram LMs and n-class LMs doesn't led to a considerable improvement (215.8 vs. 216.7 for 
bigram and 138.6 vs. 140.8 for trigram on 20K vocabulary). On both bigram and trigram, 
results show that the proposed hierarchical LMs outperform the other approaches. 

C. Speech Recognition Experiments 
For ASR experiments, the word error rate (WER) on the 5K WSJ has been evaluated on the 
330 sentences of the si_et_05 evaluation set. The 333 sentences of the si_et_20 evaluation set 
were used for the 20K ASR experiment. We used tied-state triphone acoustic models built on 
the WSJ SI-84 database. The speech recognition experiments were performed using the Bell 
Labs ASR system [32]. The ASR system is based on a Viterbi algorithm, where at each node 
in the search the acoustic score is interpolated with the language modeling score. Hence, we 
do not need to modify the decoder structure in order to integrate LIHLMs and HCLMs: we 
only replaced the language modeling score, initially estimated using the trigram language 
model, with the score estimated using LIHLMs and HCLMs respectively. Once the language 
model is integrated to the ASR system, the pruning parameters are re-computed to boost its 
accuracy. We gave equivalent setting to the pruning parameters to make sure that the 
decoder search doesn't favor one model over another. 
Recall that the 5K vocabulary differs from the official WSJ 5K lexicon which was designed 
for a closed-set evaluation. Results presented in Table II show that there is no significant 
improvement in performance between the baseline backoff bigram model, bigram HCLM, 
and bigram LIHLM. These results can be explained by the small number of unseen bigrams 
in this experimental setup and therefore the lack of room for any significant improvement: 
unseen bigrams constitute 4% and 8% of the total bigrams for the 5K and 20K vocabularies
respectively. However, when the trigram model is used, the number of unseen events 
increases to 27% for the 5K vocabulary and to 34% for the 20K vocabulary, leading to 12% 
and 10% reduction of the WER, respectively. We also note that HCLMs and LIHLMs have 
the same ASR performance. Compared to the recognizer using linear interpolation between 
word and class trigram model, the use of hierarchical approaches improves performance by 
6% (11.1% vs. 12.0%) and by 8% (6.7% vs. 7.3%) relative for WSJ-20K and WSJ-5K 
respectively.

5K 20K

bigram trigram bigram trigram

Baseline 
LI (word + class) 
HCLM
LIHLM 

9.3%
9.2%
9.0%
9.0%

7.6%
7.3%
6.7%
6.7%

14.2%
14.1%
13.9%
13.8%

12.4%
12.0%
11.2%
11.1%

Table 2. WER on 5K and 20K vocabularies using word n-gram (baseline), linear interpolation 
between word and class n-gram (LI), hierarchical class n-gram (HCLM), and linearly 
interpolated hierarchical n-gram LMS (LIHLM) respectively 

We think that the effectiveness of our approach may also depend on the quality of the 
acoustic model and the domain on which the recognizer is employed. For instance, if the 
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language model has very low perplexity on unseen events and if the acoustic model is able 
to well discriminate words under these unseen context, then a big portion of the errors 
made by the recognizer are more likely to be accumulated on frequent context. The opposite 
is also true: if the language model has low perplexity on frequent events and the acoustic 
model is able to discriminate words under these frequent events, then errors are more likely 
to be accumulated on low acoustic certainty. Hence, similarly to [9], [10], we would like to 
raise the fact that we may not need to improve the perplexity on the whole data in order to 
reduce the word error rate of ASR systems. It may be sufficient to reduce the perplexity of 
unseen events rather than the frequently seen events, since ASR systems are more sensitive 
to unseen events. 

8. Conclusion 

We have investigated a new language modeling approach called linearly interpolated n-
gram language models. We showed in this chapter the effectiveness of this approach to 
estimate the likelihood of n-gram events: the linearly interpolated n-gram language models 
outperform the performance of both linearly interpolated n-gram language models and 
backoff n-gram language models in terms of perplexity and also in terms word error rate 
when intergrated into a speech recognizer engine. Compared to traditional backoff and 
linearly interpolated LMs, the originality of this approach is in the use of a class hierarchy 
that leads to a better estimation of the likelihood of n-gram events. Experiments on the WSJ 
database show that the linearly interpolated n-gram language models improve the test 
perplexity over the standard language modeling approaches: 7% improvement when 
estimating the likelihood of bigram events, and 10% improvement when estimating the 
likelihood of trigram events. 
Speech recognition results show to be sensitive to the number of unseen events: up to 12% 
reduction of the WER is obtained when using the linearly interpolated hierarchical 
approach, due to the large number of unseen events in the ASR test set. The magnitude of 
the WER reduction is larger than what we would have expected given the observed 
reduction of the language model perplexity; this leads us to an interesting assumption that 
the reduction of unseen event perplexity is more effective for improving ASR accuracy than 
the perplexity associated with seen events. The probability model for frequently seen events 
may already be appropriate for the ASR system so that improving the likelihood of such 
events does not correct any additional ASR errors (although the total perplexity may 
decrease.) Thus, it may be that similar reductions of the perplexity are not equivalent in 
terms of WER improvement. The improvement in word accuracy also depends on the errors 
the recognizer makes: if the acoustic model alone is able to discriminate words under 
unseen linguistic contexts, then improving the LM probability for those events may not 
improve the overall WER. 
Compared to hierarchical class n-gram LMs, we observed that the new hierarchical 
approach is not sensitive to the depth of the hierarchy. As future work, we may explore this 
approach with a more accurate technique in building the class word hierarchy. 
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