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1. Introduction     

In choosing an antenna topology for ultra wideband (UWB) design, several factors must be 
taken into account including physical profile, compatibility, impedance bandwidth, 
radiation efficiency, and radiation pattern. The main challenge in UWB antenna design is 
achieving the very broad bandwidth with high radiation efficiency and small in size. 
Accordingly, many techniques to broaden the impedance bandwidth of small antennas and 
to optimize the characteristics of broadband antennas have been widely investigated in 
many published papers as listed in references. Some examples of the techniques used to 
improve the impedance bandwidth of the planar monopole antenna include the use of 
beveling technique (Z.N. Chen(a) et al., 2006), (Giuseppe R. & Max J. Ammann, 2006), (M.C. 
Fabres(a) et al.,2005),  semi-circular base (X.N. Qiu et al., 2005), cutting notches at bottom 
(Seok H. Choi, et al., 2004), (H. Ghannoum et al., 2006), an offset feeding (Z.N. Chen(a) et al., 
2006), (Giuseppe R. & Max J. Ammann, 2006), (M. J. Ammann & Z. N. Chen, 2004), a 
shorting pin (Z.N. Chen(a) et al., 2006), (E. Lee et al., 1999), and a dual/triple feed (Z.N. 
Chen(a) et al., 2006), (S. Boris et al., 2005), (K.L. Wong et al., 2005), (H. Ghannoum et al., 
2006), (E. Antonio-Daviu et al., 2003), magnetic coupling (N. Behdad & K. Sarabandi, 2005), 
folded-plate (D. Valderas et al.,2006), (Z.N. Chen et al., 2003), hidden stripline feed (E. 
Gueguen et al., 2005). The radiators may be slotted to improve the impedance matching, 
especially at higher frequency (Z.N. Chen(a) et al., 2006), (Z.N. Chen(b) et al., 2006). Planar 
monopole antennas are good candidates owing to their wide impedance bandwidth, omni-
directional radiation pattern, compact and simple structure, low cost and ease of 
construction. Further detail on various bandwidth enhancement techniques will be 
discussed in section 2.  

 
2. Various Bandwidth Enhancements 

In order to fulfill the UWB antenna requirements, various bandwidth enhancement 
techniques for planar monopole antennas have been developed during last two decades. 
The recent trends in improving the impedance bandwidth of small antennas can be broadly 
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divided into the following categories (T. Huynh & K. F. Lee, 1995), (Z.N. Chen(a) et al., 2006), 
(L. Jianxin, 2006), the first category is the leading of all categories in numbers and varieties. 
By varying the physical dimensions of the antenna, the frequency and bandwidth 
characteristics of the resulting UWB pulse could be adjusted (R. J. Fontana, 2004). 

 
2.1 Various Geometry and Perturbations 
Planar monopoles with a huge number of different geometries have been numerically 
characterized (Z.N. Chen(a) et al.,2006). Many techniques to broaden the impedance 
bandwidth of planar monopole antennas and to optimize the characteristics of these 
antennas have been widely investigated. Among all these techniques, the beveling 
technique was reported to yield maximum bandwidth. Various geometries and 
perturbations are used to introduce multiple resonances as well as input impedance 
matching. The input impedance is also extremely dependent on the feeding gap 
configuration (M.C. Fabres(b) et al., 2005). An example of beveling technique most currently 
used in literature review is shown in Figure 1. 

 

 
Fig. 1. An example of beveling technique 
 
Beveling the bottom edge of the radiating element has been demonstrated to shift upward 
significantly the upper edge frequency when properly designed (Giuseppe R. & Max J. 
Ammann, 2006), (Z.N. Chen(b) et al.,2006), (M. J. Ammann & Z. N. Chen, 2003), (M. J. 
Ammann, 2001). The optimization of the shape of the planar antenna especially the shape of 
the bottom portion of the antenna, improve the impedance bandwidth by achieving smooth 
impedance transition (Z.N. Chen(a) et al., 2006). In fact, this part of the radiator results to be 
very critical for governing the capacitive coupling with the ground plane.  Any reshaping of 
this area strongly affects the current path (Giuseppe R. & Max J. Ammann, 2006). The 
election and beveling angle is critical, as it determines the matching of the mode.  
The patch radiator may be slotted to improve the impedance matching, especially at higher 
frequency. The slots cut from the radiators change the current distribution at the radiators so 
that the impedance at the input point and current path change (Z.N. Chen(a)et al., 2006). A 
notch is cut from radiator to reduce the size of the planar antenna (Z.N. Chen(b) et al., 2006). 
Adding a strip asymmetrically at the top of the radiator can also reduce the height of the 
antenna and improve impedance matching (A. Chai et al., 2005). An offset feeding point has 
been used in order to excite more modes and consequently improving the impedance 
bandwidth (M. J. Ammann & Z. N. Chen, 2004). By optimizing the location of the feed point, 

 

the impedance bandwidth of the antenna will be further widened because the input 
impedance is varied with the location of the feed point.  
Moreover, other strategies to improve the impedance bandwidth which do not involve a 
modification of the geometry of the planar antenna have been investigated. Basically, these 
strategies consist of adding a shorting post to the structure or using two feeding points to 
excite the antenna (M.C. Fabres(b) et al., 2005). A shorting pin is also used to reduce the 
height of the antenna (E. Lee et al.,1999). In (Giuseppe R. & Max J. Ammann, 2006), the 
shorting pin inserted to the antenna that provides a broad bandwidth has been investigated. 
A dual feed structure greatly enhanced the bandwidth particularly at higher frequencies (E. 
Antonio-Daviu et al., 2003). By means of electromagnetic coupling (EMC) between the 
radiator and feeding strip, good impedance matching can be achieved over a broad 
bandwidth (Z.N. Chen(b) et al., 2003).  
The use of double feeding configuration to the antenna structure is to enforce the vertical 
current mode, whereas it prevents other modes such as horizontal and asymmetrical current 
modes from being excited, which degrade the polarization properties and the impedance 
bandwidth performance of the antenna (H. Ghannoum et al., 2006 ), (Christophe Roblin et 
al., 2004), (E. Antonino-Daviu et al., 2003), (Eva Antonino et al., 2004). The double feeding 
gives a significant improvement of the vertical current distribution resulting in better 
matching notably over the upper-band part (S. Boris et al., 2005). The matching of this upper 
frequency band is mainly governed by two parameters: the distance between the two 
monopole ports and the height between the monopole and the ground plane (H. Ghannoum 
et al., 2006). In (E. Antonino-Daviu et al., 2003), a square monopole antenna with a double 
feed has been proposed. This feed configuration has shown the improvement on radiation 
pattern and impedance bandwidth. This is due to a pure and intense vertical current 
distribution generated in the whole structure. 
The hidden feed-line technique on printed circular dipole antenna has been investigated in 
(E. Gueguen et al., 2005). The specific feeding has shown remove any radiation pattern 
disturbance generally met with this kind of antenna when fed with a coaxial or a microstrip 
line. It was also shown a wide frequency bandwidth.  
Due to the radiation from planar antenna may not be omni-directional at all operating 
frequencies because they are not structurally rotationally symmetrical. Roll monopoles is a 
choice to feature broad impedance bandwidth with omni-directional characteristics (Z.N. 
Chen(a) et al., 2003). With the roll structure, the antenna becomes more compact and 
rotationally symmetrical in the horizontal plane. However, the roll monopoles are not easy 
to fabricate with high accuracy (Z.N. Chen(a) et al., 2006). The folded antenna was also 
presented in (Daniel Valderas et al., 2006) in order to improve radiation pattern maintaining 
the broadband behavior. In (Daniel Valderas et al., 2006), the antenna was analyzed 
employing transmission line model (TLM).  
In (A.A. Eldek, 2006), various combinations of bandwidth enhancement techniques was 
successfully applied in UWB antenna design such as adding slit in one side of the monopole, 
tapered transition between the monopole and the feed line, and adding notched ground 
plane.  
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divided into the following categories (T. Huynh & K. F. Lee, 1995), (Z.N. Chen(a) et al., 2006), 
(L. Jianxin, 2006), the first category is the leading of all categories in numbers and varieties. 
By varying the physical dimensions of the antenna, the frequency and bandwidth 
characteristics of the resulting UWB pulse could be adjusted (R. J. Fontana, 2004). 

 
2.1 Various Geometry and Perturbations 
Planar monopoles with a huge number of different geometries have been numerically 
characterized (Z.N. Chen(a) et al.,2006). Many techniques to broaden the impedance 
bandwidth of planar monopole antennas and to optimize the characteristics of these 
antennas have been widely investigated. Among all these techniques, the beveling 
technique was reported to yield maximum bandwidth. Various geometries and 
perturbations are used to introduce multiple resonances as well as input impedance 
matching. The input impedance is also extremely dependent on the feeding gap 
configuration (M.C. Fabres(b) et al., 2005). An example of beveling technique most currently 
used in literature review is shown in Figure 1. 

 

 
Fig. 1. An example of beveling technique 
 
Beveling the bottom edge of the radiating element has been demonstrated to shift upward 
significantly the upper edge frequency when properly designed (Giuseppe R. & Max J. 
Ammann, 2006), (Z.N. Chen(b) et al.,2006), (M. J. Ammann & Z. N. Chen, 2003), (M. J. 
Ammann, 2001). The optimization of the shape of the planar antenna especially the shape of 
the bottom portion of the antenna, improve the impedance bandwidth by achieving smooth 
impedance transition (Z.N. Chen(a) et al., 2006). In fact, this part of the radiator results to be 
very critical for governing the capacitive coupling with the ground plane.  Any reshaping of 
this area strongly affects the current path (Giuseppe R. & Max J. Ammann, 2006). The 
election and beveling angle is critical, as it determines the matching of the mode.  
The patch radiator may be slotted to improve the impedance matching, especially at higher 
frequency. The slots cut from the radiators change the current distribution at the radiators so 
that the impedance at the input point and current path change (Z.N. Chen(a)et al., 2006). A 
notch is cut from radiator to reduce the size of the planar antenna (Z.N. Chen(b) et al., 2006). 
Adding a strip asymmetrically at the top of the radiator can also reduce the height of the 
antenna and improve impedance matching (A. Chai et al., 2005). An offset feeding point has 
been used in order to excite more modes and consequently improving the impedance 
bandwidth (M. J. Ammann & Z. N. Chen, 2004). By optimizing the location of the feed point, 
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radiator and feeding strip, good impedance matching can be achieved over a broad 
bandwidth (Z.N. Chen(b) et al., 2003).  
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current mode, whereas it prevents other modes such as horizontal and asymmetrical current 
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monopole ports and the height between the monopole and the ground plane (H. Ghannoum 
et al., 2006). In (E. Antonino-Daviu et al., 2003), a square monopole antenna with a double 
feed has been proposed. This feed configuration has shown the improvement on radiation 
pattern and impedance bandwidth. This is due to a pure and intense vertical current 
distribution generated in the whole structure. 
The hidden feed-line technique on printed circular dipole antenna has been investigated in 
(E. Gueguen et al., 2005). The specific feeding has shown remove any radiation pattern 
disturbance generally met with this kind of antenna when fed with a coaxial or a microstrip 
line. It was also shown a wide frequency bandwidth.  
Due to the radiation from planar antenna may not be omni-directional at all operating 
frequencies because they are not structurally rotationally symmetrical. Roll monopoles is a 
choice to feature broad impedance bandwidth with omni-directional characteristics (Z.N. 
Chen(a) et al., 2003). With the roll structure, the antenna becomes more compact and 
rotationally symmetrical in the horizontal plane. However, the roll monopoles are not easy 
to fabricate with high accuracy (Z.N. Chen(a) et al., 2006). The folded antenna was also 
presented in (Daniel Valderas et al., 2006) in order to improve radiation pattern maintaining 
the broadband behavior. In (Daniel Valderas et al., 2006), the antenna was analyzed 
employing transmission line model (TLM).  
In (A.A. Eldek, 2006), various combinations of bandwidth enhancement techniques was 
successfully applied in UWB antenna design such as adding slit in one side of the monopole, 
tapered transition between the monopole and the feed line, and adding notched ground 
plane.  
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2.2 Genetic Algorithm (GA) 
Optimization of patch geometry is an ideal technique to have single or more optimized 
figures of merit like, impedance bandwidth.  The GA has been successfully applied by a 
number of researchers to improve the impedance bandwidth (Z.N. Chen et al., 2004), (A. J. 
Kerkhoff, 2001), (R. Holtzman et al., 2001), (A. J. Kerkhoff et al., 2004), (S. Xiao et al., 2003), 
(H. Choo & H. Ling, 2003).  The optimized shape however is too much irregular and 
unconventional and this can only be fabricated using the pattern produced in true scale by 
the GA code.  
Electromagnetic optimization problems generally involve a large number of parameters. 
The parameters can be either continuous, discrete, or both, and often include constraints in 
allowable values.  The goal of the optimization is to find a solution that represents a global 
maximum or minimum.  For example, the application of GA optimization is used to solve 
the problem of design a broadband patch antenna (Z.N. Chen et al., 2004).  Parameters that 
are usually included in this type of optimization problem include the location of the feed 
probe, the width and length of the patch, and the height of the patch above the ground 
plane. In addition, it may be desirable to include constraints on the available dielectric 
materials, both in terms of thickness and dielectric constants; tolerance limits on the patch 
size and probe location; constraints on the weight of the final design; and possibly even cost 
constraints for the final production model.  Given the large number of parameters, and the 
unavoidable mixture of discrete and continuous parameters involved in this problem, it is 
virtually impossible to use traditional optimization methods. GA optimizers, on the other 
hand, can readily handle such a disparate set of optimization parameters (Z.N. Chen et al., 
2004).  
The use of the GA approach in the design of UWB antennas has been proposed in (A. J. 
Kerkhoff, 2001), (R. Holtzman et al., 2001). The planar fully-metal monopole (PFMM) of bow 
tie (BT) and reverse bow tie (RBT) have been demonstrated in (A. J. Kerkhoff, 2001), (A. J. 
Kerkhoff et al., 2004) have an ultra wide bandwidth. The element height, the feed height, 
and the element flare angle were the parameters that used in optimization. The height 
essentially determines the operating mode and the lower frequency limit of the antenna, 
while the flare angle and the feed height control the variation of the input impedance over 
frequency, the high frequency impedance value, as well as the resonance bandwidth (A. J. 
Kerkhoff, 2001). In this paper, the GA was used to determine the optimal dimensions of the 
selected element shape in order to fulfill the given bandwidth requirement. As a result, the 
RBT antenna can achieve a much wider impedance bandwidth than the BT with 
significantly reduced sizes. 
In (R. Holtzman et al., 2001), the semi-conical UWB antenna was optimized by using the 
Green’s Function Method (GFM) Absorbing Boundary Condition (ABC) with GA. The goal 
of this optimization is to have significant reduction in the size of the white space, due to the 
unique capability of the GFM to model arbitrarily shaped boundaries in close proximity to 
the antenna. The white space is defined as the region between the antenna and the 
absorbing boundary.  
The GA optimizer is also used to reconfigure the radiation characteristics of antenna over an 
extremely wide-band (S. Xiao et al., 2003). The design results indicate that the antenna can 
obtain the required goals over an ultra-wide band through reconfiguring the states of the 
switch array installed in shared aperture when it operates with the higher order modes (S. 

 

Xiao et al., 2003). Optimization of broadband and dual-band microstrip antennas on a high-
dielectric substrate by using GA was also proposed in (H. Choo & H. Ling, 2003).  

 
2.3 Resonance Overlapping  
Normally, the bandwidth of a resonant antenna is not very broad because it has only one 
resonance. But if there are two or more resonant parts available with each one operating at 
its own resonance, the overlapping of these multiple resonances may lead to multi-band or 
broadband performance. 
Theoretically, an ultra wide bandwidth can be obtained if there are a sufficient number of 
resonant parts and their resonances can overlap each other well. However, in practice, it is 
more difficult to achieve impedance matching over the entire frequency range when there 
are more resonant parts. Also, it will make the antenna structure more complicated and 
more expensive to fabricate. Besides, it is more difficult to achieve constant radiation 
properties since there are more different radiating elements. 

 
3. Slotted UWB Antenna Design and Development 

From various bandwidth enhancement techniques, there are three techniques adopted for 
this proposed UWB antennas design. The three techniques are the use of slots, truncation 
ground plane, and cutting notches at the bottom which can lead to a good impedance 
bandwidth. By selecting these parameters, the proposed antenna can be tuned to operate in 
UWB frequency range. The performance optimization is done by studying their current 
distribution. The photograph and current distribution behavior of proposed slotted UWB 
antenna is shown in Figure 2. 

 

   
                                                     (a)                                               (b)                                                                  
Fig. 2. (a) Photograph, (b) current distribution with slot 

 
The geometry of antenna originates from conventional rectangular monopole and is realized 
by adding T slot for both patch and feeding strip. This geometry is taken as initial geometry 
due to the flexibility of this geometry to be modified. The T slot cutting on patch and feeding 
strip has disturbed the current direction thus provide a broad bandwidth. This is due to the 
geometry of an antenna implies the current courses, as shown in Figure 2(b), and make it 
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Figure 6 shows the simulated return loss for both antennas with and without two notches 
cutting at the bottom edges. Figure 6 shows that the return loss performance of antenna 
without two notches at the bottom starts degrading its performance at 7.5 GHz, this is due 
to more horizontal current mode occurs in the whole structure which degrade the 
polarization properties and the impedance bandwidth performance of the antenna, as 
shown in Figure 5. In order to modify the equivalent characteristic impedance on the 
antenna, the distance of the bottom edge to the ground plane and the bottom profile of the 
monopole should be varied. By varying the edges closed to the feeding point means 
modifying the current path on the antenna. 
 The simulated input impedance for antenna with one notch, two notches, and three notches 
cutting at the bottom edges are also performed and shown in Figure 7. It shows that the loops 
around matching impedance (50 ohm), which is located at the centre of smith chart. It also 
shows that the one step and three steps notches cutting at the bottom give more capacitive to 
the antenna than the two steps notches especially at higher frequency ranges. The ground 
plane as an impedance matching circuit and also it tunes the resonant frequencies. 
 

 
Fig. 7. Simulated input impedance for various notches 
 
Figure 8 shows the simulated current distribution of the proposed antenna at three different 
frequencies. It shows that the current density decreasing by increasing the frequency. Most 
vertical electrical current is distributed near to T slot edges rather than distributed on the 
antenna surface. 
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cutting at the bottom edges. Figure 6 shows that the return loss performance of antenna 
without two notches at the bottom starts degrading its performance at 7.5 GHz, this is due 
to more horizontal current mode occurs in the whole structure which degrade the 
polarization properties and the impedance bandwidth performance of the antenna, as 
shown in Figure 5. In order to modify the equivalent characteristic impedance on the 
antenna, the distance of the bottom edge to the ground plane and the bottom profile of the 
monopole should be varied. By varying the edges closed to the feeding point means 
modifying the current path on the antenna. 
 The simulated input impedance for antenna with one notch, two notches, and three notches 
cutting at the bottom edges are also performed and shown in Figure 7. It shows that the loops 
around matching impedance (50 ohm), which is located at the centre of smith chart. It also 
shows that the one step and three steps notches cutting at the bottom give more capacitive to 
the antenna than the two steps notches especially at higher frequency ranges. The ground 
plane as an impedance matching circuit and also it tunes the resonant frequencies. 
 

 
Fig. 7. Simulated input impedance for various notches 
 
Figure 8 shows the simulated current distribution of the proposed antenna at three different 
frequencies. It shows that the current density decreasing by increasing the frequency. Most 
vertical electrical current is distributed near to T slot edges rather than distributed on the 
antenna surface. 
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                   (a)                                                    (b)                                                 (c)  
Fig. 8. Simulated current distribution at (a) 3GHz, (b) 6.5 GHz, (c) 10.5 GHz 

 
To validate the simulation results, an antenna prototype was fabricated and tested. In this 
prototype, measurements are done by using a coaxial port which is soldered at the bottom 
edge of microstrip line. However, some differences in the simulated and measured results 
are expected, since in the simulation model discrete and not coaxial port is used. In reality 
the coaxial cable has a considerable effect, especially the length of its inner conductor, which 
is connected to the input of the antenna, creating an additional inductance. 
The simulated and measured return losses are plotted in Figure 9. The resonance 
frequencies are shifted from the simulated result but they are still covering the UWB 
bandwidth requirement. The return loss curves of frequency ranges above 10.5 GHz are 
getting worst. In addition, since the antenna is fed by microstrip line, misalignment can 
result because etching is required on both sides of the dielectric substrate. The alignment 
eroror results degradation to the antenna performance.  

 
Fig. 9. The simulated and measured return loss 
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the coaxial cable has a considerable effect, especially the length of its inner conductor, which 
is connected to the input of the antenna, creating an additional inductance. 
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                             (a)                                            (b)                                               (c) 
Fig. 11. Measured Radiation Pattern at (a) 4GHz, (b) 5.8GHz, (c)10.6 GHz 
 
The elevation patterns for the antennas are simulated at the H-plane (φ = 00, yz-plane) and 
E-plane (φ = 900, xy-plane).  The E-plane pattern is the radiation pattern measured in a plane 
containing feed, and the H-plane pattern is the radiation pattern in a plane orthogonal to the 
E-plane. The measured 3D radiation patterns of the antenna are shown in Figure 11 at 
frequencies 4 GHz, 5.8 GHz, and 10.6 GHz. The radiation patterns are nearly omni-
directional. 

 
4. Conclusion 

In this chapter, various bandwidth enhancement techniques have been presented. The T 
slotted antenna has been designed and developed. Three bandwidth enhancement 
techniques were adopted in order to produce a small slotted UWB antenna. This proposed 
antenna uses two notches, T slot and a partial ground plane. An experimental prototype has 
been fabricated and tested. It shows that the measured return loss covering the UWB 
bandwidth requirements of 3.1 GHz – 10.6 GHz with respect to -10 dB. The measured 
radiation patterns of this prototype are also presented at frequencies 4, 5.8, and 10.6 GHz, 
respectively. 
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