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1. Introduction 

Since Brånemark introduced the concept of osseointegration and the possibility of anchoring 
dental prostheses by intraosseous implantation in 1969, the clinical use of implants for oral 
and maxillofacial rehabilitation has rapidly expanded over the past 20 years. Biomechanical 
factors play a substantial role in implant success or failure. The application of occlusal forces 
induces stresses and strains within the implant-prosthesis complex and affects the bone 
remodeling process around implants.To achieve optimized biomechanical conditions for 
implant-supported prostheses, conscientious consideration of the biomechanical factors that 
influence prosthesis success is essential. 
Many different methods have been used to study the stress/strains in bone and dental 
implants. Photoelasticity provides good qualitative information pertaining to the overall 
location of stresses but only limited quantitative information. Strain-gauge measurements 
provide accurate data regarding strains only at the specific location of the gauge. Finite 
element analysis (FEA) is capable of providing detailed quantitative data at any location 
within mathematical model. Thus FEA has become a valuable analytical tool in the 
assessment of implant systems in dentistry. 

 
2. Assumptions in the use of FEA in the implant-bone biomechanical system  

The power of the FEA resides principally in its versatility and can be applied to various 
physical problems. The structure analyzed can have arbitrary shape, loads, and supporting 
conditions, furthermore, the mesh can mix elements of different types, shapes, and physical 
properties. This great versatility is contained within a single computer program and the 
selection of program type, geometry, boundary conditions, element selection are controlled 
by user-prepared input data. The principal difficulty in simulating the mechanical behavior 
of dental implants lies in the modeling of human maxilla and mandible and its response to 
applied load. Certain assumptions are needed to make the modeling and solving process 
possible and these involve many factors which will potentially influence the accuracy of the 
FEA results: (1) detailed geometry of the implant and surrounding bone to be modeled, (2) 
boundary conditions, (3) material properties, (4) loading conditions, (5) interface between 
bone and implant, (6) convergence test, (7) validation.   
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3. Geometry 

The attractive feature of finite element is the close physical resemblance between the actual 
structure and its finite element model. Excessive simplifications in geometry will inevitably 
result in considerable inaccuracy. The model is not simply an abstraction; therefore, 
experience and good engineering judgment are needed to define a good model. Whether to 
perform a two-dimensional (2-D) or three-dimensional (3-D) finite element model for the 
study is a significant query in FEA. It is usually suggested that, when comparing the 
qualitative results of one case with respect to another, a 2-D model is efficient and just as 
accurate as a 3-D model; although the time needed to create finite element models is 
decreasing with advanced computer technology, there is still a justified time and cost 
savings when using a 2-D model over 3-D, when appropriated. However, 2-D models 
cannot simulate the 3-D complexity within structures, and as a result are of little clinical 
values. The group of 3-D regional FE models is by far the largest category of mandible 
related researches. This is because modeling only the selected segment of mandible is much 
easier than modeling the complete mandible. In many of these regional models, reproduced 
boundary conditions are often oversimplified, and yield too much significance to their 
predictive, quantitative outcome.    
When a model is supposed to be 2-D, the z axis (third dimension) must be specified to have 
either a plane-strain or a plane-stress condition. Plane strain assumes the model to be 
infinitely thick, so no strain occurs but some stress will progress in the z direction. Plane 
stress supposes the model to be thin enough, so no stress occurs but it has some strain in the 
z direction. In 3-D analysis, the stress and strain condition can be evaluated in all three axes 
(x, y, and z). The first step in FEA modeling is to represent the geometry of interest in the 
computer. In some 2-D FEA studies, the bone was modeled as a simplified rectangular 
configuration with the implant (Fig.1). The mandible was treated as an arch with 
rectangular section or a simplified segment as cancellous core surrounded by a 1.3-mm 
cortical layer with the overall dimensions of this block were 23.4 mm in height, 25.6 mm in 
mesiodistal length, and 9.0 mm in buccolingual width in 3-D FEA models (Fig.2). A dried 
specimen was scanned and imported into image analysis software (Image Tool 1.21; UTHSC, 
San Antonio, Tex, U.S.A.) to create the digital image of a sagittal cut of the palatine process 
of the 2-D maxilla. The outline of the image was manually plotted and each point converted 
into x and y coordinates. The coordinates were finally imported into the ANSYS software as 
keypoints of the definitive image. The same procedure was used to create the implant image 
(Fig.3). Computerized tomographic images of a human edentulous maxillary first molar 
area exhibiting buccal bone irregularities were acquired. The maxilla was approximately 11 
mm in width bucco-lingually and 13 mm in height infero-superiorly. The cross-sectional 
image was then extruded to create a three-dimensional section of maxilla 6.5 mm in length 
in the mesio-distal direction. Due to symmetry with respect to the bucco-lingual plane in the 
geometry and loading, only half of the FE model needed to be considered (Fig.4).With the 
development of digital imaging techniques recently, more efficient methods are available 
included the application of specialized software for the direct transformation of 2- or 3-D 
information in image data from computed tomography (CT) or magnetic resonance imaging 
(MRI) into FEA meshes. Solid models of a mandibular segment, crown, and dental implants 
were constructed using the computer-aided design (CAD) system (Pro-Engineering, PTC, 
New York, NY, U.S.A.) to create 3-D FE models from the data basis originally stemmed from 
CT images. The need for accurate FE models of the complete mandible (Fig.5) in realistic 

simulation is becoming more acknowledged to evaluate an optimal biomechanical 
distribution of stresses in mandibular implant-supported fixed restorations both at the level 
of the prosthetic superstructure and at the level of the implant infrastructure.       

 
4. Material Properties 

Material properties greatly influence the stress and strain distribution in a structure. These 
properties can be modeled in FEA as isotropic, transversely isotropic, orthotropic, and 
anisotropic. The properties are the same in all directions, therefore, only two independent 
material constants of Young’s modulus and Poisson’s ratio exist in an isotropic material. In 
most reported studies, an assumption was made that the materials were homogenous and 
linearly isotropic. How to determine the complex cancellous pattern was very tough, so the 
cancellous bone network ignored in early FEA studies. Therefore, it was assumed that 
cancellous bone has a solid design inside the inner cortical bone shell. There are several 
methods to determine the physical properties of bone, such as tensile, compressive, bending, 
and torsion testing, pure shear tests, micro- and nano-indentation tests, acoustic tests, and 
back-calculation using FE models (Table1). The values 13.7 GPa and 1.37 GPa have been 
frequently used for the Young’s modulus of cortical and cancellous bone, respectively. The 
original source for those values is a compressive test study on human vertebrae. However, 
compressive tests are subject to the confounding factors of proper specimen alignment and 
compliance of the loading fixture, which are not factors in ultrasonic pulse technique. 
Consequently, in the current study, cortical and cancellous bone were given a Young’s 
modulus of 20.7 GPa and 14.8 GPa, respectively, according to the ultrasound study by Rho 
et al. Poisson’s ratio were assumed to be 0.3 for both cortical and cancellous bone. Several 
studies incorporated simplified transversely isotropy (Table2) instead of orthotropy into 
their FE models demonstrated the significance of using anisotropy (transversely isotropy) 
on bone-implant interface stresses and peri-implant principal strains. It was concluded that 
anisotropy increased what were already high levels of stress and strain in the isotropic case 
by 20-30% in the cortical crest. In cancellous bone, anisotropy increased what were relatively 
low levels of interface stress in the isotropic case by three- to four folds. To incorporate more 
realistic anisotropic materials for bone tissues in maxilla or mandible, the FE model may 
employ fully orthotropy for compact bone and transversely isotropy for cancellous bone 
(Table 3), since they are currently available material property measurements of human 
mandible. Because of material properties for human maxillary bone were not available, this 
may influence the accuracy and applicability of the study results. However, by assigning 
fully orthotropic material to compact bone, the high quality anisotropic FE model of the 
segmental maxilla may bring us one important step closer toward realizing realistic maxilla 
related simulation. An orthotropic material has three planes of mirror symmetry and nine 
independent constants as compared to one axis of symmetry and five independent constants 
for transverse isotropy. Orthotropy is not in itself a problem for the finite element method. 
However, the cross-sectional shape of the mandible does not easily lend itself to the use of 
orthotropic material properties, for which the symmetry axes would presumably change 
from point to point, following the irregular elliptical shape of the mandibular cross section. 
A transversely isotropic material behaves identically in all planes perpendicular to the axis 
of symmetry. The unique symmetry axis for compact bone was along the mesio-distal 
direction with the bucco-lingual plane being a plane of elastic isotropy. The unique 
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The attractive feature of finite element is the close physical resemblance between the actual 
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result in considerable inaccuracy. The model is not simply an abstraction; therefore, 
experience and good engineering judgment are needed to define a good model. Whether to 
perform a two-dimensional (2-D) or three-dimensional (3-D) finite element model for the 
study is a significant query in FEA. It is usually suggested that, when comparing the 
qualitative results of one case with respect to another, a 2-D model is efficient and just as 
accurate as a 3-D model; although the time needed to create finite element models is 
decreasing with advanced computer technology, there is still a justified time and cost 
savings when using a 2-D model over 3-D, when appropriated. However, 2-D models 
cannot simulate the 3-D complexity within structures, and as a result are of little clinical 
values. The group of 3-D regional FE models is by far the largest category of mandible 
related researches. This is because modeling only the selected segment of mandible is much 
easier than modeling the complete mandible. In many of these regional models, reproduced 
boundary conditions are often oversimplified, and yield too much significance to their 
predictive, quantitative outcome.    
When a model is supposed to be 2-D, the z axis (third dimension) must be specified to have 
either a plane-strain or a plane-stress condition. Plane strain assumes the model to be 
infinitely thick, so no strain occurs but some stress will progress in the z direction. Plane 
stress supposes the model to be thin enough, so no stress occurs but it has some strain in the 
z direction. In 3-D analysis, the stress and strain condition can be evaluated in all three axes 
(x, y, and z). The first step in FEA modeling is to represent the geometry of interest in the 
computer. In some 2-D FEA studies, the bone was modeled as a simplified rectangular 
configuration with the implant (Fig.1). The mandible was treated as an arch with 
rectangular section or a simplified segment as cancellous core surrounded by a 1.3-mm 
cortical layer with the overall dimensions of this block were 23.4 mm in height, 25.6 mm in 
mesiodistal length, and 9.0 mm in buccolingual width in 3-D FEA models (Fig.2). A dried 
specimen was scanned and imported into image analysis software (Image Tool 1.21; UTHSC, 
San Antonio, Tex, U.S.A.) to create the digital image of a sagittal cut of the palatine process 
of the 2-D maxilla. The outline of the image was manually plotted and each point converted 
into x and y coordinates. The coordinates were finally imported into the ANSYS software as 
keypoints of the definitive image. The same procedure was used to create the implant image 
(Fig.3). Computerized tomographic images of a human edentulous maxillary first molar 
area exhibiting buccal bone irregularities were acquired. The maxilla was approximately 11 
mm in width bucco-lingually and 13 mm in height infero-superiorly. The cross-sectional 
image was then extruded to create a three-dimensional section of maxilla 6.5 mm in length 
in the mesio-distal direction. Due to symmetry with respect to the bucco-lingual plane in the 
geometry and loading, only half of the FE model needed to be considered (Fig.4).With the 
development of digital imaging techniques recently, more efficient methods are available 
included the application of specialized software for the direct transformation of 2- or 3-D 
information in image data from computed tomography (CT) or magnetic resonance imaging 
(MRI) into FEA meshes. Solid models of a mandibular segment, crown, and dental implants 
were constructed using the computer-aided design (CAD) system (Pro-Engineering, PTC, 
New York, NY, U.S.A.) to create 3-D FE models from the data basis originally stemmed from 
CT images. The need for accurate FE models of the complete mandible (Fig.5) in realistic 

simulation is becoming more acknowledged to evaluate an optimal biomechanical 
distribution of stresses in mandibular implant-supported fixed restorations both at the level 
of the prosthetic superstructure and at the level of the implant infrastructure.       

 
4. Material Properties 

Material properties greatly influence the stress and strain distribution in a structure. These 
properties can be modeled in FEA as isotropic, transversely isotropic, orthotropic, and 
anisotropic. The properties are the same in all directions, therefore, only two independent 
material constants of Young’s modulus and Poisson’s ratio exist in an isotropic material. In 
most reported studies, an assumption was made that the materials were homogenous and 
linearly isotropic. How to determine the complex cancellous pattern was very tough, so the 
cancellous bone network ignored in early FEA studies. Therefore, it was assumed that 
cancellous bone has a solid design inside the inner cortical bone shell. There are several 
methods to determine the physical properties of bone, such as tensile, compressive, bending, 
and torsion testing, pure shear tests, micro- and nano-indentation tests, acoustic tests, and 
back-calculation using FE models (Table1). The values 13.7 GPa and 1.37 GPa have been 
frequently used for the Young’s modulus of cortical and cancellous bone, respectively. The 
original source for those values is a compressive test study on human vertebrae. However, 
compressive tests are subject to the confounding factors of proper specimen alignment and 
compliance of the loading fixture, which are not factors in ultrasonic pulse technique. 
Consequently, in the current study, cortical and cancellous bone were given a Young’s 
modulus of 20.7 GPa and 14.8 GPa, respectively, according to the ultrasound study by Rho 
et al. Poisson’s ratio were assumed to be 0.3 for both cortical and cancellous bone. Several 
studies incorporated simplified transversely isotropy (Table2) instead of orthotropy into 
their FE models demonstrated the significance of using anisotropy (transversely isotropy) 
on bone-implant interface stresses and peri-implant principal strains. It was concluded that 
anisotropy increased what were already high levels of stress and strain in the isotropic case 
by 20-30% in the cortical crest. In cancellous bone, anisotropy increased what were relatively 
low levels of interface stress in the isotropic case by three- to four folds. To incorporate more 
realistic anisotropic materials for bone tissues in maxilla or mandible, the FE model may 
employ fully orthotropy for compact bone and transversely isotropy for cancellous bone 
(Table 3), since they are currently available material property measurements of human 
mandible. Because of material properties for human maxillary bone were not available, this 
may influence the accuracy and applicability of the study results. However, by assigning 
fully orthotropic material to compact bone, the high quality anisotropic FE model of the 
segmental maxilla may bring us one important step closer toward realizing realistic maxilla 
related simulation. An orthotropic material has three planes of mirror symmetry and nine 
independent constants as compared to one axis of symmetry and five independent constants 
for transverse isotropy. Orthotropy is not in itself a problem for the finite element method. 
However, the cross-sectional shape of the mandible does not easily lend itself to the use of 
orthotropic material properties, for which the symmetry axes would presumably change 
from point to point, following the irregular elliptical shape of the mandibular cross section. 
A transversely isotropic material behaves identically in all planes perpendicular to the axis 
of symmetry. The unique symmetry axis for compact bone was along the mesio-distal 
direction with the bucco-lingual plane being a plane of elastic isotropy. The unique 
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symmetry axis for cancellous bone of the edentulous mandible was in the infero-superior 
direction with the anatomic transverse plane being a plane of elastic isotropy.      

 
5. Boundary Conditions 

Zero displacement constraints must be placed on some boundaries of the model to ensure 
an equilibrium solution. The constraints should be placed on nodes that are far away from 
the region of interest to prevent the stress or strain fields associated with reaction forces 
from overlapping with the bone-implant interface. In the maxillary FEA models, the nodes 
along the external lines of the cortical bone of oral and nasopharyngeal cavities were fixed in 
all directions (Fig.3). Most FEA studies modeling the mandible set the boundary condition 
was constrained in all directions at the nodes on mesial and distal borders.  
Since only half of the model was meshed, symmetry boundary conditions were prescribed 
at the nodes on the symmetry plane. Models were constrained in all directions at the nodes 
on the mesial bone surface. Because of symmetry conditions, these constraints were also 
reproduced on the distal bone surface (Fig.6).  
An individual geometry of the complete range of mandible was created, meanwhile the 
functions of the mastication muscles, ligaments and functional movement of 
temporomandibular joints simulated. The boundary conditions included constraining all 
three degrees of freedom at each of the nodes located at the joint surface of the condyles and 
the attachment regions of the masticatory muscles (masseter, temporalis, medial pterygoid, 
and lateral pterygoid) (Fig.7). Expanding the domain of the model can reduce the effect of 
inaccurate modeling of the boundary conditions. This, however, is at the expense of 
computing and modeling time. Modeling a 3-D mandibular model at distances greater that 
4.2 mm mesially or distally from the implant did not result in any significant further yield in 
FEA accuracy.  

 
6. Loading Conditions 

Mastication involves a repeated pattern of cyclic impacts that causes loading to the implant 
components and distributes the force to the bone interface. When applying FE analysis to 
dental implants, it is important to consider not only axial loads and horizontal forces 
(moment-causing loads) but also a combined load (oblique occlusal force) because the latter 
represents more realistic masticatory pattern and will generate considerable localized 
stresses in compact bone. Bite force studies indicated considerable variation from one area 
of the mouth to another and from one individual to the next. In the premolar region, 
reported values of maximal bite force range from 181-608 N. Average forces of more than 
800 N for male young adults and 600 N for female young adults have been recorded in the 
molar region. Small forces of 290 and 240 N, respectively, have been measured in the incisal 
region. The variation may be related to many factors, such as muscle size, bone shape, sex, 
age, degree of edentulism, and parafunction. In the maxillary anterior region, the occlusal 
force was assumed to be 178 N could not impair osseointegration or induce bone resorption 
may be appropriate (Fig.8). A 200-N vertical and a 40-N horizontal load were applied to the 
occlusal surface of the crown (Fig.9). These loads represent average means recorded on 
patients with endosseous implants. It should be noted that a great spectra of vertical 
loads/forces have been reported for patients with endosseous implants (means range : 

91-284 N), and the loads appear to be related to the location of the implant, as well as to food 
consistency. In the previous studies, the locations for the force application were specifically 
described as cusp tip, distal fossa, and mesial fossa. When occlusal forces exerted from the 
masticatory muscles, the buccal functional cusps of the mandibular teeth will be forced to 
contact with central, distal, and mesial fossa. Hence, bite force applied to the occlusal 
surface of the crown may be more reasonable than the abutment of the implant.  

 
7. Bone-implant interface  

Analyzing force transfer at the bone-implant interface is an essential step in the overall 
analysis of loading, which determines the success or failure of an implant. It has long been 
recognized that both implant and bone should be stressed within a certain range for 
physiologic homeostasis. Overload can lead to bone resorption or fatigue failure of the 
implant, whereas underloading of the bone may cause disuse atrophy and subsequent bone 
loss. Most FEA models, the bone-implant interface was assumed to be perfect, simulating 
100% osseointegration. This does not occur so exactly in clinical situations. Up until recently, 
linear static models have been employed extensively in finite element studies of dental 
implants. However, the validity of a linear static analysis is questionable for more realistic 
situations such as immediate loading.  
Currently FEA programs provide several types of contact algorithms for simulation of 
contacts. Three different contact types defined in ANSYS—“bonded”, “no separation”, and 
“frictionless”—are used to describe the integration quality at the implant-compact bone 
interface. The “bonded” type simulates perfect osseointegration in which the implant and 
the surrounding compact bone are fully integrated so that neither sliding nor separation in 
the implant-bone interface is possible. The “no separation” type indicates an imperfect 
osseointegration in which separation at the contact interface is not allowed but frictionless 
sliding between the implant and compact bone may take place. The poorest osseointegration 
is modeled by a standard unilateral “frictionless” contact, which implies that a gap between 
the implant and the peri-implant compact bone may exist under an occlusal force. To obtain 
initial stability for the situation of immediate loading after implantation, it was modeled 
using nonlinear frictional contact elements, which allowed minor displacements between 
implant and bone. Under these conditions, the contact zone transfers pressure and 
tangential forces (i.e., friction), but no tension. The friction coefficient was set to 0.3. The 
friction between contact surfaces can also be modeled with contact algorithms. Ding’s study 
was modeled using nonlinear frictional contact elements, which allow minor displacements 
between implant and bone to keep the implant stable and provide an excellent simulation of 
the implant–bone interface with immediate load.  

 
8. Convergence Test 

The p-element method in ANSYS was used for the convergence tests, and by this method 
the polynomial level (p-level) of the element shape functions was manipulated. This differs 
from the more traditional h-method in which the mesh must be refined to obtain a suitable 
convergence in displacement or stress results (Fig.10). It is difficult to obtain a suitable mesh 
of a 3-D object with irregular shaped volumes and refining such a mesh in a consistent 
manner to ensure convergence is a cumbersome process. By contrast, once a suitable mesh is 
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symmetry axis for cancellous bone of the edentulous mandible was in the infero-superior 
direction with the anatomic transverse plane being a plane of elastic isotropy.      
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the region of interest to prevent the stress or strain fields associated with reaction forces 
from overlapping with the bone-implant interface. In the maxillary FEA models, the nodes 
along the external lines of the cortical bone of oral and nasopharyngeal cavities were fixed in 
all directions (Fig.3). Most FEA studies modeling the mandible set the boundary condition 
was constrained in all directions at the nodes on mesial and distal borders.  
Since only half of the model was meshed, symmetry boundary conditions were prescribed 
at the nodes on the symmetry plane. Models were constrained in all directions at the nodes 
on the mesial bone surface. Because of symmetry conditions, these constraints were also 
reproduced on the distal bone surface (Fig.6).  
An individual geometry of the complete range of mandible was created, meanwhile the 
functions of the mastication muscles, ligaments and functional movement of 
temporomandibular joints simulated. The boundary conditions included constraining all 
three degrees of freedom at each of the nodes located at the joint surface of the condyles and 
the attachment regions of the masticatory muscles (masseter, temporalis, medial pterygoid, 
and lateral pterygoid) (Fig.7). Expanding the domain of the model can reduce the effect of 
inaccurate modeling of the boundary conditions. This, however, is at the expense of 
computing and modeling time. Modeling a 3-D mandibular model at distances greater that 
4.2 mm mesially or distally from the implant did not result in any significant further yield in 
FEA accuracy.  

 
6. Loading Conditions 

Mastication involves a repeated pattern of cyclic impacts that causes loading to the implant 
components and distributes the force to the bone interface. When applying FE analysis to 
dental implants, it is important to consider not only axial loads and horizontal forces 
(moment-causing loads) but also a combined load (oblique occlusal force) because the latter 
represents more realistic masticatory pattern and will generate considerable localized 
stresses in compact bone. Bite force studies indicated considerable variation from one area 
of the mouth to another and from one individual to the next. In the premolar region, 
reported values of maximal bite force range from 181-608 N. Average forces of more than 
800 N for male young adults and 600 N for female young adults have been recorded in the 
molar region. Small forces of 290 and 240 N, respectively, have been measured in the incisal 
region. The variation may be related to many factors, such as muscle size, bone shape, sex, 
age, degree of edentulism, and parafunction. In the maxillary anterior region, the occlusal 
force was assumed to be 178 N could not impair osseointegration or induce bone resorption 
may be appropriate (Fig.8). A 200-N vertical and a 40-N horizontal load were applied to the 
occlusal surface of the crown (Fig.9). These loads represent average means recorded on 
patients with endosseous implants. It should be noted that a great spectra of vertical 
loads/forces have been reported for patients with endosseous implants (means range : 

91-284 N), and the loads appear to be related to the location of the implant, as well as to food 
consistency. In the previous studies, the locations for the force application were specifically 
described as cusp tip, distal fossa, and mesial fossa. When occlusal forces exerted from the 
masticatory muscles, the buccal functional cusps of the mandibular teeth will be forced to 
contact with central, distal, and mesial fossa. Hence, bite force applied to the occlusal 
surface of the crown may be more reasonable than the abutment of the implant.  
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Analyzing force transfer at the bone-implant interface is an essential step in the overall 
analysis of loading, which determines the success or failure of an implant. It has long been 
recognized that both implant and bone should be stressed within a certain range for 
physiologic homeostasis. Overload can lead to bone resorption or fatigue failure of the 
implant, whereas underloading of the bone may cause disuse atrophy and subsequent bone 
loss. Most FEA models, the bone-implant interface was assumed to be perfect, simulating 
100% osseointegration. This does not occur so exactly in clinical situations. Up until recently, 
linear static models have been employed extensively in finite element studies of dental 
implants. However, the validity of a linear static analysis is questionable for more realistic 
situations such as immediate loading.  
Currently FEA programs provide several types of contact algorithms for simulation of 
contacts. Three different contact types defined in ANSYS—“bonded”, “no separation”, and 
“frictionless”—are used to describe the integration quality at the implant-compact bone 
interface. The “bonded” type simulates perfect osseointegration in which the implant and 
the surrounding compact bone are fully integrated so that neither sliding nor separation in 
the implant-bone interface is possible. The “no separation” type indicates an imperfect 
osseointegration in which separation at the contact interface is not allowed but frictionless 
sliding between the implant and compact bone may take place. The poorest osseointegration 
is modeled by a standard unilateral “frictionless” contact, which implies that a gap between 
the implant and the peri-implant compact bone may exist under an occlusal force. To obtain 
initial stability for the situation of immediate loading after implantation, it was modeled 
using nonlinear frictional contact elements, which allowed minor displacements between 
implant and bone. Under these conditions, the contact zone transfers pressure and 
tangential forces (i.e., friction), but no tension. The friction coefficient was set to 0.3. The 
friction between contact surfaces can also be modeled with contact algorithms. Ding’s study 
was modeled using nonlinear frictional contact elements, which allow minor displacements 
between implant and bone to keep the implant stable and provide an excellent simulation of 
the implant–bone interface with immediate load.  

 
8. Convergence Test 

The p-element method in ANSYS was used for the convergence tests, and by this method 
the polynomial level (p-level) of the element shape functions was manipulated. This differs 
from the more traditional h-method in which the mesh must be refined to obtain a suitable 
convergence in displacement or stress results (Fig.10). It is difficult to obtain a suitable mesh 
of a 3-D object with irregular shaped volumes and refining such a mesh in a consistent 
manner to ensure convergence is a cumbersome process. By contrast, once a suitable mesh is 
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constructed in the p-method, it is kept unchanged while the polynomial level is increased 
from two to as high as eight until convergence is obtained. When an iterative solution 
method was used with a starting p-value of two and a tolerance of 1% for convergence 
checking, the analysis was considered to have converged if the global strain energy changed 
by less than 1%. Changing of the global strain energy was required to be less than 5% at a 
p-level of four at convergence could be also considered to have converged.  

 
9. Validation 

To validate the FE model, Sekine and coworkers measured the labiolingual mobility of 41 
isolated osseointegrated implants in 8 human mandibles clinically using a displacement 
-measuring lever with electric strain gauges. The measuring point was 6 mm from the 
margin of bone shown on standardized x-rays of each implant. The load was increased 
linearly up to 20 N and observed implant displacement was 17 to 58 μm. The results of the 
FEA model could be compared with a real clinical situation, a similar load applied to the test 
implant in the study. This means that result of the FEA was similar to the clinical situation, 
thus the FE model was valid. The resulting level of implant displacement of Hsu’s study 
was 17μm for a high-density model and 19μm for a low density bone model which revealed 
the calculated load-displacement values were close to values reported for osseointegrated 
implants in vivo. Therefore, an in vivo experiment could be conducted to verify the FEA 
results.   

 
10. Statistical analysis 

Statistical analysis has seldom been used in FEA. However, Hsu et al used a pair-wise t-test 
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Fig. 3. The outline of the digital image was manually plotted and each point converted into x 
and y coordinates. The coordinates were finally imported into the ANSYS software as 
keypoints of the definitive image of the 2-D maxilla with implant (Courtesy from Saab XE et 
al. J Prosthet Dent 2007).  
 

 
Fig. 4. Cross-sectional view on the symmetry plane of the meshed models with the implant 
embedded in the maxillary right first molar area and a gold alloy crown with 2-mm occlusal 
thickness was applied over the titanium abutment. 

 

 
Fig. 5. A complete range of mandible reconstruction from CT and implants embedded in the 
posterior zone (Courtesy from Liao SH et al. Comput Med Imaging Graph 2008). 
 

 
Fig. 6. Symmetry boundary conditions were prescribed at the nodes on the symmetry plane 
and the models were constrained in all directions at the nodes on the mesial and distal bone 
surface.  
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Fig. 7. All three degrees of freedom at each of the nodes located at the joint surface of the 
condyles and the attachment regions of the masticatory muscles (masseter, temporalis, 
medial pterygoid, and lateral pterygoid) were constrained (Courtesy from Nagasao T. et al. J 
Craniomaxillofac Surg 2002).  
 

 
Fig. 8. In the maxillary anterior region, an occlusal load (F) of 178 N was applied on a node at the 
crown.  

 
Fig. 9. Because a symmetric half model was used, loading was simulated by applying an 
oblique load (vertical load of 100 N and horizontal load of 20 N) from buccal to palatal at 
four different locations on the central (a, b) and distal fossa (c, d) of the crown. 
 

 
Fig. 10. Influence of element size (1.25, 1.0, 0.75, 0.50, and 0.25 mm) on bone mesh density 
and peak equivalent (EQV) stress in bone model (Courtesy from Pessoa RS et al. Clin 
Implant Dent Relat Res 2009).  
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Study Compact bone E 
(Gpa) Poisson's ratio (ν) Cancellous bone E 

(Gpa) Poisson's ratio (ν) 

Geng et al37 13.4 0.3 1.37 0.31 

Borchers and Reichart38 13.7 0.3 1.37 0.3 

Meijer et al39 13.7 0.3 1.37 0.3 

Menicucci et al40 13.7 0.3 1.37 0.3 

Teixeira et al41 13.7 0.3 1.37 0.3 

Benzing et al42 15 0.25 2 0.495 

Stegaroiu et al43 15 0.3 1.5 0.3 

Ciftci and Canay44 14 0.3 1 0.3 

Siegele and Soltesz45 20 0.3 2 0.3 

Canay et al46 19.73 0.3   

Geng et al47 13.4 0.3 1.37 0.31 

 10 0.3 1.37 0.31 

 7.5 0.3 1.37 0.31 

 5 0.3 1.37 0.31 

 1.37 0.3 1.37 0.31 

Table 1. Young’s modulus (E) and Poisson’s ratio (ν) of compact and cancellous bone used 
in previous FEA studies. 
 

Material Young's modulus E 
(Mpa) Poisson's ratio (ν) Shear modulus G (Mpa) 

compact bone Ex       12,600 νxy       0.300  

  νyz      0.253 Gxy      4,850 

 Ey     12,600 νxz       0.253  

  νyx      0.300 Gyz       5,700 

 Ez        19,400 νzy      0.390  

  νzx      0.390 Gxz      5,700 

cancellous bone Ex        1,148 νxy      0.055  

  νyz      0.010 Gxy        68 

 Ey       210 νxz       0.322  

  νyx       0.010 Gyz         68 

 Ez         1,148 νzy       0.055  

  νzx       0.322 Gxz        434 

Table 2. Material properties used in the transversely isotropic model (Courtesy from Huang 
HL et al. Clin Oral Implants Res 2005). 

 Ey Ex Ez Gyx Gyz Gxz νyx νyz νxz 

Com. 12.5 17.9 26.6 4.5 5.3 7.1 0.18 0.31 0.28 

Can. 0.21 1.148 1.148 0.068 0.068 0.434 0.055 0.055 0.322 

Table 3. Anisotropy elastic coefficients for compact (Com.)and cancellous (Can.) bone. 
＃ Ei represents Young’s modulus (GPa); Gij represents shear modulus (GPa); νij represents 
Poisson’s ratio. 
＊The y-direction is infero-superior, the x-direction is medial-lateral, and the z-direction is 
anterior-posterior (Courtesy from Chang CL et al. Int J Oral Maxillofac Implants 2010).    
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