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1. Introduction    

A Bayesian network (BN) is a representation of a joint probability distribution over a set of 
random variables (Friedman, 2004). A BN includes two components: (i) a directed acyclic 
graph (DAG) with vertices representing variables and edges indicating conditional 
dependence relations, and (ii) a set of conditional distributions for each variable, given its 
parents in the graph. A dynamic Bayesian network (DBN), an extension of BN, describes 
how variables influence each other over time. Mathematically, a DBN is a discrete time 
approximation of a stochastic differential equation or as a Markov chain model with 
possibly many states. DBN analysis has been considered as a powerful method to analyze 
and interpret heterogeneous, fluctuating time course data for many systems including 
biomedical data (Dean and Kanazawa, 1988; Friedman, et al., 2000; Korb and Nicholson, 
2004). Compared to static Bayesian networks, DBN captures time varying parameters and 
predicts a time course of biological progression (e.g., disease). DBNs also permit temporal 
cycles between variables allowing the user to interpret connections as temporal causation—
a more clinically relevant definition of causation for many clinicians. A key advantage of 
DBNs over static Bayesian network analysis is that the relationships described in DBNs 
always have an unambiguous direction of causality.   
 
DBNs have been used to analyze and interprete various data in different systems including 
clinical data (Li, et al., 2007; Neapolitan, 2003; Peelen, et al., 2010; Watt and Bui, 2008). Most 
medical/clinical inference data are dynamic dataset. However, investigators in the field 
largely depended upon multiple static comparisons to determine which clinical or 
experimental variables may represent potential targets for prediction or prevention of 
deleterious outcomes in patients. However, a clinical event (e.g., sepsis) is typically a 
complex, heterogeneous, and dynamic process. Multiple factors may influence its outcome.  
This static comparison approach has led to numerous failed clinical trials which targeted 
single inflammatory mediators in patients without careful consideration of their clinical 
states in specific clinical courses (Remick, 2003). DBNs provide a means by which these 
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dynamic and often noisy datasets can be analyzed and interpreted to predict the impact of a 
complete network of clinical and experimental variables in an individual patient at any 
given time point. This then provides a clinician or researcher the ability to diagnose a 
disease state and intervene before overt clinical evidence is present.  
 
DBNs have been applied to analyze gene expression data (Dojer, et al., 2006; Husmeier, 
2003; Imoto, et al., 2006; Kim, et al., 2003; Ong, et al., 2002; Pe'er, et al., 2001; Rau, et al., 2010; 
Yu, et al., 2004; Zou and Conzen, 2005). DBNs have generated insights that could not be 
obtained from static Bayesian analysis. Unlike BNs which are acyclic, DBNs allow for cycles 
and more closely reflect the biological realities. In addition, DBNs can improve the ability to 
predict causal relationships based on the temporal nature of the data. For example, Ong et al. 
used DBNs to model regulatory pathways among 169 genes in E. coli to physiological 
changes that affect tryptophan metabolism (Ong, et al., 2002). Kim et al. applied DBNs to 
study a 45-gene subnetwork of the cell cycle system in Saccharomyces cerevisiae, a species of 
budding yeast (Kim, et al., 2003). More recently, Rau et al. introduced an iterative empirical 
Bayesian procedure with a Kalman filter that estimates the posterior distributions of DBN 
parameters (Rau, et al., 2010). This empirical method consumes considerably less 
computational time and was used to analyze human T-cell activation data with 58 genes 
over 10 time points (Rangel, et al., 2004). However, in general DBNs have not been widely 
used for gene expression data analysis. Its general usefulness in modeling reliable pathways 
and predicting testable hypotheses remain to be demonstrated (Xia, et al., 2004). 
 
miniTUBA is a web-based dynamic Bayesian network analysis and Gibbs simpling 
prediction system (http://www.miniTUBA.org), with the goal of learning and simulating 
biomedical networks using temporal data from experimental and clinical investigations 
(Xiang, et al., 2007).  The miniTUBA modelling system allows clinical and biomedical 
researchers to perform complex medical/clinical inference and prediction. This system is 
designed for easy data management, and the results are displayed in a way that is easily 
interpretable by a clinical or biomedical investigator. The miniTUBA implementation does 
not require a local installation or significant data manipulation. Using synthetic data and 
laboratory research data, our previous publication (Xiang, et al., 2007) demonstrates that 
miniTUBA accurately identifies regulatory network structures from temporal data.  
 
This chapter will describe many updated features of the miniTUBA system, and provide 
general instructions and pitfalls involved in miniTUBA DBN modeling. The study of host-
pathogen interactions is critical to understand microbial pathogenesis and host immune 
responses against pathogen infections. To our knowledge, dynamic Bayesian network 
analysis has not been applied to study host-pathogen interactions using microarray gene 
expression data. In this chapter, we will report how to apply miniTUBA DBN analysis to 
understand the immune networks in murine macropahges responded to different Bruccella 
infections. 

 

 

 

2. miniTUBA design and implementation 

2.1 Overall miniTUBA system design  
The miniTUBA software allows users to continuously update their data, fill out missing 
data, choose different analysis settings (e.g., data discretization, Markov lags and prior 
topology), perform DBN, and visualize results (Fig. 1). miniTUBA can also make temporal 
predictions using Gibbs sampling to suggest interventions based on an automated learning 
process pipeline using all data provided. Different graphic supports are provided (Fig. 1).  
 
miniTUBA currently runs on two Dell Poweredge 2580 servers running the Redhat Linux 
operating system (Redhat Enterprise Linux ES 4) and Apache HTTP Server. Data are stored 
in miniTUBA using a MySQL database and the interface is constructed using a variety of 
scripts including PHP and Perl.  
 

 
Fig. 1. miniTUBA system design.  
 
The detailed tutorial for running miniTUBA is available at:  
http://www.minituba.org/docs/tutorial.php. We provide a miniTUBA Sandbox Demo 
(http://www.minituba.org/sandbox/index.php). This Sandbox Demo is developed for first 
time users to get familiar with the system by exploring the features using built-in user 
account and some simple data.  
 
miniTUBA is a project-oriented web-based system. One or more projects can be created by a 
registered user. Currently, each project needs to go through an internal review process. This 
review process ensures that the computational resource is properly used since an approved 
project can run analyses that take up to 144 hrs —representing a significant computational 
investment. Once approved, a user can submit/update data, set up DBN settings and run 
each analysis. For each project, a user can run multiple analyses and these analyses will be 
stored in miniTUBA for later use.  
 
By June 14 2010, miniTUBA has 66 registered users and hosted 82 projects including 32 
testing projects. 
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2.2 miniTUBA DBN parameter selections  
Optimal DBN parameter selections are critical to successful DBN analysis. Different DBN 
parameters can be set in miniTUBA to specify how the data are pre-processed and how 
constraints are set on the DBN learning algorithm. The DBN settings for each analysis will 
be stored in the miniTUBA database and can be reused for future analyses. Different DBN 
settings may result in different results. Default DBN settings follow the best practices 
described elsewhere (Yu, et al., 2004), but can be changed by the user if desired.   
 
Depending on the purpose of a particular DBN simulation, in many cases only parts of 
experimental data and/or variables may be used (Fig. 2). A subset of the available experiment 
units has different meanings in different use cases. For microarray experiments, this may mean 
inclusion of selected microarray chips. In a clinical setting, it may mean analysis of only some 
of the patients. Certain variables can be excluded in a particular analysis. Those variables 
included in a study can be set as parents only (i.e., they do not act as children) or children only 
(i.e., they cannot be parents) (Fig. 2).  For example, a drug treatment is usually considered as 
the start point of an experiment and hence can only have children, and a survival status is 
usually the final outcome of an event and hence cannot have any other child variable.  
 
In many cases, not all required data points have experimental data. For example, most 
clinical data are not gathered at a consistent sampling interval. Therefore, a data fitting 
method is needed to fill in predicted data for these missing time points. Spline fitting is a 
general method of generating new data points within the range of a discrete set of known 
data points. Such a spline fitting approach has been shown by Yu et al to yield good 
behavior for reasonably smooth temporal data (Yu, et al., 2004). miniTUBA uses the R 
function splinefun (Forsythe GE, et al., 1977) to interpolate missing data across time.   
 
Discretization is the process of transferring continuous variables into discrete counterparts. 
For efficient learning, the experimental data are discretized into a finite number of bins. Two 
basic discretization methods are equal interval method and equal number of variables (or 
quantile) method. The miniTUBA discretization allows 2 to 10 bins of interval discretization 
or 2 to 10 bins of quantile discretization. Alternatively, the users can make 2 to 10 
customized bins. For example, an assignment of “2, 5” represents three bins with values <2, 
2-5, and >5, respectively.  
 
One advantage of DBN analysis is that structural priors can be easily defined and enforced. In 
some cases, a user may know that some edges between variables must or must not be present.  
These constraints can be included in the analysis in miniTUBA as structural priors (Fig. 2).  
 
For DBN execution, a miniTUBA user can specify the time of DBN execution ranging from 1 
minute to 144 hours. To speed up the searching process, a DBN execution job can be 
performed in parallel by using 1-16 analysis instances, each to be run on a separate node of 
the backend cluster. 
 
Since the identification of the highest-scoring Bayesian network model for a given set of data 
is known to be NP-complete (Chickering, 1996), heuristic rather than exhaustive search 
strategies are used. Two optimization algorithms are available in miniTUBA for users to 

 

 

choose to learn the underlying DBN: simulated annealing and greedy learning. Simulated 
annealing is a learning process based on successive update steps (either random or 
deterministic). The update step length is proportional to an arbitrarily set parameter which 
can play the role of a temperature. In analogy with the annealing of metals, the temperature 
is made high in the early stages of the process for faster minimisation or learning, is then 
reduced for greater stability (Ispolatov and Maslov, 2008). The greedy random algorithm 
makes the locally optimal choice at each stage with the hope of finding the global optimum 
(Diniz-Filho, et al., 2005). Simulated annealing was found to consistently find the highest 
scoring Bayesian network models while greedy random algorithm does not (Hartemink, et 
al., 2002). Therefore, the simulated annealing approach is set as the default. 
 

 
Fig. 2. An example setting for a miniTUBA DBN analysis. This example contains four nodes 
(A-D) and data of three experiments (i.e., three experimental units). Different nodes can 
have different settings.  
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Markov lag is the time interval (or lag) between the start of an event and its effect. For 
example, for a project with hourly data sets, Markov lag 1 implies that perturbations made 
now will have a measurable effect in one hour, while a Markov lag of 2 means that the effect 
will be observable after two hours. Depending on the nature of the experimental units and 
purpose of the experiment, a user may need to try different Markov lags to find out the 
optimal Markov lag.  This time interval or lag can be easily changed in miniTUBA to 
examine influential relationships at different time intervals of interest. Although not used 
here, it is also possible to create models that cover a range of Markov lags.  These more 
complete models are not included in miniTUBA as the results can be difficult to interpret 
mechanistically.  
 
miniTUBA uses a modified version of the software package BANJO 
(http://www.cs.duke.edu/~amink/software/banjo/) developed under the direction of Dr. 
Alexander J. Hartemink at Duke University for dynamic Bayesian network learning for 
DBN learning (Smith, et al., 2006). DBN analysis does not require as much time as static BN 
requires due to its time restriction. However, generally BDN still requires much 
computationl power. In miniTUBA, parallel computation is implemented for DBN 
execution. The learning jobs are distributed to a 44 node cluster of Apple G5 computers. In 
parallel jobs, each processor begins network learning from either a random DBN topology 
or uses a different random seed when learning with a stochastic method such as simulated 
annealing. Due to the embarrassingly parallel nature of network structure learning, this 
approach results in a nearly linear decrease in computing time as additional nodes are 
added. Because initial network learning can take hours to days to complete, miniTUBA 
alerts registered users by email when a job completes. 

 
2.3 Temporal predictions based on Gibbs sampling in miniTUBA 
It is possible to predict the values of future time points given a DBN, conditional 
probabilities generated from experimental data, and initial values. A prediction module was 
written that combines a Gibbs sampler to sample future values and a bootstrapping step to 
de-discretize the predictions. To perform the Gibbs sampling prediction, the data are first 
discretized (e.g. low, medium, high) and a conditional probability table was generated for 
each variable. The associated observations for each condition are also recorded. Gibbs 
sampling is then used to predict future states for each variable by sampling from the 
conditional probability distribution (Korb and Nicholson, 2004). Bootstrapping is used to 
de-discretize the states to continuous numerical values by sampling from the associated 
observations of the predicted states. In prediction mode, miniTUBA repeats this process of 
sampling and bootstrapping 10,000 times. For numerical variables, the mean and the 
standard error calculated from the 10,000 predictions are plotted along with the initial 
values. In miniTUBA, a probability table is provided for variables with nominal values and 
a probability curve is shown for every such variable.  
 
This feature can suggest interventions based on an automated learning process pipeline 
using all data provided. This is very useful in a clinical setting. Based on previous data, a 
doctor may suggest some interventions to stop a disease trend. Similar cases may occur in 
laboratory research.    
 

 

 

2.4 miniTUBA output and visualization  
The top scoring and consensus networks generated by the DBN learning process are 
visualized using Graphviz (http://www.graphviz.org/) (Gansner and North, 2000). The top 
10 scoring network graphs are shown in the results page. A consensus network among the 
top 10 scoring networks can be generated to show edges that are present in all 10 networks, 
indicating relationships that are present with high confidence. A simple edge confidence is 
calculated based on the frequency of the edge present among the top 10 scoring networks. 
While other metrics for edge confidence are possible, such as p-values and probability of 
conservation, we have found from user studies that these more quantitative metrics tend to 
overwhelm most non-computational users and end up making the result less useful.    
 
Once a node in a miniTUBA top network is clicked, a conditional probability table 
calculated based on the input dataset is displayed, together with proposed causal 
relationships associated with the node. To assess how much better or worse a network is 
than the others among the top 10 scoring networks, a plot of the Bayes score distribution for 
these networks can also be displayed in the results page. To simply and intuitively interpret 
the relationships predicted by the DBN engine, a module is developed to allow user to 
generate 2D/3D scatter plots by clicking on a variable node with 1 or 2 other variable nodes 
as parents. The R “plot” command and the LiveGraphics3D package (http://www.vis.uni-
stuttgart.de/~kraus/LiveGraphics3D/) are used to draw 2D and 3D plots respectively. The 
3D scatter plot can be rotated or zoomed in/out for users to find better angle or resolution.  

 
3. Application of miniTUBA in analysis of macrophage 
responses to Brucella infections 

Brucella is a facultative intracellular Gram-negative bacterium that causes a zoonotic disease 
called brucellosis in swine, cattle, wild life, other animals and “undulant fever” in humans. 
(Schurig, et al., 2002). Human brucellosis remains the most common zoonotic disease 
worldwide with more than 500,000 new cases annually (Pappas, et al., 2006). B. suis cause 
brucellosis mainly in swine and humans (Pappas, et al., 2006). The interaction between 
macrophages and B. suis is critical for the establishment of a chronic Brucella infection.  
Smooth virulent B. Suis, which contains intact lipopolysaccharide (LPS), prevents 
macrophage cell death. However, rough and attenuated strain B. suis strain VTRS1, which is 
deficient in the O antigen of LPS due to a wboA gene mutation (Winter, et al., 1996), was able 
to induce strong programmed cell death of infected macrophages. To further investigate the 
mechanism of VTRS1-induced cytotoxicity in infected macrophages, microarrays were used 
to analyze temporal transcriptional responses of murine macrophage-like J774.A1 cell line 
following infection with strain 1330 or VTRS1.  
 
In this section, we demonstrate the application of miniTUBA dynamic Bayesian network 
analysis in analyzing the immune network in macrophages infected with Brucella suis live 
virulent strain 1330 or attenuated vaccine candidate strain VTRS1 (Winter, et al., 1996). The 
results indicate that miniTUBA can be used to predict novel targets in a programmed cell 
death pathway.  
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3.1 Microarray experimental design  
This study contained a DNA microarray experiment using the Affymetrix 430 2.0 array 
technology. In total, 42 microarray chips were included with seven time points. The basic 
protocol is as follows: J774.A1 mouse macrophages were plated in T75 at 8 x 106 cells per 
flask one day prior to infection, and then infected with B. suis S1330 or VTRS1 at a MOI of 
200:1. Total RNAs were isolated by TRIzol and further purified using Qiagen RNeasy Mini 
Kit (Qiagen, Valencia, CA) at 0 h, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection. The RNA 
samples were stored at -80 oC until an Agilent 2100 BioAnalyzer (Agilent Technologies, Palo 
Alto, CA) was used to assess the concentrations and quality of RNA samples. Total RNA (20 
μg) per sample was used for hybridization with Affymetrix mouse GeneChip 430 2.0 array. 
Preparation of cDNA, hybridization, quality controls and scanning of the GeneChip 430 2.0 
arrays were performed according to the manufacturer's protocol (Affymetrix, Santa Clara, 
CA) (He, et al., 2006).  
 
The data has been deposited in the GEO datbase with the accession number GSE21117. 
 

 
Fig. 3. Microarray data analysis workflow.  

 
3.2 Data preprocessing prior to miniTUBA DNB analysis  
For the probe sets that passed the Present/Absent filtering criterion, Robust Multi-array 
Average (RMA) normalization procedure was performed (Irizarry, et al., 2003). The log2 
based gene expression values that have been background adjusted, normalized, and 
summarized were collected in the process. LIMMA (Linear Models for Microarray Data) 
with a false discovery rate (FDR) adjustment was further used to analyze up- or down-

 

 

regulated genes (Smyth, 2005). The moderated F-statistic obtained from LIMMA was used 
to determine any effects of strain, time, or possible interaction between strain and time. Cell 
death-associated genes were determined using the Gene Ontology (GO) annotation 
(Ashburner, et al., 2000). Those genes that are related to cell death and significantly 
regulated were used for Bayesian network analysis with an internally developed software 
program miniTUBA (Xiang, et al., 2007). The microarray data analysis workflow and 
relevant results are shown in Fig. 3. 

 
3.3 miniTUBA DBN analysis of macrophage responses to Brucella infections   
A miniTUBA DBN analysis was performed to analyze the immune network with a key 
purpose to determine why strain 1330 prevents programmed cell death of infected 
macrophages, while strain VTRS1 induced a cell death. The simulation used those genes that 
significantly regulated and belong to different cell death pathways (Fig. 3). 
 

 
Fig. 4. Conserved network among top 10 DBN results. Four genes were screened out after 
the conservation. Ninety two edges were screened out for top 1 scoring network. 
 
To perform miniTUBA analysis, the transcriptional data of those genes associated with cell 
death were extracted and formatted into miniTUBA input data format. The time points 0 h, 
1 h, 2 h, 4 h, and 8 h post infection were used for the simulation. The Markov lag is set as 1 
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hour. Since the time points 3 h, 5 h, 6 h, and 7 h were missing, spline fitting was used to fill 
in the missing data. We did not use 24 h and 48 h since it would require filling in too many 
missing time points between 8 h and 24 h and between 24 h and 48 h. Using so many 
missing data would make the DBN analysis not reliable. The setting of quantile 3 bins was 
used for variable data discretization. It means that the gene expression values of each gene 
are seperated into three bins (low, medium, and high), and each bin contains one third of 
values. The two manually generated variables are “Brucella_Rough” (i.e., rough or smooth 
Brucella strain) and “Macrophage_Death” (i.e., live or dead macrophages). These two 
variables were used to represent the bacterium strains and the cell death phenotypes. The 
variable “Brucella_Rough” was set to have no parent, meaning no other variable pointing to 
this variable. The variable “Macrophage_Death” was set to have no child, meaning this 
variable cannot point to any other variable. In total, 16 instance runs were performed using 
16 nodes. Each run took one hour. In total 16 hours of execution time was  used.  
 
After the miniTUBA DBN simulations, 10 top networks were saved. Fig. 4 demonstrates the 
conserved network among all top 10 networks. Those edges that are not conserved in all top 
10 networks are removed. Those variables that do not have any connection to other 
variables are also removed from the conserved network.  
 
Each node in a top network can be clicked to show more details about this node (Fig. 5-6).  For 
each node, its conditional probability table is displayed in details with the edges between the 
node and the parent nodes. When the node has only one parent (Fig. 5) or two parents (Fig. 6), 
a 2D or 3D scatter plot is displayed, respectively. The data and result visualization provide 
users direct information for a specific variable and its relations with other associated variables.  
 

 
Fig. 5. The conditional probability table of Birc2 and the scatter plot for TNF and Birc2. The 
expression values of each gene was discretized into three bins with indicated ranges. The 
relation is based on the top 1 scoring network. A clear correlation between these two genes 
is observed. Based on miniTUBA DBN analysis, the edge Tnf -> Birc2 is identified.  

 

 

 
Fig. 6. The conditional probability table of Pik3r5 and the scatter plot for TNF, Bad, and Pik3r5. 
The expression values of each gene was discretized into three bins with indicated ranges. The 
relation is based on the top 1 scoring network. The plot was rotated to a position easily viewable.  

 
3.4 Experimental verification of predicted miniTUBA results:   
Our key question is the mechanism of why VTRS1 induced macrophage cell death while its 
virulent parent strain S1330 prevents the cell death of infected macrophages. To address this 
question, we have specifically analyzed the possible genes in the network that starts from 
“Brucea_Rough“ and ends at “Macrophage_Death“. A portion of the predicted results is 
shown in Fig. 7. This small network demonstrates that rough Brucella induced high level of 
expressions of proinflammatory gene TNF and NF-κB pathway gene Nfkbia, both contribute 
to the death of infected macrophages. The caspase-1 (Casp1) appears not to play a role in the 
macropahge death (Fig. 7).   
 

 
Fig. 7. Predicted network among 5 variables.  
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Our further experiments verified these predictions. A high level of proinflammatory 
response was induced by VTRS1 but not by its parent virulent strain S1330. The important 
roles of TNF-α and Nfkbia in VTRS1-induced macrophage death were further confirmed by 
individual inhibition studies (data not shown). While Casp1 plays an important role in 
Casp1-dependent proinflammtory pyroposis (Bergsbaken, et al., 2009), an inhibition study 
using a Casp1 inhbitor (Z-WEHD-FMK) indicated that Casp1 did not play an obvious role in 
the VTRS1-induced macrophage cell death (data not shown). We previously found that 
rough attenuated vaccine strain RB51 and a wboA mutant RA1 induced Casp2-mediated cell 
death (Chen and He, 2009). In this study, miniTUBA also predicted a critical role of Casp2 in 
the rough attenuated B. suis strain VTRS1-induced macrophage cell death, which was later 
experimentally verified (data to be published).  
 
These studies further demonstrate that the miniTUBA DBN analysis was able to predict 
important factors in a biological pathway using high throughput microarray gene 
expression data, which successfully guide the experimental evaluations.   

 
3.5 Demonstration of Gibbs sampling prediction:  
While the prediction of future events is not designed or important for this microarrray 
study, we can use the same data sets to demonstrate how miniTUBA performs prediction 
and display predictive results (Fig. 8).  In this demostration,  we showed that using the data 
from early time points, the results in time points 5 h and 6 h post infection could be 
predicted with an apparent success. More detailed verification of this method is described in 
the original miniTUBA publication (Xiang, et al., 2007). 
 

 
Fig. 8. Predicted results for Casp12 for the 5th and 6th time points. The round points 
without error ranges are the values from previously known time points and the diamond 
shaped points with error ranges are the predicted values and their associated standard 
errors. The 8th point was not used for prediction.  

 

 

4. Conclusion and discussion 

In this chapter, we have introduced in details the miniTUBA system, and how to apply the 
miniTUBA dynamic Bayesian network (DBN) approach to analyze a typical use case in the 
areas of host-pathogen interactions using high throughput microarray data.  
 
The DBNs are powerful to model the stochastic evoluation of a set of random variables over 
time. Since the biological processes and various measurement errors are stochastic in nature, 
DBN has been considered as a suitable technique to study biological networks and 
pathways. Bayesian networks (BNs) and DBNs are based on a multinomial distribution. This 
distribution is very flexible, and each node has a different parameterization. Therefore, it is 
very feasible to use DBNs to model the dynamics of biological systems and responses to 
parameter perturbations.  However, although a few applications for both Bayesian network 
and DBNs to modeling gene expression data have been discussed and reported, their 
usefullness remains to be shown with more well-understood pathways (Xia, et al., 2004). 
Programmed cell death (i.e., apoptosis) pathways are well studied and important for all 
plant and animal organisms. We first demonstrated in this report how the DBN analysis can 
be used to predict crucial genes for a cell death pathway, which led to correct experimental 
verification.  
 
Two major challenges in DBN analysis for biological network modeling exist. First, 
continuous gene expression data has to be descretized, leading to the loss of information. 
The descretization simplifies the computation and stablizes the predicated results. However, 
current equal quantile and interval descretization methods do not often reflect the biological 
realities. The customized descretization method is too time consuming and may not 
correlate with the unknown truth either. Therefore, alternative approaches will need to be 
explored to improve the descretization and minimize loss of information. How to find 
reliable ways to model continuous data remains to be a major challenge in the DBN and 
other modeling studies. Second, it is a big challenge to identify the correct time steps (i.e., 
Markov lags) for a DBN modeling. By default, we require all variables have the same time 
step size. However, it might be possible to allow a mixture of different time step sizes. The 
time scale likely differ between variables. To identify the relevant time scale, we may allow 
different discretization schemes. While more finely discretized variables offer slower 
changes, it might be difficult to determine how many are appropriate. The generation of 
very large sizes of discretizations is also time consuming. One solution is to allow mixtures 
of time steps in the learning step. However, it is in practice very difficult because the current 
step depends on a range of past experiences. If the previous time steps are not multiplies of 
each other, a complex splining function is usually needed to dynamically interpolate the 
missing data. Alternatively, we can explicitly search for an optimum informative time step. 
A DBN search will favor small time steps because it means more data to be used. However, 
if the data represents only more interpolated data, it would not help. While DBN analysis 
can be improved in different directions, the two areas of DBN research with the largest 
impact are probably the discretization and correct time step setting. 
 
Besides addressing the above challenges, dynamic Bayesian networks can further be 
improved through different directions: (i) those strong links (or edges) are conserved among 
top networks and can be detected by consensus analysis (Fig. 4). (ii) cross-species 
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comparison may further help to reveal the conserved core network across different species 
(Gholami and Fellenberg, 2010). (iii) it is possible to learn dynamic regulatory networks by 
incorporating multiple data types (e.g., functional classification, shared motif motifs, 
protein-DNA binding, protein-protein interaction) (Bernard and Hartemink, 2005). (iv) 
incorporation with additional quantitative measurements (Xia, et al., 2004). (v) integration of 
DBN gene expression data analysis with literature-based network discovery (Ozgur, et al, 
2010). (vi) Dynamic Bayesian network expansion for identification of new pathway elements 
as shown in a similar approach with static Bayesian network (Hodges, et al, 2010). Finally, 
all these new directions will need to be integrated in a proper way for accurate 
reconstruction and prediction of biological and medical networks. Such a network analysis 
approach is likely appliable for study of other networks (e.g., social networks).  
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comparison may further help to reveal the conserved core network across different species 
(Gholami and Fellenberg, 2010). (iii) it is possible to learn dynamic regulatory networks by 
incorporating multiple data types (e.g., functional classification, shared motif motifs, 
protein-DNA binding, protein-protein interaction) (Bernard and Hartemink, 2005). (iv) 
incorporation with additional quantitative measurements (Xia, et al., 2004). (v) integration of 
DBN gene expression data analysis with literature-based network discovery (Ozgur, et al, 
2010). (vi) Dynamic Bayesian network expansion for identification of new pathway elements 
as shown in a similar approach with static Bayesian network (Hodges, et al, 2010). Finally, 
all these new directions will need to be integrated in a proper way for accurate 
reconstruction and prediction of biological and medical networks. Such a network analysis 
approach is likely appliable for study of other networks (e.g., social networks).  
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