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of Flexible Stewart Isolators  
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School of Astronautics, Harbin Institute of Technology, Harbin 150080,  

China 

 

1. Introduction 

There are increasing needs of precision pointing and extreme stability for current and 

future spacecrafts. The James Webb space telescope, terrestrial planet finder, space based 

laser, space-based interferometer and deep-space laser communication are such examples 

where the micro-radian pointing and nanometer level of motion stability are required by 

(Ford, et al, 2005), (Chen, et al, 2004) and (Winthrop, et al 2003). On the other hand, the 

space systems may contains many vibration sources. A satellite may contain multiple 

instruments; some of them may use reaction wheels, cryogenic coolers, control moment 

gyroscopes, solar array drives, stepper motors, and other motion devices. These devices 

will transmit vibrations. 

Passive isolation presents a reliable, low cost solution that is effective for attenuating high 

frequency vibrations, but it is in general not suitable for low frequency vibration isolation, 

and especially, passive isolation can not provide good trade-off between resonant peak and 

high frequency attenuation and the trade-off between pointing command keeping and 

disturbance rejection. (Winthrop, et al 2003) indicates the active vibration control can 

overcome these limitations. 

In order to achieve multi-DOF vibration isolation in broadband and precision pointing, the 
Stewart platform (or hexapod), especially the cubic one, has become one of the most popular 
approaches as in (Anderson, et al, 2000) and (Thayer, et al, 2002), as shown in Fig.1. The 
cubic hexapod simplifies the control topologies to allow the decoupled controller designs to 
be identical for each strut. In order to eliminate the micro dynamics (friction and backlash), 
flexure joints are generally used as in (Hanieh, 2003). 
Jet Propulsion Laboratory, Air Force Research Laboratory, Naval Postgraduate School, 
University of Washington, Free University of Brussels, University of Wyoming, CSA 
Engineering Inc are very active in this research. Classic control, adaptive control, LQG 
control, neural control, simple robust control and other control approaches were studied by 
(Gawronski, et al, 2004), (Joshi, et al, 2005) and (Liu et al, 2008). In this chapter, H∞ 
and μ controllers are designed for the struts of Stewart platforms, suppressing the overshoot 

in the neighborhood of resonance frequencies. Then the dynamic model of Stewart isolator 
is derived, and D-K iteration is used to solve the robust controller, finally, the time domain 
responses to suppress disturbance are also presented.      

Source: Vibration Control, Book edited by: Dr. Mickaël Lallart,  
 ISBN 978-953-307-117-6, pp. 380, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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Fig. 1. Stewart platform with flexure joints 

2. Dynamic model of active struts 

The hexapod can be decoupled into six single-axis systems. Fig.2 shows a spring-mass 
model of a single strut, which can be represented as shown by equation (1-2), and the 
measuring output for control is the force of the strut on the side of payload. But the force 
due to the parasitic stiffness and damping, which represent the coupling between 6 struts, is 
not contained in the measuring output as in (Thayer, et al, 2002).   
 

 

Fig. 2. Block diagram of the strut with PZT actuator 

Where mass of base mb = 200kg, mass of strut ms = 0.254kg, Mass of payload mp = 20kg, 
parasitic stiffness and damping kp = 760N/m, cp = 2kg/s; axis stiffness and damping of 
flexible joints k2 =800000N/m, c2 = 100kg/s; stiffness and damping of the actuator  
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k1 = 80000000 N/m, c1 = 100kg/s. u is the output of actuators, and r is the attitude control 
signal in addition with disturbance. 

 Mq + Dq + Kq = f$$ $   (1) 

 q vy = C q + C q$   (2) 

Where 
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Introducing the K and M in equation 2det( ) 0K w M− = , the modal frequency matrix 

1 2 3([ , , ])diag w w wΩ = is found as follows:  

 

0 0 0

0 207.8 0

0 0 11670

⎛ ⎞
⎜ ⎟Ω = ⎜ ⎟
⎜ ⎟
⎝ ⎠

  (3) 

Substituting Ω into ) 02(K - MΩ Φ =   

 

0.5774 0.0015 0.0991

0.5774 0.9999 0.0777

0.5774 0.0003 0.9920

− − −⎛ ⎞
⎜ ⎟Φ = − − −⎜ ⎟
⎜ ⎟−⎝ ⎠

  (4) 

Introducing modal matrix Ф into equation (2), a modal equation is gotten, as shown in 
Equation (5). The symbols qm, Mm, Dm and Km are modal displacement, modal mass matrix, 
modal damping matrix and modal stiffness matrix.  

 
T

m m m m m m

q m v m

M q + D q + K q f

y = C q + C q

⎧ = Φ⎪
⎨ Φ Φ⎪⎩

$$ $
$

  (5) 

Where  
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1 ,

,

T
m m

T T
m m

q q D D

M M K K

−= Φ = Φ Φ

= Φ Φ = Φ Φ
         

It is seen that the first mode is a rigid mode, and the corresponding natural frequency is zero 

(in Ω). On the other hand, the singular value plot for the nodal model with parametric 

(stiffness and damping) uncertainty, as illustrated in Fig.3, a rigid mode can be found.    
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Fig. 3. Singular value plot for struts with and without rigid mode 

The structures with rigid mode are unstable, but the rigid mode is the one that allows a 
controller to move the structures or track a command. So the rigid mode is removed when 
active vibration isolation controller is design. The singular value response for the dynamic 
model without rigid mode is shown in Fig.3, where the parametric uncertainty is also 
contained.  

3. Robust synthesis controller design  

The active vibration controller should be robust to the modeling uncertainty and parametric 

uncertainty, for the complex dynamic environment and model error. Robust H∞ synthesis 

and μ synthesis are presented in this section, and the dynamic uncertainty is contained in 

the model, but the parameter uncertainty is also contained in the robust stability and 

performance test. 

3.1 performance and system interconnection 

The performance objective of this chapter is based on the strict requirements of future 

precision spacecrafts. The low frequency pointing signals must be fully transfer through the 

Stewart platform, but the high frequency disturbance (both harmonic and broadband), 

which will disturb the precision instruments, should be isolated. So the two strict 

requirements are as follows:   

REQ1: Low frequencies pointing command (0-5Hz) 

Keep pointing attenuation within± 0.2dB.   
REQ2: Disturbance (>15Hz) and noise  

Isolate the overshoot in the neighborhood of resonance frequencies 25dB, known as 
active damping, and isolate the noise 10dB.   

The structure of closed-loop system is seen in Fig.4, Gis the dynamic model without rigid 
mode, K is the controller to be designed, the weights describe the magnitude, relative 
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Fig. 4. Closed-loop system structure in robust design 

importance and frequency content of inputs and outputs as in (Skogestad, etal, 2005). The 

performance weighting function W1 reflects the relative significance of performance 

requirements over difference frequency ranges, because the maximum peak of G is23 dB, so 

the maximum of W1 should be more than 0dB to satisfy REQ1; the control weighting 

function W2 avoids saturation of the PZT actuator and suppresses the high and low 

frequency gains, because the maximum force of actuators is 400N, the W2 should be more 

than -52dB (1/400); the noise weighting function Wn is less than 0.3N in low 

frequency(<300Hz), but is 1N in high frequencies(>1000Hz); Wn =10is the disturbance 

weighting function. The weighting functions are selected as follows: 

    

2

1 2

2

2 2

0.000445 70 0.00022

64.4 98.7

0.3 154.2 18850

62830 314.2
942.5

9425
n

s s
W

s s

s s
W

s s
s

W
s

+ +
=

+ +
+ +

=
+ +

+
=

+

  (6) 

The augmented plant Gaugm is given by equation (7): 

 
1 2

1 11 12

2 21 22

x = Ax + B w + B u

z = C x + D w + D u

y = C x + D w + D u

$
   (7)  

Where 1 2[ , ]Tz z z= , w r=  

The PZT stacks are very precision actuators, but they are typically not highly linear, for the 

nonlinear factors, such as hysteresis, creep and temperature effects, and in low frequencies 

the error can be 10%-15% of the full scale in open loop. And so the output uncertainty of the 

PZT stack is represented by Wu, as seen in equation (8)    
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6

6

1 2094 10
1

10 12.6 10
u

s
W

s

+
= + ⋅ ⋅

+
J   (8) 

Where is J the complex perturbation.  

3.2 Controller design  

The H∞ synthesis is a mixed sensitivity H∞ suboptimal control, based on DGKF method, and 

μ synthesis is based on D – K iteration in (Skogestad, 2005). The following criterion is used 
for H∞ synthesis: 

 
1

2

( ) ( )

( ) ( )

w s S s

w s T s
γ

∞Η

<    (9) 

Where S(s) and T(s) are the sensitivity function and complementary sensitivity function 
respectively. 

The D – K iteration μ synthesis method is based on solving the following optimization 
problem, for a stabilizing controller K and a diagonal constant scaling matrix D. 

 ( ){ }1

( ) ( )R

( ) arg  min sup inf ( ) ( ( )
S

l
K s D s D

K s D s F P,K)D s
κ ω

σ −

∈ ∈∈
=  (10) 

Where P is the open loop interconnected transfer function matrix of the system. 
The D – K iteration procedure can be formulated as follows:  
Step 1. Start with an initial guess for D, usually set  D = I   
Step 2. Fix D and solve the H∞ sub-optimal K(s)  

 
( )

( ) arg min ( )l
K s s

K s F P,K
κ ∞Η∈ ( )

=    (11) 

Step 3. Fix Ki(s) and solve the convex optimal problem for D* at each frequency over a 
selected frequency range. 

 { }* 1

( )
( ) arg min ( ( ) ( ( ))l

D s D
D j s F P,K)D sω σ −

∈
= D   (12) 

Step 4. Curve fit D*(jω) to get a stable, minimum phase D*, and compare D*and D, stop if 
they closed in magnitude, otherwise go to step 2 until the tolerance is achieved. 

The achieved H∞ norm γ is found to be 0.9932, and a 10th order controller is obtained. 

Correspondingly, the structured singular value μ is found to be 0.993, and a 12th order 
controller is obtained, and the bode magnitude of two controllers is in the Fig.5. During the 
control synthesis process, the weighting function W1 and W2 are adjusted repeatedly, a few 
trials are needed, and the final results are Equation (6). 
The closed loop structure without performance weighting functions is shown in Fig.6, where 
G contains rigid mode. 
The singular value plots for closed loops are shown in left Fig. 7, from which it can be seen 

that H∞ and μ controllers isolate high frequency disturbance and noise, in the neighborhood 
of resonance frequencies. The disturbance and noise isolated by H∞ controller is more than 

27dB, and 21dB by μ controller. Right Fig. 7 shows that low frequency pointing fully transfer 
with attenuation less than 0.2dB. The nominal performance for H∞ synthesis controller is 

better than μ synthesis controller at resonance, but worse in high frequencies. 
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Fig. 5. Bode magnitude of the controllers 

 

 

Fig. 6. Closed-loop system structure for frequency responses 
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Fig. 7. Comparison of open loop and closed loop, Bode diagram from r to y 
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3.3 Robust stability analysis and controller reduction 

Robust stability is very important due to various uncertainties[22] and this section will give 

the robust stability margins of the uncertain closed loop. By calculating, the robust stability 

margin for H∞ closed loop is 1.56, and the destabilizing frequency is 625.9rad/s, and the 

corresponding values are 6.29 and 346rad/s for μ closed loop. Their stability robustness 

margins greater than 1 means that the uncertain system is stable for all values of its modeled 

uncertainty. On the other hand, parametric uncertainty, which is 30% change in stiffness 

and 80% change in damping, is considered with modeling uncertainty in order to test the 

robust stability and robust performance further. Fig. 8 show the singular value plots for H∞ 

and μ closed loop, from which it can be seen that robust stability and robust performance for 

H∞ closed loop is worse than μ closed loop in presence of large uncertainty.   
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Fig. 8. Singular value plot for H∞ closed loop and μ closed loop 

As shown in section 3.2, the order of H∞ controller is 10, and 12 of μ controller. Square root 

balanced model truncation, is used to reduce the order of controllers. Fig.9 shows the Bode 

diagrams for 6th order H∞ controller and 8th order μ controller with their original controller.  
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Fig. 9. Bode diagram for full and reduced controllers 
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The stability robustness margin is 1.56 of reduced H∞ closed loop, and 6.3 for μ closed loop, 
so the reduced controllers are robust stability. 

4. Robust control simulations of flexible struts  

The frequency responses of the open and closed loop system are shown in section 2.2 and 

2.3, and this section will give the corresponding transient response for reduced order μ 

controller and a PI controller that is shown in Equation (13), the nominal closed loop system 

structure for time domain responses shown in Fig.10 

 

 

Fig. 10. Nominal closed-loop system structure 

The input signal r can contain three parts: tracking signal r0, sinusoid disturbance dist, and 

random stochastic disturbance which is Gaussian white noise with mean zero and standard 

deviation 0.6 

 
20

32PIK
s

= +   (13) 

 0 10sin( )r t=    (14) 

 0.1sin(33 2 )dist π= ×   (15) 

Figs.11 and 12 present the transient response to a harmonic disturbance input, and from the 

figures it can be seen that the μ controller or PI controller can effectively isolate the 

harmonic disturbance located at 33 Hz more than 25.2dB (94.5%). 

For comparison, Fig.13 shows open response to the random disturbance, normally 

distributed Gaussian white noise with mean zero and standard deviation 0.60. 

Simultaneously, the sensor noise is also contained, which is 2% of random disturbance. 

Figs.14 and 15 shows the corresponding μ and PI closed loop response to the random 

disturbance and sensor noise. From the figures, it can be seen that the standard deviations 

are attenuated 11dB (70%) by μ controller, but the random disturbance is magnified to 132% 

by PI controller.  
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Fig. 11. Open loop and μ closed loop response to sinusoid disturbance in 33 Hz 
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Fig. 12. Open loop and PI closed loop response to sinusoid disturbance in 33 Hz 
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Fig. 13. Open loop response to stochastic disturbance 

www.intechopen.com



Robust Active Vibration Control of Flexible Stewart Isolators   

 

345 

 

0 1 2 3 4 5 6 7 8 9 10
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time(second)

M
a
g
n
it
u
d
e
(N

)

 

Fig. 14. μ Closed loop response to stochastic disturbance 
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Fig. 15. PI Closed loop response to stochastic disturbance 

The magnitude of PI and μ are shown in Fig.16, respectively, if the input r is a sinusoid 

tracking force r0, from which it can be seen that the magnitude of PI is much lager than that 

of μ, and the PI maybe destroy r0, additionally, the PZT actuators are easily saturated for the 

large gain. 

In order to verify the two requirements of μ, another input signal is selected which is made 

up of tracking signal r0, sinusoid disturbance dist, random disturbance and the sensor noise. 

The open loop response is shown in left Fig.17, from which it can be seen that the tracking 

signal is destroyed by the relatively small disturbance (5% of tracking signal). But the μ 

closed loop response, as shown in right Fig.17, gives very good result. 
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Fig. 16. The magnitude of PI and μ with input r0 
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Fig. 17. Open and μ closed loop response to tracking signal with sinusoid and stochastic 
disturbance 

5. Dynamic modeling and robust control of Stewart platforms  

The Stewart isolator is used to suppress vibrations, as shown in Fig.18.  It can be seen that 

there are 6 PZT actuators, {U}, {B}, {P} denotes the inertial frame,  base frame, payload frame, 

respectively. Ai is the joint connecting the payload with the strut i, the mass center of the 

payload is p
f

which is also the origin of the payload frame, px
f

is the vector representing the 

origin of payload frame in the base frame. 

iA
f

 can be represented in the base frame as in equation (16)   

 i PA p x= +
f f f

  (16) 

Then the inertial velocity of iA
f

 is given in equation (17) 

 i iv v pω= + ×
f f f f

   (17) 
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Fig. 18. Stewart isolators 

The component of iv
f

 projecting on the strut i is shown in equation 

 1 ( )i i iq v pω= ⋅ + ×
f f f f f$   (18) 

Then, it can be written in matrix form equation (19)   

 *1 1T T
i i i iq v p ω= −$   (19) 

Thus, equation 19 of 6 struts can be written as equation (20) 

 *1 1T T
i i i

v
q p Jχ

ω

⎛ ⎞
⎛ ⎞⎜ ⎟= − =⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎝ ⎠

A A
$ $

A A
  (20) 

Where J is the Jacobi matrix describing the motion transformation between the struts and 
the payload, J can be assumed as a constant in vibration isolation.  
According to Euler equation of the payload is given in equation (21) 

 c p pr a m J J Tω ω ω× + ⋅ + × ⋅ =$   (21) 

Where rc is the vector of the mass center of the payload in the payload frame, ω is its inertial 
angular velocity.  
Assuming the mass center of the payload is the origin of payload frame, i.e. rc = 0, Newton-
Euler equation can be written as matrix equation (22) 

 3 3 3 3 1

3 3 3 3 3 3

0 0

0

mI F

J J T
χ

ω ω
× ×

× × ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥×⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$$   (22) 
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Let 3 3 3

3 3 3 3

0

0

mI
M

J
×

× ×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 3 1

3 3

0
( )c

J
ω

ω ω
×

×

⎡ ⎤
= ⎢ ⎥×⎣ ⎦

 

Then  

 ( ) TM c J fχ ω+ =$$   (23) 

The dynamic model sketch can be shown in Fig. 19. Thus the equation (24) of the active 
struts can be obtained 

 ( ) ( ) ( )2 1 2 2 1 2 2 3 2 1 3 1 1 2 1( )sm x c c x k k x c l k l c c x k k x u+ + + + − − = + + + +$$$ $ $   (24) 

1 2 6diag([ , , , ])s s s sm m m m= A , [ ]1 2 6diag( )l l l l= A , 1 11 21 61diag([ , , , ])k k k k= A ,  

2 12 22 62diag([ , , , ])k k k k= A , 3 13 23 63diag([ , , , ])k k k k= A , 1 11 21 61diag([ , , , ])c c c c= A ,  

2 12 22 62c diag([c , c , , c ])= A , 3 13 23 63c diag([c , c , , c ])= A  

i1c

i2c

i1k

i2k

i3k
i3c

sim

f

i1x

i2x

i3x

 

Fig. 19. The spring-mass model of struts 

The force of payload subject to active struts is represented in equation (25) 

 ( ) ( )2 3 2 3 2 1 2 1f k k l c c l k x c x= − + − + − −$ $   (25) 

The dynamic model of the payload can be given as (26)  

 
( )( ) ( )

( )

1 1 1
2 3 2 3

1 1
1 2 1 2 1

 

     ( )

U U U T U
B

U T U T
C B C B B BP

M J l M RJ J c c l J k k l

MJ J x J c x J k x MJ J c Mc c ω

− − −

− −

+ + + + +

= − − − + − −

$$ $$

$$ $
  (26) 

Where JB =

( )

( )

B
1

B
6

1  1

1  1

U T U U T
B i i

U T U U T
B i i

R q

R q

⎡ ⎤×
⎢ ⎥
⎢ ⎥
⎢ ⎥

×⎢ ⎥⎣ ⎦

B B , JC =
( )*

0

U B
B PI R x

I

⎡ ⎤−⎢ ⎥
⎢ ⎥⎣ ⎦
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CBP =
( )2

                   

U B U B
B B P B B B P

U B
B B P

R x R x

R

ω ω ω

ω ω

⎡ ⎤× + × ×
⎢ ⎥
⎢ ⎥×⎣ ⎦

$
 

CB =

( )( )

( )( )

B B
1 1 1

B B
6 6 6

1  2  

1  2  

U T U U
B B B B B

U T U U
B B B B B

R q R q

R q R q

ω ω ω

ω ω ω

⎡ ⎤× × + ×
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥× × + ×⎣ ⎦

$

B

$

 

Assuming that the velocity 2x$  can be measured 

  2vy x= $   (49) 

Considering micro vibration in space, where disturbance force is from micro Newton to 

several Newton, ωB and B
Pω are small variables, such that CB and CBP can be neglected.  

Using the following parameters of Stewart isolator as following; 

The coordinates of 6 Joints Ai connecting strut and the payload are 6 32

2 6 3
[ ],−  

6 3

3 3
[0 ] , 6 32

2 6 3
[ ]− − m, respectively, where two joints share the same coordinates. 

The corresponding base joints are 6 6 62 2

3 2 6 2 6
[0 0], [ 0], [ 0]− − m, respectively. 

The moment inertia of payload is 

20 2 2

1.5 2 1.5

1.5 1.5 2

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

kgm2  

The mass of payload m =15Kg, and it has uncertainty 2%. The stiffness 1 6 6800000 /k I N m×= , 

2 6 6800000 /k I N m×=  

Damping 1 6 6100c I ×=  Ns/m, 2 6 6200c I ×=  Ns/m, 3 6 610c I ×= Ns/m 

Choosing the performance weighting function and control weighting function as following   

  
6

1 64

( 0.2)( 10 )
W =20400

( 20)( 10 )

s s
I

s s

+ +
×

+ +
  (50) 

 
( )2 6

( 1)( 2000)
80

( 0.01) 20000

s s
W I

s s

+ +
= ×

+ +
 (51) 

The robust controller is solved using D-K iteration, the singular values of controller can be 
seen in left Fig.20. The comparison of open loop (i.e. passive isolation) and closed loop with 
robust controller (i.e. active isolation) is shown in right Fig.20 
The robust controller can suppresses vibrations from 0.3Hz to 2000Hz, and the vibrations in 
frequency 3Hz-800Hz is isolated more than 25dB.  

6. Simulations of the robust control of Stewart isolators 

Assuming Stewart isolator is excited by the disturbance force 0.1 N in 10Hz and the  

magnitude of x1 is 3.93 × 10-6 m/s. The open loop response of the Stewart isolator, i.e. the 
passive isolation, is shown in Fig. 21. However, the closed loop response (active isolation) of 
Stewart isolator is shown in Fig.22.  The velocity of the payload is very small, such that the 
second terms can be neglected, indicating the assuming of the Stewart isolator is correct. 
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Fig. 20. The comparison of open loop and closed loop with robust controller 

The maximal translation velocity of the center of payload under passive isolation is 8.8 × 10-6 

(m/s), obviously, it is amplified to 124%, in other words, the Stewart isolator is a amplifier 

for the disturbance in 10Hz. The maximal translation velocity of the center of payload after 

the active isolation by robust controller is 3.4 × 10-8 (m/s), which is reduced by 99.13% 

(equals to 41.3dB) with respect to the input velocity, moreover, the angular velocity of the 

payload can be reduced by 99.13%(46.4dB) with respect to passive isolation.  
Assuming the Stewart isolator is excited by white noise disturbance as shown in Fig.23, The 
maximal RMS velocity of input disturbance is 0.0036 (m/s), and the maximal RMS force of 
input  disturbance is 0.1N. 

With passive isolation (open loop), the RMS of the payload translation velocity is 5.74 × 10-5 

(m/s), and the RMS of payload angular velocity is 3.5 × 10-3 (deg/s), indicating that the 

translation vibrations of the payload can be reduced by 98.4%, 35.9dB; With active isolation 

by robust controller, the RMS of the payload translation velocity is RMS 1.3 × 10-6 (m/s), 

reduced by 99.96% (68.8dB) with respect to disturbance velocity, however, the RMS of 

payload angular velocity is 8.4 × 10-5 (deg/s), reduced by 97.6% (32.4dB) with respect to the 

passive isolation.  
The control signal is shown in Fig.26, the RMS of the maximal control force is 0.2N, and the 
maximal displacement of the PZT is less than 0.02 μm, which is far smaller than the length 
of the active strut.  

7. Conclusions  

This chapter presents multi objective robust H∞ and μ synthesis for active vibration control 

of the flexure Stewart platform. The robust H∞ and μ synthesis control of flexible struts are 
given considering the noise of sensors. The simulation indicates that the reduced controllers, 
by square root balanced model truncation, can keep the robust stability compared with the 
original controllers. Finally, dynamic model and robust control of Stewart isolators is given, 
and the robust controller can reduce vibrations in 3Hz-800Hz more than 96%. 
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Fig. 21. the velocity of the payload under passive isolation(open loop) 
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Fig. 22. The velocity of the payload under active isolation(close loop) 
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Fig. 23. The velocity and force of disturbance of Stewart isolator 
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Fig. 24. The velocity of the payload under passive isolation(open loop) 
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Fig. 25. The velocity of the payload under active isolation (close loop) 
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Fig. 26. The control signal and variances of 6 struts 
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