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1. Introduction 

Semiactive control systems that offer the reliability of passive control systems as well as the 
versatility and adaptability of active control systems have received significant attention for 
structural vibration control (Jung et al., 2004). Magnetorheological (MR) fluid dampers have 
emerged as such a class of semiactive damping devices. By activating the MR fluid 
contained in the device through magnetic field, it can reversibly change from liquid to 
semisolid in milliseconds, which results in a continuously controllable device with high 
bandwidth. Moreover, MR dampers require minute power for the field activation and are 
insensitive to impurity penetration such as are commonly encountered during manufacture 
and usage (Carlson et al., 1996). More importantly, they are inherently fail-safe devices in 
that they can still operate as passive dampers once the control hardware fails. Recognizing 
the attractive characteristics and promising potential of the MR-based damping technique, 
numerous researchers and engineers have investigated the feasibility and application of the 
MR dampers in a wide variety of areas, such as seismic protection of building and bridge 
structures (Dyke et al., 1996; Gordaninejad et al., 2002; Loh et al., 2007), vibration control of 
bridge cables (Johnson et al., 2000; Ko et al., 2002; Ni et al., 2002; Duan et al., 2005; Weber et 
al., 2005b; Li et al., 2007), vibration damping of suspension systems of trains and vehicles 
(Liao and Wang, 2003; Song et al., 2005; Choi et al., 2009), and stability augmentation of 
helicopters (Gandhi et al., 2001; Hu & Wereley, 2008). 
While possessing controllable damping capability, the existing MR dampers are incapable of 
monitoring structural vibrations or excitations exerted on structures, and require extra 
sensors for implementing closed-loop semiactive control. As a consequence, the MR 
dampers are usually used as adjustable passive dampers in an open-loop mode in the 
current practices of civil structural control, like in vibration control of bridge cables (Chen et 
al., 2004; Weber et al., 2005a), which hinders full utilization of their controllable damping 
capability. Recently, a self-sensing MR damper embedded with a piezoelectric force sensor 
has been developed to possess dual functionality of force sensing and controllable damping; 
thus it has the potential to facilitate real-time closed-loop control in a relatively simple and 
cost-effective manner (Or et al., 2008). 
One of the important tasks to fully exploit the potential of an MR damper in control 
implementation is to establish an accurate model that can characterize its intrinsic highly 
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nonlinear properties, particularly hysteresis and force saturation. On the other hand, in well 
recognizing the fact that the force generated by the MR damper cannot be controlled directly 
and only the current applied to the MR damper can be commanded, it is essential and 
beneficial to build a model for describing the inverse dynamics of the MR damper. The 
inverse dynamic model will be incorporated into the control system to produce currents for 
the MR damper to track the desired optimal control forces implementable by the damper. 
Since the last decade, considerable research efforts have been devoted to representing the 
forward dynamics of MR dampers and a variety of models have been documented in the 
literature. They can be classified as parametric and nonparametric models. Among several 
parametric models described in terms of analogous mechanical elements (Kamath & 
Wereley, 1997; Wereley et al., 1998; Spencer et al., 1997; Jiménez & Álvarez-Icaza, 2005; 
Ikhouane & Dyke, 2007), a phenomenological model on the basis of the Bouc-Wen hysteresis 
model proposed by Spencer et al. (1997) is regarded as the “state-of-the-art” semi-physical 
model of an MR damper. This model can accurately represent the nonlinear hysteresis of a 
typical MR damper over a wide range of operating conditions. However, it includes 
fourteen parameters in need to be adapted; identification of them requires sophisticated 
searching algorithms and is computationally intense. Also, a high integration-step rate in 
the order of kHz has to be used to ensure numerical stability in solving the nonlinear 
differential equations, which limits the model’s application in real-time control. 
An alternative representation of forward dynamics of MR dampers is by using 
nonparametric methods, especially black-box modeling techniques, due to their 
considerable flexibility and effectiveness in system modeling as well as few physical insights 
necessary for developing a model. These black-box techniques include adaptive neuro-fuzzy 
inference system (Schurter & Rochke, 2000), polynomial NARX (nonlinear autoregressive 
with exogenous inputs) modeling (Leva & Piroddi, 2002), wavelets-based identification 
technique and ridgelet network optimization approach (Jin et al., 2005), and artificial neural 
networks (Chang & Roschke, 1998; Wang & Liao, 2001; Du et al., 2006; Cao et al., 2008). 
Despite the widespread use of the black-box techniques in MR damper modeling, only a few 
models were developed and evaluated based on real measurement data of MR dampers and 
using numerical simulation data instead. Moreover, it is commonly believed that neural 
networks are prone to overfitting, which occurs when a neural network only memorizes the 
superficial details of training data rather than learns the true relationship underlying the 
data. Hence, generalization capability is a critical concern in constructing a neural network 
for estimation or prediction on novel situations. However, few of the previous works 
addressed the overfitting or generalization issue when using neural networks to identify the 
dynamics of MR dampers, which might give rise to reliability problem in the control 
applications with the overfitted black-box models. 
Likewise, due to the highly nonlinear properties of an MR damper, a linear forward 
parametric model invertible for determining command current to be input into the MR 
damper is not available; and what is more, it is challenging to formulate a nonlinear 
parametric model for the inverse dynamics similar to a forward one. Tsang et al. (2006) 
developed simplified inverse dynamics (SID) models for MR dampers with respect to the 
Bingham plasticity model and the Bouc-Wen hysteresis model (Spencer et al., 1997) using a 
piston velocity feedback algorithm and a damper force feedback algorithm for each model. 
The effectiveness of the SID models was demonstrated in terms of force tracking accuracy 
through numerical simulations, while errors exist in the pre-yielding phase when the 
damper piston velocity is small. More recently, attention has been attracted to modeling of 
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the inverse dynamics of MR dampers with the employment of black-box techniques, such as 
neural networks (Wang & Liao, 2001; Chang & Zhou, 2002; Xia, 2003; Du et al., 2006; Cao et 
al., 2008), neuro-fuzzy methods (Schurter & Roschke, 2001) and fuzzy logic methods (Zhou 
et al., 2003; Du & Zhang, 2008). 
This chapter describes configuration, fabrication as well as calibration and performance tests 
of the devised self-sensing MR damper firstly. Then, a black-box identification approach for 
modeling the forward and inverse dynamics of the self-sensing MR damper is presented, 
which is developed with the synthesis of NARX model and neural network within a 
Bayesian inference framework to have the ability of enhancing generalization. 

2. Self-sensing MR damper 

As illustrated in Fig. 1, the configuration of a self-sensing MR damper is composed of 
damper and sensor parts. The damper part originates from an actuation-only MR damper. It 
comprises a cylinder with MR fluid, an electromagnet, a diaphragm, an accumulator and a 
piston housed inside, as well as a pair of electrical wires extended from the electromagnet 
and through the piston. The body diameter of the damper is 41 mm. It is 208 mm and 155 
mm long in fully extended and compressed positions, respectively, and hence can provide a 
stroke of ±25 mm. The magnetic field inside the device can be varied externally by 
monitoring the input current supplied to the device. The maximum input currents are 1 A 
and 2 A for continuous and intermittent working situations, respectively. 
 

Electrical wires

Signal wires

MR fluid

Piston

Cylinder

Electromagnet

Diaphragm

Accumulator

Damper part

Sensor part

Electrical wires

Signal wires

MR fluid

Piston

Cylinder

Electromagnet

Diaphragm

Accumulator

Damper part

Sensor part

 
Fig. 1. Schematic diagram of self-sensing MR damper 

The sensor part is essentially a prestress-type piezoelectric force sensor attached axially to 
the damper part, the detailed configuration of which is shown in Fig. 2. Components of the 
piezoelectric force sensor include a piezoelectric wafer, two electrode wafers, two insulating 
wafers, two adaptors, a pair of signal wires and a threaded bolt. A lead zirconate titanate 
(PZT) piezoceramic ring (Ferroperm Pz28), having an outer diameter of 38 mm, an inner 
diameter of 13 mm and a thickness of 2 mm, is selected as the piezoelectric wafer. Fired 
silver layers are coated on the two surfaces of the piezoelectric wafer perpendicular to its 
thickness, and electric polarization is induced along the thickness direction using these 
electrode surfaces. The electrode wafers are made of a beryllium-copper (Be-Cu) alloy sheet 
and positioned on either side of the piezoelectric wafer to provide external connections with 
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the sensor signal wires. The insulating wafers made of polyimide are also in a ring shape 
with an outer diameter of 40 mm, an inner diameter of 10 mm and a thickness of 0.1 mm. 
Each of them is inserted between the electrode wafer and the metal adaptor to prevent 
short-circuiting of the piezoelectric wafer and the whole sensor. These sensor components 
are sandwiched centrally in a stack between two steel adaptors and assembled by using a 
standard M10 threaded bolt according to the arrangement in Fig. 2. The bolt is insulated 
using a plastic band from the electrode wafers and the piezoelectric wafer. 
 

 
Fig. 2. Assembly diagram of piezoelectric force sensor 

Since the piezoelectric force sensor works properly only under compression, the technique 
of mechanical prestressing is performed on the sensor so that tension forces can be 
measured while the piezoelectric element remains in compression during operation. A 
torque driver (BRITOOL), calibrated with the compression stress of 18 MPa on the 
piezoelectric wafer for a torque of 30 N·m, is employed to exert torque slowly to the bolt 
until it is overloaded. During the prestressing, the positive and negative electrodes are 
connected to form a short-circuit condition to avoid accumulation of charges on the surfaces 
of the piezoelectric wafer. The assembled sensor is evaluated (to be reported in the next 
section) and then embedded with the damper part with the configuration of Fig. 1. Fig. 3 
shows the photograph of the self-sensing MR damper prototype. In operation, the 
embedded piezoelectric force sensor senses the variation of force imposed on the damper 
during structural vibration. The sensed signals are then used to assist in adjusting the 
current input to the damper through an appropriate control strategy and thereby the 
commanded damping force. The self-sensing MR damper thus has the dual function of force 
sensing while controllable damping. 
 

 
Fig. 3. Photograph of self-sensing MR damper prototype 
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3. Experiments of self-sensing MR damper 

Calibration tests of the piezoelectric force sensor are conducted prior to embedding it with 
the damper. Then, performance tests are carried out to investigate sensing capability and 
damping behaviors of the self-sensing MR damper. All the tests are performed on a 
servohydraulic material testing system (MTS 810). The MTS is operated in force-controlled 
mode for the calibration tests and in displacement-controlled mode for the performance 
tests using harmonic excitations with a wide spectrum of frequency and amplitude. The 
output charge signals generated by the piezoelectric force sensor are measured through a 
charge meter (Kistler 5015). The charge, force and displacement signals are sampled and 
recorded by a computer-controlled data acquisition system. The displacement and force 
excitations exerted to the damper by the MTS are also acquired with the data acquisition 
unit incorporated in the MTS for further data analysis. 

3.1 Calibration 

For calibration of the piezoelectric force sensor, force-controlled tests are conducted using 
sinusoidal excitations with frequencies of 0.5, 1.0, 2.5, 5.0 and 10.0 Hz and amplitudes of 500, 
750, 1000, 1250, 1500, 1750 and 2000 N, as well as ramp excitations with frequencies of 0.5, 
1.0, 5.0 and 10.0 Hz and amplitudes of 500, 1000, 1500 and 2000 N. Experimental data are 
used to investigate the relationship between the MTS driving force exerted on the 
piezoelectric sensor and the output charge from the piezoelectric sensor. Fig. 4 shows the 
time domain signals of the driving force and the output charge, as well as relationship plots 
of force versus charge for the selected calibration cases under the sinusoidal force excitations 
with a frequency of 2.5 Hz and amplitudes of 500 to 2000 N. It is observed that for each case 
there is always a phase difference of 90° between the output charge and the input force. The 
relationship between the charge and the force is linear, and the slopes of charge versus force 
obtained under different excitation conditions are almost identical. 
A sensitivity coefficient for the piezoelectric force sensor, quantified as the ratio of charge to 
force (k), can be derived from the linear relationship between the charge (Q) and the force 
(F), and is calculated by 
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(a) 2.5 Hz, 500 N 

www.intechopen.com



 Vibration Control 

 

60 

10 10.5 11 11.5 12 12.5
-3

-2

-1

0

1

2

3
x 10

5

Time (s)

C
h

a
rg

e
 (

p
C

)

 

 

10 10.5 11 11.5 12 12.5
-1500

-1000

-500

0

500

1000

1500

F
o

rc
e

 (
N

)

Charge

Force

     
-1500 -1000 -500 0 500 1000 1500
-3

-2

-1

0

1

2

3
x 10

5

Force (N)

C
h

a
rg

e
 (

p
C

)

 
 

(b) 2.5 Hz, 1000 N 
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(c) 2.5 Hz, 1500 N 
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(d) 2.5 Hz, 2000 N 

Fig. 4. Calibration of piezoelectric force sensor under force-controlled sinusoidal excitations 
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where n is the total number of the data samples used for the calibration. In addition, a 
normalized standard deviation 
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is defined to evaluate the accuracy of the sensitivity k, where F  is the mean of the force. 
The values of the sensitivity coefficient k and the corresponding normalized standard 
deviations δ1 are calculated for each calibration case (with different combinations of 
frequencies from 0.5 to 10.0 Hz and excitation amplitudes from 500 to 2000 N). It is found 
that the sensitivity coefficients obtained from all the calibration cases are almost identical, 
and the corresponding normalized standard deviations are all less than 0.07. Finally, the 
sensitivity coefficient for the piezoelectric force sensor is averaged from the results of all the 
calibration cases to be -187.874 pC/Nk =  with a normalized standard deviation of 0.0102. 
As a result, the force sensed by the piezoelectric force sensor is expressed as 

 kQF =PZT   (3) 

3.2 Performance 

The sensing capability of the self-sensing MR damper is evaluated by the degree of 
agreement between the force signals from the piezoelectric force sensor and from the MTS 
transducer, which is defined by a normalized root mean squared residual of 
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in which m is the total number of the data samples used in the calculation. 
Experimental data are obtained under displacement-controlled excitations of different 
frequencies and amplitudes and with currents (I) supplied to the damper of 0, 0.25, 0.5, 0.75 
and 1.0 A, respectively. Fig. 5 shows a comparison of the force signals from the embedded 
piezoelectric force sensor and from the MTS transducer for the sinusoidal excitation with a 
frequency of 5 Hz and an amplitude of 5 mm while the input currents are from 0 to 1.0 A, 
and Table 1 gives the corresponding values of δ2. A good agreement between the two force 
signals is observed, verifying the good sensing capability of the self-sensing MR damper. 
Fig. 6 shows force-displacement and force-velocity hysteresis loops of the self-sensing MR 
damper under displacement-controlled sinusoidal excitations with a frequency of 5 Hz and 
an amplitude of 5 mm for various currents from 0 to 1.0 A. It is clear that the magnitude of 
the damper force increases with the increment of the applied current, but the increase slows 
down when the current approaches to 1.0 A due to the magnetic saturation. Also, the areas 
enclosed by the force-displacement and force-velocity hysteresis loops enlarge with the 
increasing current, indicating the enhanced capability of dissipating vibration energy. 
 

Current (A) 0 0.25 0.5 0.75 1.0 
δ2 0.0410 0.0387 0.0396 0.0390 0.0386 

Table 1. Normalized root mean squared residuals of force signals 
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Fig. 5. Comparison between force signals obtained from piezoelectric force sensor and MTS 
transducer 
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Fig. 6. Hysteresis behavior of self-sensing MR damper 
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4. Modeling of self-sensing MR damper 

Due to the inherent nonlinearity of the self-sensing MR damper, the modeling of its 
dynamics is a nontrivial task. In order to build effective and versatile models for the 
damper, a black-box modeling method is developed by synthesizing NARX model and 
neural network from a Bayesian inference perspective. 

4.1 Methodology 
4.1.1 NARX network 

NARX model is a very general and powerful black-box model structure due to both its 
capability of capturing a wide variety of nonlinear dynamic behaviors and the availability of 
identification algorithms with a reasonable computational cost (Chen et al., 1990). It has 
been indicated, under mild assumptions, that any finite-dimensional nonlinear system 
admits an input-output NARX representation, at least locally (Levin & Narendra, 1996). An 
NARX model is formulated as a discrete time input-output recursive equation of 

 )());(,),1(),(),(,),1(()( tentututuntytyfty uy +−−−−= θ……   (5) 

where u(t) and y(t) denote model input and output variables at time t; the integers nu and ny 
are the respective maximum lags of the input and the output; e(t) is the model error between 
the target and the prediction; and f(·,θ) is a nonlinear mapping function of its arguments 
depending on a vector of parameters θ. In order to ensure a good approximation to the real 
system, f(·,θ) should be a universal approximating function. 
The multi-layer perceptron (MLP) is an artificial neural network that can realize an overall 
input-output black-box mapping. It consists of multiple layers of computational neurons 
interconnected with connection weights in a feedforward way. An MLP with one hidden 
layer has been theoretically proved to be a universal approximator in the sense that it can 
approximate any continuous nonlinear function to arbitrary accuracy provided the number 
of neurons in the hidden layer is adequate and the network weights and biases are adjusted 
appropriately (Hornik et al., 1989; Leshno et al., 1993). By applying a single-hidden-layer 
MLP to emulate the multiple-input-single-output NARX model (5), it can be expressed as 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑ ∑

= =

o
n

j

h
j

n

i

i
h
ji

o
j bbtzwgwgty

h i

1 1
12 )()(ˆ   (6) 

where )](,),1(),(),(,),1([)( uy ntututuntytyt −−−−= "…z  is the input vector fed into the 
network; zi is the ith variable of z(t); ni (= ny + nu + 1) denotes the number of input neurons; 

h
jiw  is the connection weight from the ith input neuron to the jth hidden neuron; h

jb  is the 
bias for the jth hidden neuron; nh is the total number of hidden neurons; o

jw  is the weight 
connecting the only neuron in the output layer to the jth hidden neuron; ob  is the bias for 
the output neuron; g1(⋅) and g2(⋅) are activation functions for the hidden and output layers, 
respectively; )(ˆ ty  is the network output at time t. By expressing the function f(·,θ) in Eq. (5) 
using Eq. (6) with the real valued weights w ( T},{ o

j
h
ji ww= ) and biases b ( T},{ oh

j bb= ), which 
together make up the model parameter vector θ, the resulting system is named an NARX 
network. This synthesis results in a powerful model structure that is able to represent 
complex nonlinear behaviors such as chaos, hysteresis, saturation effects, or combinations of 
several nonlinear phenomena (Suykens et al., 1996). 
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4.1.2 Bayesian learning 

From the statistical point of view, the concept of maximum likelihood, like back-
propagation algorithms, is typically employed in the training procedure of MLP models for 
the parameter estimation. It attempts to search a single set of network parameters from a 
sequence of training data D with N samples through the minimization of an error function, 
the sum of squares error between the network prediction and the corresponding target 

 ∑
=

−=
N

t

D tytyE
1

2))()(ˆ(   (7) 

However, during such searching (training) process, MLP models based on the maximum 
likelihood approach are easily led to complex topologies, which may overfit the training 
data. As a result, such overfitted models will deteriorate the generalization performance and 
be unable to make predictions as well for unseen input data as for the training case. 
One of the feasible procedures to improve generalization is weight decay, which modifies 
the error function (7) by involving a penalty term to 

 θαβ EES D +=)(θ   (8) 

where the regularizing term ∑
=

=
M

i

iE
1

2θθ  is the sum of squares of the M network parameters 

(weights and biases), which constrains the complexity of the network by limiting the growth 
of the network parameters; and α and β are regularization parameters, which serve to 
balance the trade-off between the prediction accuracy and the model complexity. MacKay 
(1992a, b) has made extensive investigations on the application of a Bayesian inference 
technique to adapt the weights and biases through network training and meanwhile to 
optimize the regularization parameters in an automated fashion. 
Unlike the maximum likelihood approach, the Bayesian inference technique considers a 
probability distribution over the network parameters, which represents the relative degree 
of belief in different parameter values and is described by a prior distribution P(θ|α) in the 
absence of any data. Once the data set D is taken, the posterior probability distribution for 
the network parameters can be expressed using the Bayes’ theorem as 
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where P(D|θ, β) is the likelihood of the data that accounts for the network accuracy on the 
training data; and P(D|α, β) is a normalization factor which ensures that the posterior gives 
unity when integrated over the parameter space. 
By assuming a zero-mean Gaussian noise in the training data D and Gaussian priors for the 
network parameters θ, the likelihood of the data and the prior probability of the parameters 
can be written respectively as 
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Substitution of Eq. (10) into Eq. (9) obtains the posterior probability distribution as 
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where S(θ) is given by Eq. (8) and ∫ −= θθ dSZS ))(exp(),( βα . 

Accordingly, the network parameters corresponding to the maximum posterior distribution 

or the most plausible network parameters MPθ  can be found by minimizing the negative 
logarithm of Eq. (11) with respect to the network parameters. Since the normalizing factor 
ZS(α, β) is independent of the network parameters, this is equivalent to minimizing the 
regularized error function S(θ) given by Eq. (8). Therefore, by solving the parameter 
optimization problem to minimize the objective function of Eq. (8), the maximum posterior 
network parameters can be inferred during the network learning procedure. 
The other crucial inference step in the Bayesian learning technique is the optimization of the 
regularization parameters α and β. By applying the Bayes’ theorem, the posterior 
probability for these two parameters given the data D is represented as 
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βαβα
βα =   (12) 

The prior P(D|α, β) is assumed to be chosen as very insensitive to the values of α and β. 
Since P(D) is independent of α and β, the maximum posterior values for the regularization 
parameters are found by maximizing the likelihood term P(D|α, β), which is the 
normalization factor in Eq. (9). Using Eqs. (9) to (11), the likelihood is derived as 
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If the Gaussian approximation is made for the posterior distribution of the network 
parameters, then ZS is given by (MacKay, 1992a) 

 ))(exp()2( MP2/1MP2/ θH SZ M
S −≈

−
π   (14) 

where MP
H  is the Hessian matrix H of the regularized objective function S(θ) evaluated at 

MPθ . Introducing Eq. (14) into Eq. (13) and taking the derivatives of the logarithm of the 
likelihood respectively with respect to α and β yield 

 MP
MP

2 θ

γα
E

= , MP
MP

2 DE

N γβ −
=    (15a, b) 

where ))((2 1MPMP −−= HtraceM αγ  measures the number of network parameters that are 
effectively involved in reducing the objective function. 
In this study, the Levenberg-Marquardt (LM) algorithm (Marquardt, 1963; Hagan and 
Menhaj, 1994) is employed to find the most plausible network paramters MPθ  to minimize 
the objective function Eq. (8), due to its efficient and stable convergence for moderate-sized 
neural networks that contain up to a few hundred weights. The costly computation of the 
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Hessian matrix can also be solved by making a Gauss-Newton approximation to it using the 
LM algorithm. As γ depends on α, the values of α and β are re-estimated iteratively using 
Eq. (15), which is carried out during the training process. 
In practical implementation of the Bayesian learning technique, it is suggested that all data 
sets be normalized into the range of [-1, 1] to avoid that some network parameters will be 
trained to be extremely large or small to accommodate different scales of input and target 
variables. In addition, the procedure of multiple random initializations of network 
parameters is used to retrain the network to assure that the optimal solution, instead of local 
minima, has been reached. 

4.2 Forward dynamic model 
4.2.1 Model formulation 

In terms of Eq. (5), an NARX network model for describing the forward dynamics of the 
devised self-sensing MR damper can be expressed as 

 ))(,),1(),(,),(),(,),(),(,),(()(ˆ
FIxxfwd ntFtFntItIntxtxntxtxtF −−−−−= ""�"�" �Ν   (16) 

where x, x� , I and F are displacement, velocity of the damper piston, current input and 
damper force, respectively; xn , xn � , In  and Fn  denote the respective maximum lags of the 
displacement, velocity, current and damper force; and )(⋅fwdN  represents the forward input-
output mapping identified by an MLP. In Eq. (16), present and past values of the piston 
displacement, velocity, current together with past values of the sensed damper force, which 
contain dynamic physical information of the damper, are chosen as possible network input 
variables to describe its forward dynamics and predict the one-step-ahead damper force. 
To assess the prediction performance of the formulated NARX network model, the root 
mean square error (RMSE) between the measured damper force and the prediction from the 
model is adopted and evaluated, which is given by 

 ∑
=

−=
T

t

tFtF
T 1

2)](ˆ)([
1

RMSE   (17) 

4.2.2 Model architecture design 

The NARX network employed in this study is configured to consist of three successive 
layers, which are an input layer, a hidden layer and an output layer, and is formulated as 
Eq. (6). The activation functions for the hidden and output layers are chosen as a hyperbolic 
tangent sigmoid function and a linear function, respectively, and expressed as 
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The experimental data from the displacement-controlled tests are used to train, design and 
evaluate the NARX network model for the self-sensing MR damper. The modeling process 
is divided into two stages. In the first stage, a training set and a validation set are built up 
with the acquired experimental data. The training set is used to adapt the network 
parameters through the Bayesian learning, while the validation set is used for designing 
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model architecture. In the second stage, the well-trained model is evaluated using a novel 
test set uninvolved in the first stage to examine its generalization performance. Table 2 lists 
information of different sinusoidal excitations and input current levels for generating the 
training, validation and test sets. 
 

Data set Sinusoidal excitation Current 
 Amplitude Frequency  

1 mm 1 Hz 0:0.25:1.0 A 
5 mm 5 Hz 0:0.25:1.0 A 
1 mm 5 Hz 0:0.5:1.0 A 

Training 

5 mm 1 Hz 0:0.5:1.0 A 
1 mm 1 Hz 0.5 A 
5 mm 5 Hz 0.5 A 
1 mm 5 Hz 0.25, 0.75 A 

Validation 

5 mm 1 Hz 0.25, 0.75 A 
Test 5 mm 2.5 Hz 0:0.25:1.0 A 

Table 2. Experimental cases for generation of training, validation and test sets 

In designing the NARX network architecture, three important issues are addressed with the 
purpose of realizing superior modeling performance and enhancing generalization 
capability. These issues include selection of an optimal combination of input variables, 
choice of the required numbers of input lags and determination of the optimal number of 
neurons in the hidden layer. 
From the physical behaviors of the self-sensing MR damper shown in Fig. 6 and the model 
formulation (16), the damper piston displacement (x) and velocity ( x� ), the current input to 
the damper (I), and the past values of the damper force (F) can be chosen as the NARX 
network inputs. However, to reduce redundant information and obtain a simple network 
topology for improving model performance, the optimal combination of input variables is 
identified for the NARX network. In terms of the RMSE index in Eq. (17) evaluated on the 
validation set in Table 2, Fig. 7 compares the model performance with different input 
combinations among the input variables x, x� , I and F. Here the input lags 0=== Ixx nnn �  
and 1=Fn  are taken and the number of hidden neurons (nh) is equally set to be 15 for each 
network configuration. It evidences from Fig. 7 that as the combination of either (x, I, F) or 
(x, x� , I) is used, poor model performance is obtained, which reveals that the use of both the 
velocity x�  and the past damper force F is important and essential for enhancing the model 
prediction quality. The involvement of the current I is also necessary in that it affects the 
damper force significantly, which is verified by comparing the results with the inputs of (x, 
x� , F) and (x, x� , I, F). Moreover, if all the three variables of x� , I and F are taken, the role 
played by the displacement x is negligible. 
Fig. 8 shows the network performance over various input combinations, numbers of input 
lags ( 3,2,1==== FIxx nnnn � ) and numbers of hidden neurons (nh = 5, 10, 15, 20). By 
further comparing the results on different input combinations in Fig. 8, the significance of 
involving x� , I and F into the network inputs is again confirmed. The RMSE values of the 
combination ( x� , I, F) are comparable to those of the combination (x, x� , I, F) in the same case 
of input lag. Thereby, from the view of model simplicity, the velocity x� , the current I and 
the past damper force F are finally selected as the input variables for the forward model. 
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Fig. 7. RMSE analysis for different input combinations ( 0=== Ixx nnn � , nF = 1, nh = 15) 
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(a) 1==== FIxx nnnn �                                          (b) 2==== FIxx nnnn �  
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(c) 3==== FIxx nnnn �  

Fig. 8. RMSE analysis for different input lags 

On the other hand, effects of the input lags can be observed from Figs. 7 and 8. The RMSE of 
validation for each network configuration decrease with the increment of the input lag. The 
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rate of decrease becomes less as larger input lag is used. Especially, for models with inputs 
of ( x� , I, F) and enough hidden neuron number, larger input lags ( 3==== FIxx nnnn � ) has 

a relatively small effect on further enhancing the model performance in comparison with the 
case of 2==== FIxx nnnn � . Consequently, the input lag for each input variable is chosen to 

be two to achieve a compact network topology and its resulting training efficiency. 
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Fig. 9. RMSE analysis for different numbers of hidden neurons ( 2==== FIxx nnnn � ) 

Once the input variables and the number of input lags are determined, it is simple to decide 
the number of hidden neurons (nh) using a trial and error procedure by extending it from 5 
to 25. Fig. 9 displays the RMSE index (evaluated on the validation set) as a function of the 
number of hidden neurons (nh). The optimal number of hidden neurons is determined to be 
18, in which the minimal RMSE of validation is reached. 
With a comprehensive consideration of topology simplicity and model accuracy, an NARX 
network, configured with 8 input neurons, 18 neurons in one-hidden-layer and 1 output 
neuron, is designed for modeling the forward dynamics of the self-sensing MR damper. 

4.2.3 Model prediction capability under harmonic excitations 

Generalization performance of the configured Bayesian NARX network is examined using 
the test set given in Table 2. The test set is acquired under 2.5 Hz sinusoidal displacement 
excitations with an amplitude of 5 mm and current inputs ranging from 0 A to 1.0 A, which 
has not been involved in the stage of training and is new for the model assessment. The one-
step-ahead damper force is produced from the model once it is exposed to the test data. The 
RMSE between the predicted and measured damper forces is less than 0.04 for each case of 
input current in the test set, as shown in Table 3, which demonstrates that the model 
generalizes well. Fig. 10 plots the hysteresis loops of force-displacement and force-velocity 
of the damper obtained from the predicted results of the model and from the experimentally 
recorded data. A comparison between the predicted and measured results indicates that the 
NARX network model accurately describes the hysteretic behaviors of the self-sensing MR 
damper. It also well learns the saturation effects of the damper, verifying the learning ability 
of the Bayesian NARX network technique. 
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Current (A) 0 0.25 0.5 0.75 1.0 
RMSE 0.0269 0.0132 0.0173 0.0238 0.0312 

Table 3. RMSE results for test set 
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(a) Force versus displacement                                  (b) Force versus velocity 

Fig. 10. Comparison of predicted and measured force-displacement and force-velocity loops 
under 5 mm, 2.5 Hz harmonic excitation 

4.2.4 Model prediction capability under random excitations 

All of the data examined previously for the Bayesian NARX network modeling have been 
based on the responses of the self-sensing MR damper subjected to harmonic displacement-
controlled excitations and commanded by currents held at constant levels. However, an 
important requirement for system modeling is a set of representative data containing 
abundant system information. To ensure generalization and robustness of the damper 
models in practical control circumstances, multiple harmonic excitations are often 
insufficient due to the limited amount of information included within them. Therefore, 
random displacement-controlled excitations and current inputs are more appropriate for 
activating the dynamic behaviors of the self-sensing MR damper and acquiring the random 
data for training the NARX network models. In this subsection, performance of the Bayesian 
NARX network model with random excitations and input commands will be examined. 
For acquiring random responses, the self-sensing MR damper is installed with a steel-frame 
structure mounted on a shaking table, as shown in Fig. 11. The structure consists of a stack 
of steel plates weighing 655.8 kg as the floor mass and four steel columns with 75 mm × 10 
mm rectangular cross-sections. The damper is connected between the mass and a support in 
the height of 745 mm. The support for fixing one end of the damper is designed to be rigid 
enough to assume this end is unmovable. The structural system is excited by band-limited 
white noise ground motions produced by the shaking table, while the damper is controlled 
by varying current commands. The real-time data acquisition for a variety of structural 
responses, which include ground acceleration, floor displacement, damper piston 
displacement, current and damper force, is accomplished by a dSPACE system by setting 
the sampling rate to be 250 Hz. Velocity of the damper piston is calculated from the 
measured piston displacement using a finite difference approximation. 
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Fig. 11. Experimental setup for random vibration testing of self-sensing MR damper 

With the purpose of assessing its prediction capability under random loadings, the previous 
optimal Bayesian NARX network model is retrained using the random response data of the 
self-sensing MR damper, which are acquired when the structural system subjected to 
narrow-band white noise excitations with amplitude of about 8 m/s2 and frequency within 
0.8-10 Hz. The damper is controlled by random current with amplitude ranging from 0 A to 
1.85 A and frequency within 0-10 Hz. Fig. 12 illustrates the damper piston velocity, current 
and damper force signals for network training within a time window of 10 s. After training, 
another three sets of measured data unseen during the training phase are used for 
verification of the trained model. As listed in Table 4, these test sets are obtained when the 
structure is excited by ground motions with different frequency and amplitude ranges, 
while the damper is prescribed with three types of currents, including constant current held 
at 0.97 A, chirp current with amplitude between 0-1.85 A and frequency range of 0.1-10 Hz, 
as well as random current with amplitude between 0-1.85 A and frequency within 0-5 Hz. 
Fig. 13 shows time histories of the damper forces predicted by the Bayesian NARX network 
model based on the test sets shown in Table 4 together with the measured damper forces, in 
which the prediction residuals are also superposed. Through comparisons, the forward 
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Fig. 12. Random signals for network training 
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Ground acceleration 
excitation 

Current 
Data set 

Amplitude Frequency Type Amplitude Frequency 
Training -7.7~8.1 m/s2 0.8-10 Hz Random 0-1.85 A 0-10 Hz 
Test I -5.6~5.9 m/s2 0.8-5 Hz Constant 0.97 A -- 
Test II -5.3~5.2 m/s2 0.5-10 Hz Chirp 0-1.85 A 0.1-10 Hz 
Test III -8.2~8.0 m/s2 0.5-10 Hz Random 0-1.85 A 0-5 Hz 

Table 4. Information of excitations for generation of training and test sets 
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(a) Test set I                                                              (b) Test set II 
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(c) Test set III 

Fig. 13. Comparison between predicted and measured damper forces and their residuals 

model effectively predicts the damper forces with the RMSE values of 19.20 N, 27.30 N and 
23.01 N for test sets I, II and III, respectively, which are all lower than 5% of the norm values 
of their corresponding target forces. Hence, the Bayesian NARX network model generalizes 
well to the random situations. 

4.3 Inverse dynamic model 

In control application of the self-sensing MR damper, similar to the conventional MR 
dampers, current is the only physical quantity that can be directly controlled to render the 
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damper to track the optimal control force calculated by a certain active control algorithm. 
Dyke et al. (1996) proposed a clipped optimal control algorithm for commanding the current 
or voltage which, however, only switches at either the minimum or the maximum 
achievable level. To avoid the damper working in such a bang-bang manner, which requires 
very fast dynamic responses of a current driver and the damper, it is beneficial and essential 
to develop an inverse dynamic model for the self-sensing MR damper to produce 
continuously varying current signals. However, it is still a difficult task to build such an 
inverse model for the highly nonlinear damper. Due to the success of the Bayesian NARX 
network in modeling the forward dynamics of the self-sensing MR damper, the feasibility of 
applying this technique to emulate the inverse dynamics of the self-sensing MR damper is 
explored. 
According to Eqs. (5) and (16), an NARX network model for the inverse dynamics of the 
self-sensing MR damper can be represented as 

 ))(,),1(),(,),(),(,),(),(,),(()(ˆ IFxxinv ntItIntFtFntxtxntxtxtI −−−−−= ""�"�" �N   (19) 

where )(⋅invN  denotes an MLP trained to approximate the inverse input-output relationship 
of the damper. Present and past values of the damper piston displacement, velocity and the 
desired damper force together with past values of the applied current are taken as possible 
input variables for the inverse model to decide the required current )(ˆ tI  for the damper to 
produce the instant value of the desired control force F(t). 
Similar to the forward model, the input variables for the inverse model are also determined 
to be the damper piston velocity x� , the desired damper force F and the past current I with 
input lags of 2=== IFx nnn � . The network structure is the same as Eq. (6), and consists of 
three sequential layers assigned with 8 input neurons, 18 hidden neurons and 1 output 
neuron, respectively. Transfer functions for the hidden layer and the output layer are taken 
as a hyperbolic tangent sigmoid function and a linear function, respectively, in the forms 
given by Eq. (18). 
The envisaged inverse NARX network model is then trained by employing the Bayesian 
learning algorithm. The training data are the same as the random signals employed for 
building the forward model, as shown in Fig. 12 and Table 4. Subsequently, test sets defined 
in Table 4 are presented to the inverse model to evaluate the prediction performance. Fig. 14 
illustrates the predicted currents from the well trained Bayesian NARX network model in 
comparison with the measured ones, as well as their residuals. It is seen that the predicted 
currents in the constant, chirp and random cases agree well with the measured currents 
applied to the damper. The RMSE values of predictions for test sets I, II and III are 0.016, 
0.018 and 0.008 A, respectively. These verification results demonstrate that the developed 
Bayesian NARX network model satisfactorily emulates the inverse dynamics of the self-
sensing MR damper and is adequate for control applications. 

5. Conclusions 

A self-sensing MR damper with embedded piezoelectric force sensor was devised, 
calibrated and characterized. Experimental results have shown reliable force sensing and 
controllable damping capabilities, as well as nonlinear hysteresis and saturation behaviors 
of the self-sensing MR damper. The attractive sensing-while-damping function renders the 
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(a) Test set I                                                             (b) Test set II 
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(c) Test set III 

Fig. 14. Comparison between predicted and measured currents and their residuals 

devised damper promising for real-time closed-loop control of structural vibration in a 
relatively simple and cost-effective manner. 
In order to formulate the inherently nonlinear dynamics of the self-sensing MR damper for 
its control application, a black-box modeling method has been developed by synthesizing 
NARX model and neural network within a Bayesian inference framework. Verification 
results based on experimental data have demonstrated that the formulated Bayesian NARX 
network models with an appropriate architecture can accurately emulate the forward and 
inverse dynamic behaviors of the self-sensing MR damper. Also, they exhibit good 
generalization capability when exposed to different test scenarios, due to the effect of the 
automated regularization of the Bayesian learning technique during the training phase. As a 
result, the developed models can be further integrated with semiactive control algorithms to 
achieve real-time structural vibration control using the self-sensing MR damper. 
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