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1. Introduction 

Metrology as the science of measurement is omnipresent in today’s society. Many 
applications in a variety of fields ranging from economy to science have a strong demand 
for reliable methods to quantify and compare measurement results. Depending on the 
specific application, this comparison can cover measurements acquired within the same 
minute by the same operator using the same measurement instrument under the same 
environmental conditions, or measurements acquired within a month by different operators 
and measurement instruments on two different continents. In either case, metrology has to 
provide means to ensure the validity of the comparison of those measurement results. Two 
aspects of metrology are of importance to us in the context of this paper: The traceability of 
the measurement result and the evaluation of the quality of the measurement result by 
means of its associated measurement uncertainty. 
Traceability: The measurement process is defined as a quantitative comparison of an 
unknown physical quantity – the measurand – with a known standard (cf. DIN1319 (1995)). 
Measurement results can thus only be compared on an international level provided 
compatible standards are available and used. Consequently, our society requires a world-
wide system of physical standards which is accepted by and accessible to every nation. The 
first attempts to internationally standardise physical quantities date back to 1875, when the 
Bureau International des Poids et Mesures (BIPM) was founded on the basis of the Metre 
Convention (BIPM (2008)). At that time, international prototypes of the metre and the 
kilogram where physically built. The evolution of these references triggered the installation 
of seven base quantities. Since the 11th General Conference on Weights and Measurements in 
1960, this system of base units is referred to as the International System of Units (SI) (BIPM 
(2006)). Today, standards are maintained and made available to the public of participating 
member states and associated economies by means of a hierarchical structure of 
international and national metrological institutes as outlined in Figure 1. The highest quality 
standards are available at BIPM and are used to derive secondary standards operated by 
national metrological institutions. These institutions, in turn, are responsible to pass 
standards on to subordinate laboratories and eventually to instrument manufacturers. This 
concept of traceability ensures that every measurement can be referred back to a physical 
standard by an unbroken chain of comparisons (International vocabulary of basic and 
general terms in metrology, VIM (1993)). An example of such a comparison chain is 
provided in Figure 2. An optical instrument is used to measure the position x of a  
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Fig. 1. Hierarchy of metrological institutions responsible to maintain the SI system. The costs 
and the quality of the standards kept at the different layers increase from bottom to top. 
Similarly, the uncertainty of the different standards increase from top to bottom. Any 
measurement taken by an instrument which is properly calibrated can now be traced back 
to the base standard kept at BIPM. 
 

Base Unit
SI

l0cid jx  

Fig. 2. The concept of traceability shown at the example of an optical measurement system. 
The length standard applied within the measurement system can be traced back to the meter 
standard. 

mechanical part in 2D. A chain of comparisons links the measurement results of this 
instrument back to the length standard: The geometry of the instrument is calibrated using a 
calibration target. During this calibration procedure, the positions dj of different geometric 
features such as bores and bolts serve as geometric references. These reference positions are 
determined during the manufacturing process of the target using a measurement device 
such as the shown calliper. By means of these measurements, the components of the vectors 
dj are referred to the metric reference ci of the calliper. Finally, the calliper is calibrated by the 
instrument manufacturer using standards that can likewise be referred to the length 
standard l0 – symbolised in this example by the image of the metal bar representing the 
metre standard. Consequently, the measurement results obtained using the optical 
instrument can be traced back to the metre standard. Only through this specific setting, the 
measurement results are of practical use within a manufacturing process based on the 
current SI. The lack of traceability in such an environment would inevitably lead to false 
tolerances and hence defective parts. 
Measurement Uncertainty (MU): The BIPM defines metrology as ‘the science of measurement, 
embracing both experimental and theoretical determinations at any level of uncertainty in any field of 
science and technology’1, which highlights a second important aspect of metrology: the 
treatment of measurement uncertainty. The term uncertainty of a measurement refers to a 
parameter that is assigned to each measurement and represents the spreading of the 
measurement values ‘. . . that could reasonably be attributed to the measurand’ (VIM (1993)). 
While the measurement of a scalar quantity results in a single best estimate, uncertainties are 
commonly expressed by means of an interval around this best estimate. Figure 3 depicts this 

                                                 
1 see also www.bipm.org. 
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situation. The measurand Y is determined resulting in the best estimate y. Assuming that 
deviations around this best estimate are symmetrically distributed to either side of y, we 
obtain an interval parameterised by the expanded uncertainty Uy. The interval is assigned a 
coverage probability p, such that 

 Prob({  -  <    + }) = ,y yy U Y y U p≤  (1) 

where common probabilities are chosen to lie in the range of p = 95. . .99%. 
A frequent misconception outside the metrology community is the ambiguous use of the 
term measurement error. While the measurement uncertainty does not require the true value 
yTrue of the measurand Y to be known, the measurement error, in contrast, is determined as 

 yError = y –yTrue,  (2) 

which can only be evaluated once yTrue is available. As this is never the case for any physical 
measurement2, the measurement error is only seen as a theoretical concept with little 
practical implications. 
 

yTrue

y +Uyy − Uy

Y
y

 

Fig. 3. The measurement uncertainty of a scalar measurand Y is expressed by an interval 
around the best estimate y which is parameterised by a coverage probability. 

1.1 Vision-based measurement systems 
Optical metrology utilises the interaction of light with an object in order to measure 
unknown quantities. Measurement principles based on the propagation of light are 
inherently non-contacting and mostly non-invasive. Thus, optical metrology is frequently 
used in applications where the measurand can either not be physically connected to a sensor 
(e.g. the measurement of mechanical stress and strain on a rotating blade of an aircraft 
turbine) or feedback of the measurement system to the measurand has to be kept to a 
minimum (e.g. measurements in the nano-scale). Further benefits of optical metrology 
include the potential to operate in large measurement volumes as well as the ability to set 
the focus of the measurement precisely at the point of interest through the line-of-sight 
principle that applies to light rays. While the large field of optical metrology covers the use 
of different light sources, sensors, and measurement principles, a sub-class of optical 
measurement systems uses 2D digital sensors to capture images and to perform signal 
processing on these images in order to deduce geometric properties of scenes or derived 
measurands. This sub-class is referred to as the class of vision-based measurement systems. 
Historically, these systems are also known as digital photogrammetric systems. In the 
context of this paper we refer to vision-based measurement systems with the following 
properties: 

• Digital images are acquired using 2D image sensors (cameras). 

• Greylevel features are used as primary source of information. 

                                                 
2 The situation is different for simulation experiments, where yTrue might be given. 
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Sensor Detector Transformation

Uncertainty Contributions

f = {f i}
M
i=1

θ̂

I

 

Fig. 4. Components of a typical vision-based measurement system. The best estimate of the 

unknown quantity θ̂  is obtained given an 2D intensity profile I acquired by the sensor. 

• These features are used to derive measurands and their uncertainties. 

• The measurement results are traceable to a standard and uncertainty estimates are 
provided. 

The typical processing steps found in such systems are sketched in Figure 4: The camera 

maps the scene onto its image plane and acquires a 2D intensity profile I. A feature detector 

is then used to identify features f (e.g. circular blobs) and to estimate their respective 

parameters (e.g. blob area and centre of gravity). These parameters are then being further 

processed by means of a transformation in order to obtain the best estimate of the unknown 

parameter θ̂ . 
Two examples of vision-based measurement systems are shown in Figure 5. A close-up of the 
inside of a two-camera system used to measure 2D displacements is shown in Figure 5a. 
Traceability and the proper characterisation of measurement uncertainties in this application 
are of importance as the measurement results are used in a research project aiming at the 
investigation of the long-term behaviour of different materials. A proper decision taken on the 
basis of these measurements has a significant economic impact on the customer. 
The Augmented Reality (AR) system shown in Figure 5b augments a user’s view of the real 
world by adding computer generated content that is spatially registered with the real 
content. In this application, a monocular vision-sensor provides position and orientation (i.e. 
pose) data that are fused with data obtained by an inertial measurement unit mounted on 
the same rigid platform. The temporal stream of poses is further used by the AR software to 
render artificial content within the user’s field of view. The successful information fusion in 
this particular setup requires all sensor data to be referred to the same length and time 
standards. As far as vision-based pose estimation is concerned, this prerequisite is achieved 
by a vision-based measurement system. 

1.2 Related work 
Efforts have been undertaken in metrology in order to develop a general frame-work that 
can be used to identify the quantity of the measurand and to provide means to judge on the 
quality of this result. These developments led to the introduction of the Guide to the 
Expression of Uncertainty in Measurement (GUM, most recent document JCGM (2008a)). The 
foremost aim of the GUM developments was to provide a recommendation for the 
treatment of measurement uncertainty that is universal, internally consistent, and transferable 
(JCGM (2008a)). 
The standard GUM extensively uses the concept of degrees of freedom to fuse information 
from different sources. This concept is a constant point of criticism in the literature (cf.  
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                                                     (a)                                                                    (b) 

Fig. 5. Vision-based measurement systems. (a) Measurement application used to measure 
displacement and creep of material samples. (b) Vision-based pose estimation applied to 
Augmented Reality. 

Lira (2001)). In particular, the fusion of quantities derived using statistical methods (e.g. 
averaging over a number of measurements) with quantities denoting an expert opinion (e.g. 
prior knowledge about interval boundaries) are not satisfactorily covered by the GUM 
proposal. Weise & Wöger (1999) and later Kacker & Jones (2003) resort to the consistent use 
of Bayesian statistics in the context of uncertainty computations. Both approaches remove an 
inconsistency in the GUM interpretation of coverage probabilities. Kacker & Jones (2003) 
provide a modified set of rules based on the GUM recommendations that are built upon the 
Taylor approximation of the measurement equation. Their proposed modifications cover the 
propagation of first and second order moments neglecting modifications of the underlying 
distributions. Weise & Wöger (1999) instead propagate distributions providing a frame-
work that is more generally applicable. The recent GUM Supplement 1 document (GUMS1, 
JCGM (2008b)) makes explicit the Bayesian foundations of the GUM. Thus removing 
inconsistencies in the information fusion of the guide. 
Different approaches to the treatment of uncertainty in the domain of computer vision have 

been reported in the literature (e.g. Havelock (1989); Kanungo et al. (1995); Triggs (2001); 

Ochoa & Belongie (2006)). Using the central limit theorem (CLT, Papoulis & Pillai (2002)) as 

a key argument, the use of the Gaussian assumption is suggested – and often validated – by 

many researchers. Heuel (2003) and Criminisi (2001) show that Gaussian densities can be 

applied to represent homogeneous geometric entities. In an earlier work (Brandner (2006)) 

we apply first order propagation of Gaussian quantities to a vision-based tracking 

application. Based on the exclusive use of Gaussian densities to describe both physical 

quantities and prior information, the Bayesian extensions of the GUM document are easily 

implemented in analytic form. 

From a practical point of view, the proper evaluation of measurement uncertainties relies on 
the quality of the underlying process model. In many situations these models are complex 
and not straight-forward to derive. Sommer & Siebert (2006) propose a systematic solution 
to the model building problem in metrology. The authors use three building blocks to 
identify and visualise influencing factors and uncertainty contributions. Based on the cause-
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and-effect approach, Parameter Sources, Transmission Units, and Indicating Units are 
employed to obtain the measurement equation. This equation is then reversed to obtain the 
GUM-compliant model equation. Finally, the measurement uncertainty of the unknown 
quantity can be derived. 

1.3 Contribution 
In this work we fuse the existing Gaussian characterisation of geometric entities within the 
field of uncertain perspective geometry with the uncertainty concepts of the GUM 
document. In order to highlight the quality of the obtained geometric quantities this concept 
is referred to as metrological geometry. 
We present a modelling technique based on the cause-effect diagram which makes explicit 
the statistical dependencies between different geometric entities. Further, we show that for 
many problems in vision-based metrology an analytic frame-work for the propagation of 
Gaussian uncertainties can be applied. All processing steps can be carried out analytically, 
thus avoiding any simulation-based computations with the potential lack of real-time 
performance. The frame-work is consistent with the Bayesian extensions to the standard 
GUM. Using a number of simple building blocks we propose simple modelling steps to 
analytically derive the measurement uncertainty in vision-based applications explicitly 
covering inter-parameter dependencies. 
The remainder of this chapter is structured as follows: based on a brief review of the GUM 
recommendations in the following Section 2 we introduce a common nomenclature and 
derive the requirements for a vision-based metrological application in Section 3. The 
subsequent Section 4 presents our approach to the modelling process and introduces the 
basic building blocks of a vision-based measurement system which are then applied to a 
simple example in Section 5. The paper concludes with a summary in Section 6. 

2. The guide to the expression of uncertainty in measurement 

Given a measurement process, the current GUM represents a general frame-work that can 
be used to evaluate the uncertainty of a physical quantity that results from that 
measurement. However, the GUM does not provide any means to determine appropriate 
models. In the following paragraphs we review the basic concepts of the GUM in order to 
provide the background required to develop the concept of the metrological geometry in 
Section 4. 

2.1 Uncertain quantities 
Assuming a measurand denoted by Y depends on a number of input quantities Xi, the GUM 
frame-work allows us to determine the uncertainty of a measurement result y taking into 
account the uncertainties of the contributing input quantities. Quantities in this context are 
treated as variables and their uncertainty is represented by a state-of-knowledge 
distribution. The best estimate of a quantity Y and its uncertainty are represented by the 
mean value and the standard deviation of the underlying PDF fY(·), respectively. Thus, the 
best estimate of the measurand Y is given by 

 { } ( )Y YE Y f dμ η η η
+∞

−∞

= = ∫  (3) 
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and the associated standard deviation is given by 

 { }2[ ] .Y YE Yσ μ= −   (4) 

Depending on the method used to determine the uncertainty of input quantities the GUM 
distinguishes between two families of uncertainty evaluations: Type A uncertainties are 
determined by statistical methods while uncertainties obtained by other means are classified 
as Type B. 
The determination of a quantity Y by means of N repeated independent observations3 yi 

represents an example of a Type A uncertainty evaluation. The estimated arithmetic mean 
value of the observations is given by 

 
1

1 N

i
i

y y
N =

= ∑   (5) 

and the associated standard deviation of the arithmetic mean y  is given by sy = s/ ,N  

where s denotes the empirical standard deviation of the observations and is given by 

 2

1

1
( ) .

1

N

i
i

s y y
N =

= −
− ∑   (6) 

The GUM recommends to use the arithmetic mean y  as best estimate for the quantity Y and 

to use the standard deviation sy as standard uncertainty4 uy. 
Type B uncertainties are used to treat input quantities whose uncertainty is determined by 
methods other than statistics. An example is the uncertainty associated with the calibration 
of an instrument. In this case best estimate, standard uncertainty, and degrees of freedom 
are given by the calibration laboratory. Other examples are the uncertainty of the 
transformation parameters and the detector used in the above example of a vision-based 
measurement system. In both cases the characterisation of the uncertainty is based on the 
experience of the experimenter and, thus, on non-statistical evaluations. 

2.2 The measurement process 
The evaluation of the uncertainty associated to the measurand is based on a mathematical 
model 

 Y = f (X1,X2, . . . ,XN)  (7) 

of the measurement process, where Y denotes the measurand and the Xi represent input 
quantities. This relation is referred to as the model equation. The best estimate of the 
measurand is given by replacing all input quantities in Equation 7 by their respective best 
estimates such that 

                                                 
3 We will use the terms observation and measurement interchangeably. 
4 Following a suggestion by Sommer & Siebert (2006) we use uy as symbol for the standard uncertainty 

associated to the measurement result y rather than the GUM nomenclature u(y) which suggests that the 
standard uncertainty is a function of the best estimate. 
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 y = f (x1, x2, . . . , xN).  (8) 

Based on the estimates of the input values and their associated standard uncertainties, the 
standard uncertainty uy is derived. Summarising the input quantities and their best estimates 
into a vector X = (X1, X2, . . . ,XN)T

 and a vector x = (x1, x2, . . . , xN)T, respectively, the 
measurement equation is developed into a Taylor series to obtain (cf. Weise & Wöger (1999)) 

 
1

( )
( )    ( ) ( )

N

i i
i i

f
Y f f X x

X=

∂
= ≈ + − +

∂∑ x
X x   (9) 

                                    
2

1 1

( )
 ( )( ) ....

N N

i i j j
i j i j

f
X x X x

X X= =

∂
+ − − +

∂ ∂∑∑ x
  (10) 

Assuming small deviations (Xi – xi), the higher order terms of the Taylor expansion are 
neglected leading to the simplified approximation 

 
1

( )
     ( ) ( ).

N

i i
i i

f
Y f X x

X=

∂
≈ + −

∂∑ x
x   (11) 

The partial derivatives of the measurement equation are referred to as sensitivity coefficients  

ci  =
( )

i

f

X

∂
∂

x
. Using Equation 11, the variance of the measurement result y is obtained by 

 

2
1

2 2 2

1 1 1 1

( ) 2 ,
i i j

N N N N

y i i i i x i j ij x x
i i i j i

u E c X x c u c c u uρ
−

= = = = +

⎛ ⎞⎧ ⎫
= − = +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

∑ ∑ ∑ ∑   (12) 

with uxi denoting the standard uncertainties of the input values. The correlation coefficients 
ρij =Cov(xi, xj)/uxiuxj account for inner dependencies of the contributing input values. As uy 
results from combining the input parameter uncertainties it is called the combined standard 
uncertainty of the measurement result y. 
The GUM further suggests to report an interval within which a large fraction p of the 
distribution of values attributed to the measurand Y fall. Given a symmetric distribution of 
Y, this interval is obtained through the symmetrical extension of the best estimate y by the 
expanded uncertainty Uy to either side as shown for a scalar quantity in Figure 3. Assuming 
knowledge about the distribution of Y, the expanded uncertainty is obtained by Uy = k · uy 

where k is a coverage factor. The fraction p is denoted the level of confidence associated to the 
coverage interval (y ± Uy). 
The uncertainty estimates are based on realisations of random variables and, therefore, are 
subjected to uncertainty, too. Only for the evaluation of the expanded uncertainty, the 
standard GUM uses the concept of degrees of freedom of the input quantities and suggests 
to estimate an effective number of degrees of freedom of the resultant distribution based on the 
Welch-Satterthwaite (WS) equation (JCGM (2008a)). 

2.3 Bayesian evaluation of measurement uncertainties 
The standard GUM document has often been a target of criticism due to the lack of a clear 

distinction between the use of classical statistics and Bayesian statistics in the evaluation of 

measurement uncertainties. As opposed to the classical statistics approach which treats 

measurands as constants and the observations (e.g. made during Type A evaluations) as 

www.intechopen.com



Bayesian Uncertainty Evaluation in Vision-Based Metrology   

 

89 

realisations of random variables with known distributions, Bayesian statistics is build upon 

the philosophy that the measurand is itself a random variable and the observations are seen 

as constants (Kacker & Jones (2003); Gelman et al. (2003)). The important difference between 

the two approaches is that the state-of-knowledge distribution in the Bayesian theory does 

not represent an approximation but is assumed to be exact. Consequently, there is no 

uncertainty involved in evaluating the coverage intervals. Classical statistics, on the other 

hand, requires the handling of degrees of freedom and their controversial combination by 

means of the WS equation. In the Bayesian theory the state-of-knowledge of every quantity 

is given by distributions which must not be confused with frequency distributions in the 

sense of classical statistics (Weise & Wöger (1999), p.225). Prior knowledge about quantities 

and their associated lack of knowledge is represented by prior distributions (or simply: 

priors). In the case of complete lack of knowledge, these distributions are replaced by non-

informative priors (Iversen (1984); Gelman et al. (2003); Jaynes (1968)). 

Recently, the Supplement 1 document clearly shows that the GUM concept of measurement 

uncertainty evaluation is based on the Bayesian idea. We will subsequently refer to the fully 

Bayesian interpretation of measurement uncertainties as GUM/Bayes. 

2.4 Multidimensional measurands 
The concept of GUM/Bayes as presented above straight forwardly extends to multiple 

dimensions (cf. Lira (2001)). During this extension the best estimate of a vector-valued 

quantity is given by the mean vector comprising the expected values of the individual 

components. Thus, for a vector-valued quantity 

 Q = (Q1, Q2, . . . ,Qn)T  (13) 

the best estimate is given by the mean vector 

 μq = E{Q} = (E{Q1},E{Q2}, . . . ,E{Qn})T
 = (μq1 ,μq2 , . . . ,μqn )

2.  (14) 

The standard uncertainty of the scalar quantity is extended towards the uncertainty matrix 

 Uq = ΣQQ + (E{Q} – q) (E{Q} – q)T
 ,  (15) 

where ΣQQ represents the covariance matrix of the measurand. Equation 15 covers the 
general case of arbitrary estimates q. Using unbiased estimators, the uncertainty matrix 
simplifies to 

 Uq = ΣQQ . (16) 

These extensions suffice to determine the combined standard uncertainty of the 
measurement result. Analogous to the scalar case the expanded uncertainty represents a 

multidimensional interval. Based on an n-dimensional measurand Q ∈ S(n), where S(n) 

denotes the n-dimensional space, Iuculano et al. (2003) extend the concept of an coverage 

interval as defined in the GUM to a limited domain C(n) ∈ S(n). Assuming the PDF of the 

measurand is denoted by fQ(·) the coverage probability associated with C(n) is given by 

 
( )

( ) { } ( ) .
n

n

C
p P C f d= ∈ = ∫ QQ q q   (17) 
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It is not a priori defined what the shape of such a region in S(n) looks like. The GUM suggests 

to apply two criteria for the choice of the interval boundaries: the minimum width interval 

or the interval given by equal density values. While the recommendation for Monte Carlo  

(MC) simulation in the Supplement 1 document JCGM (2008b) suggests to revert to the 

minimum width interval for general densities, this can not be straight forwardly applied to 

S(n). Restricting our attention to multidimensional Gaussian distributions we find that 

ellipses (or hyper-ellipsoids in higher dimensions) meet the requirements of coverage 

regions. These regions are delimited by contours of constant density and are consistent with 

the GUM suggestions. This choice is supported by Iuculano et al. (2003) who show for 

square and circular regions C(n) that the analytically derived coverage probabilities for 

Gaussian and uniform distributions are in agreement with ground truth data obtained from 

Monte Carlo simulations. 

3. Requirement analysis for a measurement uncertainty frame-work 

In order to identify the requirements for an uncertainty propagation frame-work we use the 
following measurement example: A vision-based measurement system is used to measure 
the 2D displacement of a mechanical lever. In order to robustly capture the displacement, a 
circular blob marker is attached to the lever. This marker now translates within a known 
plane which is fixed with respect to a perspective sensor. The goal of the measurement 
process is to estimate the position of the marker and, consequently, the displacement of the 
lever in world coordinates based on measurements taken in the sensor image. We restrict 
this example to a measurement based on a single image acquisition. The uncertainty 
associated with this estimate must be identified. Figure 6 shows a sketch of the geometry of 
the measurement system. 

The blob marker is represented by its centre vector p = (x,y)T. The allowed set of positions is 

restricted to lie within the plane ΠWorld by construction of the measurement system. The 

sensor now maps the blob onto the image plane ΠImage. In order to measure the position of 
the lever the following processing steps are performed: a single image is acquired, the blob 

centre a = (u,v)T is estimated, and the corresponding centre p is determined. The points p 

and a are related to each other by means of a parameterised transformation function 

 p = g(a; θ),  (18) 

where θ denotes the parameter vector characterising the measurement setup. For every 

practical realisation of the above example the measurement result is subjected to 

uncertainties. Important sources of uncertainty can be found in every processing step, e.g. 

• Sensor: After the mapping of the marker onto the sensor plane using principles of 
geometric optics the sensor performs both a spatial and an intensity discretisation. The 
effects of this discretisation steps can be modelled by means of additive noise sources. 

• Detector: Although blob detection may seem to be straight forward at a first glance, it 
already exhibits a fundamental problem in optical metrology: it is, in general, not 
possible to accurately model the image acquisition system which is a prerequisite for 
the estimation of parameters such as the blob centre. We assume in this example that 
the uncertainty introduced by the blob detector is characterised by the experimenters 
experience. 
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Fig. 6. Example application: The position of a point p in world coordinates is based on a 
detected point centre a in image coordinates. Both coordinate systems are related to each 

other by means of a transformation function g(·; θ). 

• Transformation: The measurement of p requires that the parameters of the 

transformation g(·; θ) are known in advance. Given that these parameters necessarily 
are obtained by a calibration procedure they are subjected to uncertainties, too. 

Commonly, the parameter vector θ is assumed to be a realisation of a random process 
and the corresponding moment estimates are obtained during the calibration process. 

Using this example we can already identify the requirements on a frame-work for the 
treatment of uncertainties which will later be applied to vision-based metrology 
applications. The following properties are required: 
1. Treatment of multivariate measurands: Many of the measurands in the vision-based 

metrological application are multivariate variables such as point positions or 
parameters of a line.  

2. In particular, many of the geometric entities are represented in a projective space. 
Consequently, the uncertainty frame-work needs to properly cover multivariate 
variables. 

3. General applicability to geometric entities: In order to be of general use in the given context 
the uncertainty frame-work is required to be applicable to geometric entities of any 
type. 

4. Common handling of different types of input uncertainties: As shown in the example there 
are two distinct types of uncertainties to be taken into account when computing the 
uncertainty of the measurement result: input parameter uncertainties such as noise 
effects that are described by means of statistics and uncertainties that are given based 
on experience. An example of the later class of uncertainties are general judgements on 
the quality of the calibration of a measurement setup. 

5. Propagation through different processing blocks: Even this simple example consists of 
several processing blocks covering the sensor transfer function, feature detection, and 
the subsequent application of the transformation. 

6. Processing speed: While in many metrological applications the determination of 
uncertainties can be solved off-line using simulation-based approaches, some 
applications require the real-time determination of parameter uncertainties. Examples 
include measurement systems with a varying number of input parameters. As opposed 
to simulation-based approaches, an analytical method can usually meet the processing 
speed requirements as it has a fixed processing time and is of lower complexity. 
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7. Single measurements: Repeated measurements are generally used to reduce the 
contribution of random effects. This requires that the measurements can be repeated 
under similar conditions. The relatively large sampling intervals and the amount of 
data being processed within a single image puts a limit on the minimum time interval 
between two consecutive acquisitions in vision-based applications. Thus, single 
measurement situations are frequently encountered in vision-based metrology which 
calls for a specific treatment of measurement uncertainty. 

8. Dealing with correlations: Features extracted from a single image inherently show a 
certain degree of correlation due to the common conditions under which the image has 
been acquired. These correlations can have a significant impact on the uncertainty of the 
measurement result. 

4. Metrological geometry 

Homogeneous coordinates are frequently used in computer vision to represent geometric 

entities (Hartley & Zisserman (2004)). In contrast to the Euclidean representation, entities in 

projective spaces lead themselves to simple formulations and constructions. Given prior 

work by Criminisi (2001), Heuel (2003), and Förstner (2004) we observe that a multivariate 

Gaussian model is applicable to the problem of representing homogeneous entities in 

projective spaces. Using the bilinear transformation to construct new entities, this specific 

representation of parameter uncertainty provides a consistent tool. However, the validity of 

the approach only covers situations where the mean values of the parameters are large 

compared to their standard deviations. Heuel (2003) discusses conditions which suffice to 

obtain bounded parameter biases. By itself, the concept of uncertain projective geometry 

does not represent a frame-work for a proper expression of uncertainties. The missing 

elements cover the proper interpretation of a PDF as well as the metrologically sound 

derivation of standard, combined, and expanded uncertainties based on parameter 

densities. These elements are provided by GUM/Bayes as shown in Section 2 for the general 

case of multivariate quantities. In particular, GUM/Bayes covers the incorporation of prior 

knowledge and the appropriate treatment of correlated quantities. 

Although most of the integrations suggested by GUM/Bayes can only be solved through 

time-consuming numerical algorithms such as Monte Carlo integrations, the restricted 

subset of quantities modelled by multivariate Gaussian densities leads itself to solutions 

which can be obtained analytically. If we further restrict any prior information to be 

represented by Gaussian quantities, we obtain a frame-work for the treatment of uncertain 

quantities based on the propagation of first- and second-order moments. 

Consequently, we propose a fusion of the uncertain projective geometry with the 

GUM/Bayes approach in order to derive the concept of metrological geometry as outlined in 

Figure 7. Combining the ideas of uncertain projective geometry with the GUM/Bayes 

approach to the treatment of measurement uncertainty allows us to simplify and unify the 

modelling process for problems in geometric metrology. In summary our approach covers 

the following situations: 

• Homogeneous entities represented by Gaussian random vectors. For example, a 
homogeneous point in 2D is given by 

 x   ∼  N(x, Σxx).  (19) 
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Fig. 7. Uncertain projective geometry and GUM/Bayes are combined to obtain a consistent 
frame-work for the treatment of uncertainties in vision-based metrological applications. 

• Mapping of homogeneous entities including the propagation of parameter 
uncertainties. Mapping functions include: geometric transformations such as 
translations, rotations, and perspective mappings. Further, geometric construction (e.g. 
point results from intersecting two lines) and Euclidean and spherical normalisation are 
covered. 

• Measurement updates of geometric entities with prior knowledge based on Gaussian 
random vectors. 

• Correlations between geometric entities. 
As opposed to the general recommendations provided by the original GUM document, the 
determination of the measurement uncertainty can be greatly simplified when considering 
only Gaussian uncertainties. Only a small number of building blocks is required to obtain a 
valid metrological model following a simple modelling procedure. 
In the subsequent paragraphs we propose a unified nomenclature and present guidelines 
which cover the basic steps required to identify the model equation for vision-based 
metrological problems. In particular, we introduce components of a graphical model which 
greatly simplifies the setup of the model equation. 

4.1 Nomenclature in metrological geometry 
The nomenclature used in uncertain projective geometry differs from the nomenclature used 
in the GUM document. In particular, the GUM denotes physical quantities by upper case 
letters and their realisations (e.g. measurement results) by the corresponding lower case 
letters. While uncertain projective geometry uses covariance matrices for multivariate 
entities, the GUM document distinguishes between standard, combined, and expanded 
uncertainties in the univariate case and provides an uncertainty matrix in the multivariate 
case. 
In the subsequent modelling process, we will use a unified nomenclature which assigns 
underlined symbols to quantities in a metrological sense. Their corresponding non-
underlined version is used to denote realisations of the quantity. If it is clear from the 
context, we will also use the non-underlined symbols to denote the best estimates of the 
corresponding quantities. Thus, c is a scalar quantity and c is the corresponding realisation 
or best estimate. Following GUM we use uc to denote the standard uncertainty of the best 
estimate and Uc as expanded uncertainty associated to a given coverage factor k. Similarly, a 
vector-valued quantity is referred to as x. The best estimate of x is given by x. The 
uncertainty matrix Ux of x corresponds to the covariance matrix Σxx of the quantity. It is now 
straight forward to make explicit the correlation between two different quantities m and n 
by means of their cross-covariance matrix Σmn. The multivariate equivalent to the expanded 
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uncertainty is obtained by finding constant density curves of the PDF which corresponds to 
a given coverage probability p. For 2D Gaussian quantities these curves are ellipses of 
general orientation as outlined for different coverage probabilities in Figure 8. 
 

 

Fig. 8. Visualisation of the expanded uncertainty of a 2D Gaussian quantity a. Curves of 
constant probability density are ellipses in general configuration centred around the best 
estimate a. Different regions for varying coverage probabilities are shown. 

4.2 The modelling process 
The model equation as given by Equation 7 expresses the functional relationship between 
the measurand Y and the input quantities X1, . . . ,XN. However, the structure of the model 
equation usually does not directly reflect the processing steps involved in the measurement 
process. If we assume that the measurand Y is determined by reading the result of the 
quantity X3, Equation 7 can be reformulated such that X3 is given by 

 X3 = fM(Y,X1,X2,X4, . . . ,XN),  (20) 

which is referred to as the measurement equation. Sommer & Siebert (2006) suggest to base the 
model building process on this measurement equation as it physically relates the cause, i.e. 
the measurand Y, to an effect, i.e. the reading X3. We propose to perform the following steps 
in order to evaluate the measurement uncertainty of a vision-based metrology system using 
this model equation: 

• Description of the Measurement Task: 
A complete description of the measurement task is the most important step of the 
modeling process. This description includes the input quantities and – most 
importantly – the measurand. 

• Cause-Effect Relations: 
All quantities included in the above description must be brought into a form following 
the idea of the cause-effect approach. It is helpful to visualise these relations using a 
simple graph as shown in Figure 9. 
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Fig. 9. Graphical representation of the cause-effect relationship. 

• Measurement Model: 
In the next step, the measurement model is derived using cause-effect relations 
identified in the previous modelling step. The measurement model now relates 
indications or observations made by the sensor to the measurand. In most cases, it is not 
necessary to develop the measurement model in full detail. Rather, a coarse overview of 
the processing steps involved in the measurement process is sufficient as the next step 
in the modelling procedure aims at a fully qualified uncertainty model. 

• Model Equation: 
The model equation relates all observations and other input quantities to the 
measurand. This core equation of the metrological system includes all quantities and 
their respective uncertainties. This step can be simplified by developing a graphical 
model. Due to the fact that all geometric quantities in our frame-work are represented 
by Gaussian random variables and linear transformations thereof are again Gaussian 
random variables, the graphical model5 is composed of a small number of building 
blocks as outlined in Figure 10. We distinguish between the following blocks: 
- Source: Uncertain quantity characterised by its best estimate and the uncertainty 

matrix. The source block is frequently used to represent prior information. 
- Transformation using constant parameters: Simple transformations such as scaling 

functions are covered by this more general class of transformations. The uncertainty 
of the output quantity is only caused by the uncertainty of the input quantity. 

- Transformation of uncorrelated quantities: Transformations with stochastic parameters 
extend the previous building block by the ability to model uncertainty 
contributions caused by uncertainties of the parameters. Examples for this class of 
transformations are geometric constructions such as the intersection of two lines 
resulting in an uncertain point. The lack of correlation between the input quantities 
is depicted by input quantities that enter the block on different sides or 
equivalently by small rectangles attached to the input quantities denoting the range 
of correlated quantities. 

- Transformation of correlated quantities: As opposed to the previous class of 
transformations, this block explicitly covers correlations between quantities. 
Examples of this class of transformations are geometric constructions using entities 
which are based on a common source of uncertainty such as points commonly 
subjected to uncertain lens distortion. Graphically, correlation is indicated by 
grouping all correlated input quantities onto the same side of the block. 

                                                 
5 We note that the terminology graphical model here refers to a simple and intuitive visualisation 

concept rather than to a model representation as used in the machine learning literature. 
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In summary, the components of the graphical model and their respective laws for the 
propagation of uncertainties are shown in Figure 10. Our set of components is chosen to 
allow for a straight forward derivation of the measurement equation. In contrast to Sommer 
& Siebert (2006), we explicitly differentiate between transformations using deterministic and 
stochastic parameters. We further consider parameter correlations in the graphical model 
and include the Bayesian information update into the modelling process. 
 

Symbol Uncertainty Contribution

Source

x Σxx

Transformation with constant parameters

g(x ; p)x y

p

Σyy = J gΣxxJ
T
g

x yg(x )

Transformation of uncorrelated quantities

yx i g(x i, x j )

x j

Σyy = J g,xiΣxi xi J
T
g,xi
+ J g,xjΣxj xj J

T
g,xj

Transformation of correlated quantities

Σyy = J g
Σxi xi Σxi xj

Σxj xi Σxj xj

J  T
g

 

Fig. 10. Building blocks of the graphical model. Uncertainty contributions are expressed by 
means of their respective uncertainty matrices. The matrices J denote the Jacobians of the 
respective transformation functions. 
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4.3 Limitations of the approach 
The transformation of Gaussian quantities results in another Gaussian quantity only for 
linear transformations. As soon as the transformation exhibits a non-linear contribution, the 
resultant quantity starts to deviate from the Gaussian assumption with the degree of 
deviation depending on the degree of non-linearity introduced by the transformation 
function. From the metrological point of view, these deviations from the Gaussian are of 
concern for the following reasons: 
1. Non-linearities cause the PDF of the output quantity to deviate from the Gaussian 

shape. This might effect reasoning modules which operate based on the Gaussian 
assumption. 

2. The analytic derivations of Bayes’ law are only applicable to Gaussian quantities. Any 
deviation from this Gaussian assumption will lead to approximate solutions and, 
therefore, inaccurate uncertainty estimates. 

3. Non-linearities introduce a bias of the best estimate of the output quantity. The bias 
generally is a function of the best estimates of the input quantities as well as of the input 
uncertainties. 

These effects usually strongly depend on the degree of correlation between the input 
quantities. A detailed discussion of situations where our approach fails due to one of the 
above listed causes is given in Brandner (2009). 

5. Application example 

In the present section we apply the presented modelling procedure to the estimation of 
homography parameters. The resultant processing block is further applied to a vision-based 
creep test sensor. We briefly outline the measurement model of this sensor in order to 
highlight some properties of the proposed modelling approach. 

5.1 2D Homography with uncertainties 
Among the family of perspective transformations, 2D homographies relate coplanar points to 
their respective images under a central projection. In other words, a set of coplanar 

homogeneous points ai = (ax,i, ay,i, ah,i)
T

 in Π1 is mapped onto another set of coplanar points  

bi = (bx,i, by,i, bh,i)
T

 in Π2 for i = 1. . .N as sketched in Figure 11a. Algebraically, corresponding 

tuples of points in Π1 and Π2 are related to each other by 

 bi = Hai  (21) 

where the 3 ×3 matrix H is a 2D homography and defined up to a scalar factor. Thus, H has 
8 degrees of freedom (cf. Hartley & Zisserman (2004), p. 44). Consequently, the equality in 
Equation 21 is defined up to a non-zero scaling factor. In a metrological context, 
homographies can be used to model geometric constellations where features are bound to 
positions within a know plane (Ma et al. (2005); Stuflesser & Brandner (2008); Brandner et al. 
(2008)). Stacking the elements of the homography matrix H into a column vector h allows us 
to rewrite Equation 21 to obtain 

 Gh = 0,  (22) 

where the matrix G depends on the input points in both planes. In the case of N =4 point 
pairs in non-degenerate configurations (cf. Hartley & Zisserman (2004)) the non-trivial 
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Π1

Π2

(c, Σ cc)
(d, Σ dd )

 

                                      (a)                                                                               (b) 

Fig. 11. Planar homography as a special case of a perspective transformation. (a) The 

homography H relates coplanar points ai in Π1 to their coplanar image points bi in Π2.  

(b) Given an uncertain point (c,Σcc) and the parameters of the homography including their 

uncertainties (H,Σhh), the resultant point and its associated uncertainty (d,Σdd) can be 
obtained using first order uncertainty propagation (see text). 

solution to the system in Equation 22 is exact. For the case of N > 4 the system is over-

determined. Taking into account uncertainties of the input quantities, the solution in general 

is only approximate. Different optimisation strategies are known to numerically solve 

Equation 22. A representative of linear, direct least-squares estimators is the Direct Linear 

Transform (DLT) estimator. The cost functional minimised by the DLT is an algebraic distance. 

Due to its simplicity and numerical stability the DLT algorithm is widely used for 

homography estimation. The algorithm solves the system Gh = 0 for non-trivial solutions, 

i.e. solutions h ≠ 0, by minimising EGhE. In order to avoid trivial solutions the minimization 

procedure is subjected to the constraint EhE = c for an arbitrary non-zero constant c. 

Although the exact value of c is irrelevant to the estimation process it is commonly set to c = 

1 which can be realised by a norm constraint within the optimisation target, i.e. 

 
G

min .→
h

h
 (23) 

The solution of the minimisation problem in Equation 23 is given by the eigenvector that 

corresponds to the smallest eigenvalue of M = GTG (cf. Hartley & Zisserman (2004)). A 
numerically robust solution is obtained via singular value decomposition (SVD) of M. We 
now cover uncertain input quantities as well as homography parameter uncertainties. 
Consider the example shown in Figure 11b: An input data point c is transformed from plane 

Π1 onto plane Π2 using the homography H. The different sources of uncertainty contributing 
to final point estimate d are summarised in the cause-effect diagram shown in Figure 12. 
Using the processing blocks introduced in the previous section we can sketch the 
measurement model as shown in Figure 13a. This special configuration is characterised by 
the complete absence of any inter-parameter correlation. The resultant uncertainty of the 
output quantity d can be derived using 

 dd cc c hh cΣ =HΣ H +B Σ B ,T T   (24) 

where Bc represents an appropriate Jacobian function. Equation 24 greatly simplifies 
analytical derivations and, therefore, is frequently used by researchers in the field to  
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Fig. 12. Cause-effect diagram of the point measurement application shown in Figure 11b. 
Both uncertainties of the points used to estimate the homography parameters and 
uncertainties of the input point c contribute to the uncertainty of d. 
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H, h
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c
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H, h

dd = Hc

x 2

 

                                  (a)                                                                               (b) 

Fig. 13. Graphical models of a measurement application based on a 2D/2D homography as 
shown in Figure 11b for different degrees of correlations between the involved parameters. 
Two point sets a = {ai} and b = {bi} are used to estimate H. This homography is in turn used 
to map a point c onto its image d. (a) All contributing parameters are uncorrelated. (b) 
Common situation in planar metrology: The point set a and c are acquired simultaneously 
resulting in parameter correlation. 

propagate uncertainties (cf. Criminisi (2001)). Apart from neglecting correlations between 
transformation parameters and geometric entities that are being mapped, Criminisi (2001) 
also assumes statistical independence within the point sets ai and bi that are used to estimate 
the homography parameters. 
Correlations between parameters are often caused by uncertainties common to two or more 

quantities or by un-modelled systematic effects. A frequent source of systematic effects in 

computer vision are geometry-based biases in feature detectors. Thus, a more appropriate 

model for the homography example is given in Figure 13b. Apart from allowing for intra-

parameter correlations within the set of model points ai, the model also covers correlations 

between the model points and the test point c. This situation occurs during single acquisition 

measurements, i.e. both the points used to estimate the homography parameters and the 

points used to apply the homography are detected within the same image. Under such 

circumstances, correlations need to be considered. It can be shown (cf. Brandner (2009)) that 

the measurement uncertainty of the resultant point c is obtained by 

  cc ca a

a ca hh

K
J J ,

K

T

T
dd T

⎡ ⎤Σ Σ
Σ = ⎢ ⎥

Σ Σ⎢ ⎥⎣ ⎦
  (25) 
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where J represents a Jacobian matrix and Ka a weigthening matrix, respectively. By 
inspection of Equation 25 we observe that the correlations between the point sets ai and c 

enter the uncertainty calculi via their respective covariance matrix. The correlation 
introduced by the application of the homography is taken into account by means of the 
transformation J. 

5.1.1 A numerical example 
In order to validate the implementation of the previously described method to analytically 
estimate both the homography parameters and their associated uncertainties we compare 
the results with the estimates obtained using a Monte Carlo analysis. Figure 14 depicts a 
sample image where corner features are used to estimate the homography between the 
planar target and the image plane. The corners are detected and their respective positions bi 

are estimated using a morphological detector. In this experiment an isotropic additive 

Gaussian noise source with variance σ2 =1pixel2 is superimposed to the true corner 
positions. Thus, assuming equal noise properties for each corner the covariance of bi is given 
by 

 Σbibi = Σbb = 
1 0

.
0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (26) 

Similarly we assume that the model uncertainty is characterised by an isotropic additive 

Gaussian noise source with variance σ2 = 0.01cm2. The four corners of the rectangle and the 

lower-left corner of the triangle are used to estimate the homography H and the associated 

covariance matrix Σhh. The red ellipses in Figure 14a represent the 95% probability regions 

around each detected corner. Clearly, the point correspondences used to estimate the 

homography show smaller deviations compared to other points which did not contribute to 

the estimation result. The close-up in Figure 14b shows a comparison of the analytic result 

with empirical moments obtained via MC simulation. The red ellipse again represents the 

95% probability region based on the analytic estimate of the homography covariance 

whereas the dashed blue line represent the same probability region based on N = 104 MC 

iterations. Both uncertainty estimates are in good agreement justifying the application of the 

analytic approach. 

5.2 2D displacement measurement 
Using the results of the previous discussion, we can now derive the uncertainty model of a 
2D displacement measurement system which reflects the general structure of a vision-based 
metrological system as shown in Figure 4. The measurement system is part of a creep test 
apparatus used to obtain material parameters of polymer samples under specific conditions. 
The experimental setup and the measurement system are explained in more detail in 
Brandner et al. (2008). Figure 5a shows the practical realisation of this sensor. Care has been 
taken to consider environmental conditions that include the submersion of the material 
samples in tempered oil. Our focus in this section is to justify the particular uncertainty 
model applied for this measurement system. 
Figure 15 depicts the geometric sketch of the displacement measurement system. A single 
camera is used to acquire an image of a scene comprising a planar reference target and a 
planar sample target. These targets each consists of circular blob features manufactured into   
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                                       (a)                                                                              (b) 

Fig. 14. Direct linear estimation of the homography parameters that relate the seven corners 
with corresponding point positions in a model database. (a) The four corners of the 
rectangle and the lower-left corner of the triangle are used to estimate the homography 
parameters. The ellipses depict the 95% probability regions of the predicted image corners 
based on model-, feature detection-, and homography parameter uncertainty.  
(b) Comparison of the analytic method with a Monte Carlo simulation. The close-up of the 
lower-right corner of the triangle shows that due to the close agreement the Monte Carlo 
results support our analytical estimates. 
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Fig. 15. Outline of the geometry of a single camera/target pair. This single image acquisition 
setup processes the same image twice: First, features on the reference target are used to 
estimate the transformation parameters Ĥ. Second, these parameters are applied to features 
on the sample target in order to estimate the displacement of this target. 
 

a stainless steel sheet by laser marking. By construction of the setup, the two targets are 

coplanar so that a homography Ĥ can be used to relate the image plane of the sensor ΠImage 

to the (z = 0)-plane which holds both targets. During the measurement process a single 
image is used to simultaneously obtain image points corresponding to the reference target 
and the sample target. Based on these image points, the sensor estimates the parameters of 
the homography which are then used to reconstruct the 2D displacement of the sample 
target with respect to the reference target. 
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Fig. 16. Uncertainty model of the 2D displacement measurement system. The simultaneous 
estimation and application of the homography parameters require the proper handling of 
correlations. 

For this specific measurement application we note that each image point is mapped by the 
same sensor and detected under the same illumination conditions of the scene. The common 
sensor calibration as well as common systematic effects such as ageing of the medium 
introduce a correlation between the points used to estimate the homography and the points 
which are transformed using the estimated homography. 
Figure 16 shows the graphical model relating the input quantities (i.e. the image centres of 
the blobs) to the measurand (i.e. the position t in metric coordinates). This model graphically 
represents the measurement equation. Note that we explicitly visualise parameter 
correlations which is shown by the following two examples: First, the estimation of the 
homography parameters is performed using the direct linear transform algorithm (DLT, 
Hartley & Zisserman (2004)). This algorithm takes as input a sequence of image points, qd 

and their corresponding model points r. While the image points are correlated due to their 
common acquisition conditions, no dependency between the image points and their models 
is considered in this model. This is denoted by the two rectangles within the DLT block 
restricting correlations to appear within the rectangle only. Second, the final homography 
parameters are used to map the image point pd in order to obtain th. The common acquisition 
of pd and qd gives rise to a inter-parameter correlation between the input parameters to the 
homography block. The rectangle corresponding to the range of correlated input quantities 
is now extended to all quantities entering the block on the right – and, consequently, 
omitted for a clear representation. We can straight forwardly nest different layers of the 
model in order to better visualize relevant effects. This is shown with an aggregate model 
block enclosing both the DLT estimator and the homography application indicating the 
relevant parameter correlations at its inputs. 

6. Summary 

This paper addresses the problem of measurement uncertainty evaluation in vision-based 
measurement applications. We contribute to the state of the art by the development of a 
consistent frame-work for the modelling of uncertainties in vision-based applications. By 
combining the Gaussian representation of geometric entities in perspective spaces with the 
current Bayesian extensions of the Guide to the Expression of Uncertainty in Metrology 
(GUM) we introduce the concept of a metrological geometry. We identify a set of simple 
graphical building blocks which serve to characterise and to quantify the measurement 
uncertainty of the metrological application in a step-by-step approach. The presented frame-
work is applicable to Gaussian quantities and transformation functions that are linear or 
that can be locally linearised. Using homogeneous coordinates, many constructions of 
entities are based on bilinear transforms which are well suited for local linearisation. 
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All input quantities contributing to the measurement uncertainty of the final result can be 
covered by the proposed frame-work. These include the calibration parameters of the sensor 
as well as the uncertainty introduced by transformations. 
The presented work enables improvements for applications involving the analysis of 
measurement uncertainties in different ways: First, the presented building blocks provide an 
easy-to-use and intuitive way to visualise all quantities involved in the measurement 
process. They further explicitly highlight parameter correlations which are important to take 
into consideration when evaluating measurement uncertainties. 
Second, the analytical derivation of the measurement uncertainty for most applications is 
computationally far less intensive than comparable alternatives such as Monte Carlo 
simulations. This allows for the construction of algorithms which determine the uncertainty 
of any measurement result in real-time including the incorporation of the best estimate. The 
resultant uncertainty estimates provide tighter interval boundaries which increases the 
usefulness of the result. 
Third, correlations between quantities contributing to the measurement result are fully 
covered by the frame-work. As shown in the application section, the parameters of 
homographies can straight forwardly be estimated based on and applied to correlated 
features. Thus, mis-estimates of the measurement uncertainty based on false independence 
assumptions can be avoided. This paper extends prior work by Criminisi (2001) which 
targets the derivation of parameter uncertainties of 2D/2D homographies. We cover 
correlations within the input entities of the DLT estimator as well as correlations between 
the homography parameters and their respective input parameters. This allows us to tackle 
single image acquisition scenarios as frequently encountered in vision-based metrology. 
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