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1. Introduction

Intelligent Information processing in distributed wireless sensor networks has many differ-
ent optimizations by which redundancies in data can be eliminated, and at the same time the
original source signal can be retrieved without loss. The data-centric nature of sensor net-
work is modeled, which allows environmental applications to measure correlated data by pe-
riodic data aggregation. In the distributed framework, we explore how Compressed Sensing
could be used to represent the measured signals in its sparse form, and model the frame-
work to reproduce the individual signals from the ensembles in its sparse form expressed in
equations(1,3). The processed signals are then represented with their common component;
which is represented by its significant coefficients, and the variation components, which is
also sparse are projected onto scaling and wavelet functions of the correlated component.
The overall representation of the basis preserves the temporal (intra-signal) and spatial (inter-
signal) characteristics. All of these scenarios correspond to measuring properties of physical
processes that change smoothly in time, and in space, and thus are highly correlated. We
show by simulation that the framework using cross-layer protocols can be extended using
sensor fusion, and data-centric aggregation, to scale to a large number of nodes.

1.1 Cross Layer Sensor Nodes

Sensor network due to its constrained resources such as energy, memory, and range uses a
cross layer model for efficient communications. The cross layer model uses pre-processing, post-
processing and routing, to accomplish sensor measurements and communications with sensor
nodes. Cross layer based routing protocols use different OSI layers to do multi-hop communi-
cations. Due to high deployment node densities and short bursts of wireless transmission, not
all layers are connected, and can only be coordinated and scheduled by a higher level network
function which keeps track of the node states. Due to this limited connectivity between layers,
one needs to efficiently schedule the sensor nodes, and its states from the lower-level physical
layers, to the higher routing and application layers. The energy spent at each layer needs to be
carefully profiled so that any redundancy due to network scalability can further deteriorate
the power-aware routing algorithm. One common motivation is to use the least number of
bits to represent the data, as the transmission cost per bit increases non-linearly (Power Law)
with distance (S. B. Lowen and M. C. Teich (1970)). The other relevant factors, which influence
the accuracy of the measured sensor values, versus the total number of sensors deployed, can
be divided into pre- and post processing of sensing application parameters. The lower-layer
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54 Sensor Fusion and Its Applications

pre-processing involves, (a) the number of measurement needed so that the measured values
can be represented without loss by using intra-sensor redundancy, (b) as the sensor measure-
ments show temporal correlation with inter sensor data, the signal is further divided into
many blocks which represent constant variance. In terms of the OSI layer, the pre-processing
is done at the physical layer, in our case it is wireless channel with multi-sensor intervals. The
network layer data aggregation is based on variable length pre-fix coding, which minimizes
the number of bits before transmitting it to a sink. In terms of the OSI layers, data aggregation
is done at the data-link layer periodically buffering, before the packets are routed through the
upper network layer.

1.2 Computation Model

The sensor network model is based on network scalability the total number of sensors N,
which can be very large upto many thousand nodes. Due to this fact an application needs to
find the computation power in terms of the combined energy it has, and also the minimum
accuracy of the data it can track and measure. The computation steps can be described in
terms of the cross-layer protocol messages in the network model. The pre-processing needs to
accomplish the minimal number of measurements needed, givenby x = Y_8¢(n)¥, = Y 9(ny),
where Y is the best basis. The local coefficients can be represented by 2/ different levels, the
search for best basis can be accomplished, using a binary search in O(lgm) steps. The post
processing step involves efficient coding of the measured values, if there are m coefficients,
the space required to store the computation can be accomplished in O(lg, ) bits. The routing
of data using the sensor network needs to be power-aware, so these uses a distributed algo-
rithm using cluster head rotation, which enhances the total lifetime of the sensor network.
The computation complexity of routing in terms of the total number of nodes can be shown as
OC(lg N), where C is the number of cluster heads and N total number of nodes. The compu-
tational bounds are derived for pre- and post processing algorithms for large data-sets, and is
bounds are derived for a large node size in Section, Theoretical bounds.

1.3 Multi-sensor Data Fusion

Using the cross-layer protocol approach, we like to reduce the communication cost, and derive
bounds for the number of measurements necessary for signal recovery under a given sparsity
ensemble model, similar to Slepian-Wolf rate (Slepian (D. Wolf)) for correlated sources. At the
same time, using the collaborative sensor node computation model, the number of measure-
ments required for each sensor must account for the minimal features unique to that sensor,
while at the same time features that appear among multiple sensors must be amortized over
the group.

1.4 Chapter organization

Section 2 overviews the categorization of cross-layer pre-processing, CS theories and provides
a new result on CS signal recovery. Section 3 introduces routing and data aggregation for our
distributed framework and proposes two examples for routing. The performance analysis of
cluster and MAC level results are discussed. We provide our detailed analysis for the DCS
design criteria of the framework, and the need for pre-processing. In Section 4, we compare
the results of the framework with a correlated data-set. The shortcomings of the upper lay-
ers which are primarily routing centric are contrasted with data centric routing using DHT,
for the same family of protocols. In Section 5, we close the chapter with a discussion and
conclusions. In appendices several proofs contain bounds for scalability of resources. For pre-
requisites and programming information using sensor applications you may refer to the book
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Distributed Compressed Sensing of Sensor Data 55

by (5. S. Iyengar and Nandan Parameshwaran (2010)) Fundamentals of Sensor Programming,
Application and Technology.For Applications on emerging domains and implementations,
please refer to (Dhananjay Singh and Hoon-Jae Lee, 2010a;b).

2. Pre-Processing

As different sensors are connected to each node, the nodes have to periodically measure the
values for the given parameters which are correlated. The inexpensive sensors may not be
calibrated, and need processing of correlated data, according to intra and inter sensor varia-
tions. The pre-processing algorithms allow to accomplish two functions, one to use minimal
number of measurement at each sensor, and the other to represent the signal in its loss-less
sparse representation.

2.1 Compressive Sensing (CS)

The signal measured if it can be represented at a sparse Dror Baron (Marco F. Duarte) represen-
tation, then this technique is called the sparse basis as shown in equation (1), of the measured
signal. The technique of finding a representation with a small number of significant coeffi-
cients is often referred to as Sparse Coding. When sensing locally many techniques have been
implemented such as the Nyquist rate (Dror Baron (Marco F. Duarte)), which defines the min-
imum number of measurements needed to faithfully reproduce the original signal. Using CS
it is further possible to reduce the number of measurement for a set of sensors with correlated
measurements (Bhaskar Krishnamachari (Member)).

x=Y 8(n)¥y =) 0(n) ¥, (1)

Consider a real-valued signal x € RN indexed as x(n), n € 1,2,...,N. Suppose that the basis
¥ = [¥y,..., ¥n] provides a K-sparse representation of x; that is, where x is a linear combina-
tion of K vectors chosen from, ¥, ;. are the indices of those vectors, and &(n) are the coeffi-
cients; the concept is extendable to tight frames (Dror Baron (Marco E. Duarte)). Alternatively,
we can write in matrix notation x = ¥Y¢, where x is an N x 1 column vector, the sparse basis
matrix is N X N with the basis vectors ¥, as columns, and ¢(n) is an N x 1 column vector
with K nonzero elements. Using || . ||, Ato denote the £, norm, we can write that || ¢ ||, = K;
we can also write the set of nonzero indices )1, ..., N, with |Q)| = K. Various expansions, in-
cluding wavelets (Dror Baron (Marco F. Duarte)), Gabor bases (Dror Baron (Marco F. Duarte)),
curvelets (Dror Baron (Marco F. Duarte)), are widely used for representation and compression
of natural signals, images, and other data.

2.2 Sparse representation

A single measured signal of finite length, which can be represented in its sparse representa-
tion, by transforming into all its possible basis representations. The number of basis for the
for each level j can be calculated from the equation as

Ajpr = AT +1 2)
So staring atj = 0, Ag = 1 and similarly, A; = 1241=2,Ay=224+1=5and A3 =5%+1=
26 different basis representations.

Let us define a framework to quantify the sparsity of ensembles of correlated signals x1, x2, ..., xj
and to quantify the measurement requirements. These correlated signals can be represented
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56 Sensor Fusion and Its Applications

by its basis from equation (2). The collection of all possible basis representation is called the
sparsity model.
x = Po (©)

Where P is the sparsity model of K vectors (K << N) and 6 is the non zero coefficients of the
sparse representation of the signal. The sparsity of a signal is defined by this model P, as there
are many factored possibilities of x = Pf. Among the factorization the unique representation
of the smallest dimensionality of 6 is the sparsity level of the signal x under this model, or
€ which is the smallest interval among the sensor readings distinguished after cross-layer
aggregation.

2.3 Distributed Compressive Sensing (DCS)
Value vector coefficient Measurement

) (1.1)
' (172)

2

2,1)
3 (2,2)
4
D O (.M))

Vv Vm
Fig. 1. Bipartite graphs for distributed compressed sensing.

DCS allows to enable distributed coding algorithms to exploit both intra-and inter-signal cor-
relation structures. In a sensor network deployment, a number of sensors measure signals
that are each individually sparse in the some basis and also correlated from sensor to sensor.
If the separate sparse basis are projected onto the scaling and wavelet functions of the corre-
lated sensors(common coefficients), then all the information is already stored to individually
recover each of the signal at the joint decoder. This does not require any pre-initialization
between sensor nodes.

2.3.1 Joint Sparsity representation

For a given ensemble X, we let Pr(X) C P denote the set of feasible location matrices P € P for
which a factorization X = PO exits. We define the joint sparsity levels of the signal ensemble
as follows. The joint sparsity level D of the signal ensemble X is the number of columns
of the smallest matrix P € P. In these models each signal x; is generated as a combination
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of two components: (i) a common component z¢, which is present in all signals, and (ii) an
innovation component z;, which is unique to each signal. These combine additively, giving

x]':ZC—f—Z]',jEV (4)

X = PO 5)

We now introduce a bipartite graph G = (Vy, V), E), as shown in Figure 1, that represents the
relationships between the entries of the value vector and its measurements. The common and
innovation components K¢ and K;, (1 < j < ), as well as the joint sparsity D = K¢ + }_Kj.
The set of edges E is defined as follows:

* The edge E is connected for all K if the coefficients are not in common with K.
* The edge E is connected for all K; if the coefficients are in common with K.

A further optimization can be performed to reduce the number of measurement made by each
sensor, the number of measurement is now proportional to the maximal overlap of the inter
sensor ranges and not a constant as shown in equation (1). This is calculated by the common
coefficients K, and K]-, if there are common coefficients in K]- then one of the K, coefficient is
removed and the common Z; is added, these change does not effecting the reconstruction of
the original measurement signal x.

3. Post-Processing and Routing

The computation of this layer primarily deals with compression algorithms and distributed
routing, which allows efficient packaging of data with minimal number of bits. Once the data
are fused and compressed it uses a network protocol to periodically route the packets using
multi-hoping. The routing in sensor network uses two categories of power-aware routing
protocols, one uses distributed data aggregation at the network layer forming clusters, and the
other uses MAC layer protocols to schedule the radio for best effort delivery of the multi-hop
packets from source to destination. Once the data is snap-shotted, it is further aggregated into
sinks by using Distributed Hash based routing (DHT) which keeps the number of hops for a
query path length constant in a distributed manner using graph embedding James Newsome
and Dawn Song (2003).

3.1 Cross-Layer Data Aggregation
Clustering algorithms periodically selects cluster heads (CH), which divides the network into
k clusters which are in the CHs Radio range. As the resources at each node is limited the
energy dissipation is evenly distributed by the distributed CH selection algorithm. The basic
energy consumption for scalable sensor network is derived as below.
Sensor node energy dissipation due to transmission over a given range and density follows
Power law, which states that energy consumes is proportional to the square of the distance in
m? transmitted.

PowerLaw =12 +22 432 + 42 + ..+ (d — 1)* + d° (6)

To sum up the total energy consumption we can write it in the form of Power Law equation

[7]
PowerLaw = f(x) = ax* 4 o(x)? (7)
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Substituting d-distance for x and k number of bits transmitted, we equate as in equation (7).
PowerLaw = f(d) = kd® + o(d)? (8)
Taking Log both sides of equation (8),
log(f(d)) = 2logd + logk )

Notice that the expression in equation (10) has the form of a linear relationship with slope k,
and scaling the argument induces a linear shift of the function, and leaves both the form and
slope k unchanged. Plotting to the log scale as shown in Figure 3, we get a long tail showing
a few nodes dominate the transmission power compared to the majority, similar to the Power
Law (S. B. Lowen and M. C. Teich (1970)).

Properties of power laws - Scale invariance: The main property of power laws that makes
them interesting is their scale invariance. Given a relation f(x) = ax® or, any homogeneous
polynomial, scaling the argument x by a constant factor causes only a proportionate scaling
of the function itself. From the equation (10), we can infer that the property is scale invariant
even with clustering c nodes in a given radius k.

fled) = k(cd?) = " f(d)af(d) (10)

This is validated from the simulation results (Vasanth Iyer (G. Rama Murthy)) obtained in Fig-
ure (2), which show optimal results, minimum loading per node (Vasanth Iyer (S.S. Iyengar)),
when clustering is < 20% as expected from the above derivation.

3.2 MAC Layer Routing
The IEEE 802.15.4 (Joseph Polastre (Jason Hill)) is a standard for sensor network MAC inter-
operability, it defines a standard for the radios present at each node to reliably communicate
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Sensors Sq Sy S3 Sy S5 Se Sy Sg
Value 47 £ |16 £ |30 £+ |18 £+ (47 £+ |16 + |30 =+ |18 =+

2.0 1.6 1.5 1.0 1.0 0.8 0.75 0.5
Group - - - - - - - -

Table 1. A typical random measurements from sensors showing non-linearity in ranges

with each other. As the radios consume lots of power the MAC protocol for best performance
uses Idle, Sleep and Listen modes to conserve battery. The radios are scheduled to periodically
listen to the channel for any activity and receive any packets, otherwise it goes to idle, or sleep
mode. The MAC protocol also needs to take care of collision as the primary means of commu-
nication is using broadcast mode. The standard carrier sense multiple access (CSMA) protocol
is used to share the channel for simultaneous communications. Sensor network variants of
CSMA such as B-MAC and S-MAC Joseph Polastre (Jason Hill) have evolved, which allows to
better handle passive listening, and used low-power listening(LPL). The performance charac-
teristic of MAC based protocols for varying density (small, medium and high) deployed are
shown in Figure 3. As it is seen it uses best effort routing (least cross-layer overhead), and
maintains a constant throughput, the depletion curve for the MAC also follows the Power
Law depletion curve, and has a higher bound when power-aware scheduling such LPL and
Sleep states are further used for idle optimization.

3.2.1 DHT KEY Lookup

Topology of the overlay network uses an addressing which is generated by consistent hashing
of the node-id, so that the addressing is evenly distributed across all nodes. The new data is
stored with its < KEY > which is also generated the same way as the node address range. If
the specific node is not in the range the next node in the clockwise direction is assigned the
data for that < KEY >. From theorem:4, we have that the average number of hops to retrieve
the value for the < KEY, VALUE > is only O(lgn) hops. The routing table can be tagged
with application specific items, which are further used by upper layer during query retrieval.
In domain specific application such as medical integration, the performance measure can be
found in the related work of (Dhananjay Singh and Daeyeoul Kim, 2010a;b).

4. Comparison of DCS and Data Aggregation

In Section 4 and 5, we have seen various data processing algorithms, in terms of communi-
cation cost they are comparable. In this Section, we will look into two design factors of the
distributed framework:

1. Assumptionl: How well the individual sensor signal sparsity can be represented.

2. Assumption2: What would be the minimum measurement possible by using joint spar-
sity model from equation (5).

3. Assumption3: The maximum possible basis representations for the joint ensemble co-
efficients.

4. Assumption4: A cost function search which allows to represent the best basis without
overlapping coefficients.

5. Assumption5: Result validation using regression analysis, such package R (Owen Jones
(Robert Maillardet)).
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60 Sensor Fusion and Its Applications

The design framework allows to pre-process individual sensor sparse measurement, and uses
a computationally efficient algorithm to perform in-network data fusion.

To use an example data-set, we will use four random measurements obtained by multiple
sensors, this is shown in Table 1. It has two groups of four sensors each, as shown the mean
value are the same for both the groups and the variance due to random sensor measurements
vary with time. The buffer is created according to the design criteria (1), which preserves
the sparsity of the individual sensor readings, this takes three values for each sensor to be
represented as shown in Figure (4).

Signal-1 Signal-2
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(b) Pre-Processing and Sensor Data Fusion

Fig. 4. Sensor Value Estimation with Aggregation and Sensor Fusion

In the case of post-processing algorithms, which optimizes on the space and the number of
bits needed to represent multi-sensor readings, the fusing sensor calculates the average or the
mean from the values to be aggregated into a single value. From our example data, we see that
for both the data-sets gives the same end result, in this case ¢ = 2.7 as shown in the output
plot of Figure 4(a). Using the design criteria (1), which specifies the sparse representation is
not used by post-processing algorithms. Due to this dynamic features are lost during data
aggregation step.

The pre-processing step uses Discrete Wavelet Transform (DWT) (Arne Jensen and Anders
la Cour-Harbo (2001)) on the signal, and may have to recursively apply the decomposition
to arrive at a sparse representation, this pre-process is shown in Figure 4(b). This step uses
the design criteria (1), which specifies the small number of significant coefficients needed to
represent the given signal measured. As seen in Figure 4(b), each level of decomposition
reduces the size of the coefficients. As memory is constrained, we use up to four levels of
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decomposition with a possible of 26 different representations, as computed by equation (2).
These uses the design criteria (3) for lossless reconstruction of the original signal.

The next step of pre-processing is to find the best basis, we let a vector Basis of the same
length as cost values representing the basis, this method uses Algorithm 1. The indexing of
the two vector is the same and are enumerated in Figure of 4(b). In Figure 4(b), we have
marked a basis with shaded boxes. This basis is then represented by the vector. The basis
search, which is part of design criteria (4), allows to represent the best coefficients for inter
and intra sensor features. It can be noticed that the values are not averages or means of the
signal representation, it preserves the actual sensor outputs. As an important design criteria
(2), which calibrates the minimum possible sensitivity of the sensor. The output in figure 4(b),
shows the constant estimate of S3, Sy which is Z¢ = 2.7 from equation (4).

To represent the variance in four sensors, a basis search is performed which finds coefficients
of sensors which matches the same columns. In this example, we find Zj = 1.6,0.75 from
equation (4), which are the innovation component.

Basis=[00101001100000 000000000000000 0]

Correlated range =100001001000000 0000000000000 00 0]

4.1 Lower Bound Validation using Covariance

The Figure 4(b) shows lower bound of the overlapped sensor ii.d. of S; — Sg, as shown it
is seen that the lower bound is unique to the temporal variations of S;. In our analysis we
will use a general model which allows to detect sensor faults. The binary model can result
from placing a threshold on the real-valued readings of sensors. Let m, be the mean normal

reading and n1y the mean event reading for a sensor. A reasonable threshold for distinguishing

between the two possibilities would be 0.5( m";mf ). If the errors due to sensor faults and the

fluctuations in the environment can be modeled by Gaussian distributions with mean 0 and a
standard deviation ¢, the fault probability p would indeed be symmetric. It can be evaluated
using the tail probability of a Gaussian Bhaskar Krishnamachari (Member), the Q-function, as
follows:

p=Q o 20

From the measured i.i.d. value sets we need to determine if they have any faulty sensors.
This can be shown from equation (11) that if the correlated sets can be distinguished from the
mean values then it has a low probability of error due to sensor faults, as sensor faults are
not correlated. Using the statistical analysis package R Owen Jones (Robert Maillardet), we
determine the correlated matrix of the sparse sensor outputs as shown This can be written in
a compact matrix form if we observe that for this case the covariance matrix is diagonal, this
is,

e e "

01 0 . 0
0 02 . 0

2= 12
: DNy (12)
0 0 . Pd

The correlated co-efficient are shown matrix (13) the corresponding diagonal elements are
highlighted. Due to overlapping reading we see the resulting matrix shows that S; and S,
have higher index. The result sets is within the desired bounds of the previous analysis using
DWT. Here we not only prove that the sensor are not faulty but also report a lower bound of
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Sensors 51 52 53 54 55 56 57 58
iidaq 27 |1 0 15108 |37 |08 |225 |13
iid.o 47 | 16 | 3 1.8 | 47 | 1.6 3 1.8
iidsg 6.7 | 32 | 45|28 |57 |24 |37 |23

Table 2. Sparse representation of sensor values from Table:1

the optimal correlated result sets, that is we use S as it is the lower bound of the overlapping
ranges.

10 320 300 200 200 160 15 1.0
32 256 240 160 160 128 120  0.80
30 240 2250 150 150 120 1125 0.5
20 160 150 1.00 1.00 080 075 05
5 = (13)
20 160 150 1.00 1.00 080 075 05
16 128 120 080 080 064 060 04
15 120 1125 075 075 060 05625 0375

1.0 080 0.750 050 050 0.40 0375 0.250

5. Conclusion

In this topic, we have discussed a distributed framework for correlated multi-sensor mea-
surements and data-centric routing. The framework, uses compressed sensing to reduce the
number of required measurements. The joint sparsity model, further allows to define the sys-
tem accuracy in terms of the lowest range, which can be measured by a group of sensors. The
sensor fusion algorithms allows to estimate the physical parameter, which is being measured
without any inter sensor communications. The reliability of the pre-processing and sensor
faults are discussed by comparing DWT and Covariance methods.

The complexity model is developed which allows to describe the encoding and decoding of
the data. The model tends to be easy for encoding, and builds more complexity at the joint
decoding level, which are nodes with have more resources as being the decoders.

Post processing and data aggregation are discussed with cross-layer protocols at the network
and the MAC layer, its implication to data-centric routing using DHT is discussed, and com-
pared with the DCS model. Even though these routing algorithms are power-aware, the model
does not scale in terms of accurately estimating the physical parameters at the sensor level,
making sensor driven processing more reliable for such applications.

6. Theoretical Bounds

The computational complexities and its theoretical bounds are derived for categories of sensor
pre-, post processing and routing algorithms.
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6.1 Pre-Processing

Algorithm 1 DWT: Using a cost function for searching the best sparse representation of a
signal.

1: Mark all the elements on the bottom level

2: Letj=]
3: Letk =0
4: Compare the cost v1 of the element k on level (j — 1) (counting from the left on that level)

to the sum v, of the cost values of the element 2k and the 2k + 1 on the level ;.

if v1 < vy, all marks below element k on level j — 1 are deleted, and element k is marked.
if v1 > vy, the cost value v1 of element k is replaced with v, k = k + 1. If there are more
elements on level j (if k < 2/~1 — 1)), go to step 4.

7: j=j—1.1fj > 1, go to step 3.

8: The marked sparse representation has the lowest possible cost value, having no overlaps.

SANRSL

Theorem 1. The Slepian-Wolf rate as referenced in the region for two arbitrarily correlated sources x
and y is bounded by the following inequalities, this theorem can be adapted using equation

X y
RxZH(g),Ry2H<;> and Ry + Ry > H (x,y) (14)

Theorem 2. minimal spanning tree (MST) computational and time complexity for correlated den-
drogram. First considering the computational complexity let us assume n patterns in d-dimensional
space. To make ¢ clusters using d,;, (D;, Dj) a distance measure of similarity. We need once for
all, need to calculate n(n — 1) interpoint distance table. The space complexity is n?, we reduce it to
lg(n) entries. Finding the minimum distance pair (for the first merging) requires that we step through
the complete list, keeping the index of the smallest distance. Thus, for the first step, the complexity is
O(n(n—1))(d>+1) = O(n>d?). For clusters c the number of steps is n(n — 1) — c unused distances.
The full-time complexity is O(n(n — 1) — ¢) or O(cn?d?).

6.2 Post-processing
Theorem 3. Properties of Pre-fix coding: For any compression algorithm which assigns prefix codes
and to uniquely be decodable. Let us define the kraft Number and is a measure of the size of L. We
see that if L is 1, 27 is .5. We know that we cannot have more than two L’s of .5. If there are more
that two L’s of .5, then K > 1. Similarly, we know L can be as large as we want. Thus, 2L can be as
small as we want, so K can be as small as we want. Thus we can intuitively see that there must be a
strict upper bound on K, and no lower bound. It turns out that a prefix-code only exists for the codes
IF AND ONLY IF:

K<1 (15)

The above equation is the Kraft inequality. The success of transmission can be further calculated by
using the equation For a minimum pre-fix code a = 0.5 as 2~ < 1 for a unique decodability.
Iteration a = 0.5

In order to extend this scenario with distributed source coding, we consider the case of separate encoders
for each source, x,, and y,,. Each encoder operates without access to the other source.

Iterationa > 0.5 < 1.0

As in the previous case it uses correlated values as a dependency and constructs the code-book. The

www.intechopen.com



64 Sensor Fusion and Its Applications

compression rate or efficiency is further enhanced by increasing the correlated CDF higher than a >
0.5. This produces very efficient code-book and the design is independent of any decoder reference
information. Due to this a success threshold is also predictable, if a = 0.5 and the cost between L = 1.0
and 2.0 the success = 50% and for a = 0.9 and L = 1.1, the success = 71%.

6.3 Distributed Routing

Theorem 4. The Cayley Graph (S, E) of a group: Vertices corresponding to the underlying set S.
Edges corresponding to the actions of the generators. (Complete) Chord is a Cayley graph for (Zn, +).
The routing nodes can be distributed using S = Zmodn (n = 2™) very similar to our simulation
results of LEACH (Vasanth Iyer (G. Rama Murthy)). Generators for one-way hashing can use these
fixed length hash 1,2,4,,2™ — 1. Most complete Distributed Hash Table (DHTs) are Cayley graphs.
Data-centric algorithm Complexity: where Z is the original 1D and the key is its hash between 0 — 2™,
ID + key are uniformly distributed in the chord (Vasanth Iyer (S. S. Iyengar)).
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