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1. Introduction   

With exponentially evolving technology it is no exaggeration to say that any interface for 
human-robot interaction (HRI) that disregards human affective states and fails to 
pertinently react to the states can never inspire a user’s confidence, but they perceive it as 
cold, untrustworthy, and socially inept. Indeed, there is evidence that HRI is more likely to 
be accepted by the user if it is sensitive towards the user’s affective states, as expression and 
understanding of emotions facilitate to complete the mutual sympathy in human 
communication. To approach the affective human-robot interface, one of the most important 
prerequisites is a reliable emotion recognition system which guarantees acceptable 
recognition accuracy, robustness against any artifacts, and adaptability to practical 
applications. 
Emotion recognition is an extremely challenging task in several respects. One of the main 
difficulties is that it is very hard to uniquely correlate signal patterns with a certain 
emotional state because even it is difficult to define what emotion means in a precise way. 
Moreover, it is the fact that emotion-relevant signal patterns may widely differ from person 
to person and from situation to situation. Gathering “ground-truth” dataset is also 
problematical to build a generalized emotion recognition system. Therefore, a number of 
assumptions are generally required for engineering approach to emotion recognition.   
 Most research on emotion recognition so far has focused on the analysis of a single 
modality, such as speech and facial expression (see (Cowie et al., 2001) for a comprehensive 
overview). Recently some works on emotion recognition by combining multiple modalities 
are reported, mostly by fusing features extracted from audiovisual modalities such as facial 
expression and speech. We humans use several modalities jointly to interpret emotional 
states in human communication, since emotion affects almost all modes, audiovisual (facial 
expression, voice, gesture, posture, etc.), physiological (respiration, skin temperature etc.), 
and contextual (goal, preference, environment, social situation, etc.) states. Hence, one can 
expect higher recognition rates through the integration of multiple modalities for emotion 
recognition. On the other hand, however, more complex classification and fusion problems 
arise.
 In this chapter, we concentrate on the integration of speech signals and physiological 
measures (biosignals) for emotion recognition based on a short-term observation. Several 
advantages can be expected when combining biosensor feedback with affective speech. First 

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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of all, biosensors allow us to continuously gather information on the users’ affective state 
while the analysis of emotions from speech should only be triggered when the microphone 
receives speech signals from the user. Secondly, it is much harder for the user to deliberately 
manipulate biofeedback than external channels of expression which allows us to largely 
circumvent the artifact of social masking. Finally, an integrated analysis of biosignals and 
speech may help to resolve ambiguities and compensate for errors. 
When combining multiple modalities, the following questions arise: (1) How to handle 
conflicting cases between the single modalities? For instance, a user may consciously or 
unconsciously conceal his/her real emotions by external channels of expression, but still 
reveal them by internal channels of expression. (2) At which level of abstraction should the 
single modalities be fused in order to increase the accuracy of the recognition results? (3) 
How should the window sizes of different modalities be synchronized when same 
emotional cues in the modalities occur with a time discrepancy? 
In the next section, we discuss selected previous work. Section 3 reports on the dataset we 
used and describes the features we extracted from speech signal 5-channel biosignal. Several 
fusion methods are presented including feature-level fusion, decision-level fusion, and a 
hybrid fusion scheme. In Section 4, we analyze the classification results with respect to the 
effect of bimodal integration. We conclude this work with a short outlook on future work. 

2. Related Work 

2.1 Modeling of discrete emotions 

As people display the emotional expressions of others to their various degrees individually, 
it is not an easy task to judge or to model human emotions. The researchers often use two 
different methods to model emotions. One approach is to label the emotions in discrete 
categories, i.e. human judges have to choose from a prescribed list of word labels, e.g. joy, 
sadness, surprise, anger, love, fear, etc. One problem with this method is that the stimuli 
may contain blended emotions that can not adequately be expressed in words since the 
choice of words may be too restrictive and culturally dependent. Another way is to have 
multiple dimension or scales to categorize emotions. Instead of choosing discrete labels or 
words, observers can indicate their impression of each stimulus on several continuous 
scales, for example, pleasant-unpleasant, attention-rejection, simple-complicated, etc. Two 
common scales are valence and arousal. Valence represents the pleasantness of stimuli, with 
positive (or pleasant) on the end, and negative (or unpleasant) on the other. For example, 
happiness has a positive valence, while disgust has a negative valence. Another dimension 
is arousal (activation level). For example, sadness has low arousal, whereas surprise has 
high arousal level. The different emotional labels could be plotted at various positions on a 
two-dimensional plane spanned by these two axes to construct a 2D emotion model (Lang, 
1995) (see Fig. 1.(a)). 
 Recently, the low consistency of physiological configurations supported the hypothesis that 
ANS activation during emotions indicates the demands of a specific action tendency and 
action disposition, instead of reflecting emotions per se (Tooby & Cosmides, 1990; Lazarus, 
1991; Davidson, 1993). (Scholsberg, 1954) suggested a three-dimensional model in which he 
had attention-rejection in addition to the 2D model. Researchers have summarized these 
associated action tendencies as “stance” in three-dimensional emotion model, i.e., arousal, 
valence, and stance (Fig. 1.(b)). 
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Figure 1. Emotion models: (a) Two-dimensional model by valence and arousal, (b) Three-
dimensional model by valence, arousal, and stance 

 For example, fear is associated with the action pattern of “flight”, anger calls to mind the 
urge to “fight”, and so on. However, it is not immediately obvious what elemental problem 
happiness solves and what action pattern or motor program is associated with this emotion. 
Thus such positive emotions seem to be characterized by a lack of autonomic activation, and 
this might be one reason why research on positive emotions has been behind negative 
emotions so far. Interestingly, (Fredricson & Levenson, 1998) reported “undoing” effect of 
positive emotions that certain positive emotions speed recovery from the cardiovascular 
sequelae of negative emotions1. It is a useful finding to support symmetry process of 
emotion system, that the negative emotions act to help the organism escape from 
homeostasis and the positive emotions such as contentment and amusement catalyze a more 
rapid return to homeostatic levels. 

2.2 Automatic emotion recognition using speech and biosignals

There is a vast body of literature on the automatic recognition of emotions. With labelled 
data collected from different modalities, most studies rely on supervised pattern 
classification approaches to automatic emotion recognition. 
Following the long tradition of speech analysis in signal processing, many efforts were taken 
to recognize affective states from vocal information. As emotion-specific contents in speech, 
supra-segmental prosodic features including intensity, pitch, and duration of utterance have 
been widely used in recognition systems. To exploit the dynamic variation along an 
utterance, Mel-frequency cepstral coefficients (MFCC) are extensively employed. For 
example, (New et al., 2001) achieved an average accuracy of 66% for six emotions acted by 
two speakers using 12 MFCC features as input to a discrete hidden Markov model (HMM). 
A rule-based method for emotion recognition was proposed by (Chen, 2000). The data used 
in this work contained two foreign languages (Spanish and Sinhala) for the judges who did 
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not comprehend either language and were therefore able to make their judgment based on 
vocal expression without being influenced by linguistic/semantic content. (Batliner et al., 
2003) achieved about 40% for a 4-class problem with elicited emotions in spontaneous 
speech.
Relatively little attention has been paid so far to physiological signals for emotion 
recognition compared to other channels of expression. A significant series of work has been 
conducted by Picard and colleagues at MIT Lab. For example, they showed that certain 
affective states may be recognized by using physiological measures including heart rate, 
skin conductivity, temperature, muscle activity, and respiration velocity (Picard et al., 2001). 
Eight emotions deliberately elicited from a subject in multiple weeks were classified with an 
overall accuracy of 81%. (Nasoz et al., 2003) used movie clips to elicit target emotions from 
29 subjects and achieved the best recognition accuracy (83%) by applying the Marquardt 
Backpropagation algorithm. More recently, (Wagner et al., 2005) presented an approach to 
the recognition of emotions elicited by music using 4-channel biosignals which were 
recorded while the subject was listening to music songs, and reached an overall recognition 
accuracy of 92% for a 4-class problem. 
In order to improve the recognition accuracy obtained from unimodal recognition systems, 
many studies attempted to exploit the advantage of using multimodal information, 
especially by fusing audio-visual information. For example, (De Silva & Ng, 2000) proposed 
a rule-based singular classification of audio-visual data recorded from two subjects into six 
emotion categories. Moreover, they observed that some emotions are easier to identify with 
audio, such as sadness and fear, and others with video, such as anger and happiness. Using 
decision-level fusion in bimodal recognition system, a recognition rate of 72% has been 
reported. A set of singular classification methods was proposed by (Chen & Huang, 2000), 
in which audio-visual data collected from five subjects was classified into the Ekman’s six 
basic emotions (happiness, sadness, disgust, fear, anger, and surprise). They could improve 
the performance of decision-level fusion by considering the dominant modality, determined 
by empirical studies, in case significant discrepancy between the outputs of each unimodal 
classifier has been observed. Recently, a large-scale audio-visual dataset was collected by 
(Zeng et al., 2004), which contains five HCI-related affective responses (confusion, interest, 
boredom, and frustration) in addition to seven affects (the six basic emotions + neutral). To 
classify the 11 emotions subject-dependently, they used the SNoW (Sparse Network of 
Winnow) classifier with Naive Bayes as the update rule and achieved a recognition accuracy 
of almost 90% through bimodal fusion while the unimodal classifiers yielded only 45-56%. 
Most previous studies have shown that the performance of emotion recognition systems can 
be improved by the use of audio-visual information. However, it should be noted that the 
achieved recognition rates depend rather on the type of the underlying dataset, whether the 
emotions were from acted, elicited or real-life situation, than the used algorithms and 
classification methods. Moreover, apart from our previous work (Kim et al., 2005), work on 
the integration of biosignals and speech is rare. In this paper, we will investigate in how far 
the robustness of an emotion recognition system can be increased by integrating both vocal 
and physiological cues. We evaluate two fusion methods that combine bimodal information 
at different levels of abstraction as well as a hybrid integration scheme. Particularly we 
focus on shorter observations compared to or earlier work. 
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3. Methodology 

3.1 Dataset 

We use the same Quiz dataset as in our prior work (Kim et al., 2005). The dataset contains 
speech (using microphone by 48 KHz/16Bit), physiological (using 6-channel biosensors), 
and visual information (using video camera) from three male German-speaking subjects in 
their twenties. 
To acquire a corpus of spontaneous vocal and physiological emotions, we used a slightly 
modified version of the quiz “Who wants to be a millionaire?”. Questions along with 
options for answers were presented on a graphical display whose design was inspired by 
the corresponding quiz shows on German TV. In order to make sure that we got a sufficient 
amount of speech data, the subjects were not offered any letters as abbreviations for the 
single options (as very common in quiz shows on TV), but were forced to produce longer 
utterances. Furthermore, the users current score was indicated as well as the amount of 
money s/he may win or loose depending on whether his/er answer is correct or not. Each 
of the session took about 45 minutes to complete. The subjects were equipped with a 
directed microphone to interact with a virtual quiz master via spoken natural language 
utterances. The virtual quiz master was represented by a disembodied voice using the 
AT&T Natural Voices speech synthesizer. While the users interacted with the system, their 
bio and speech signals as well as the interaction with the quiz master were recorded. 
The quiz experiment was designed in a Wizard-Of-Oz fashion where the quiz agent who 
presents the quiz is controlled by a human quiz master who guides the actual course of the 
quiz, following a working script to evoke situations that lead to a certain emotional 
response. The wizard was allowed to freely type utterances, but also had access to a set of 
macros that contain pre-defined questions or comments which made it easier for the human 
wizard to follow the script and to get reproducible situations (see Fig. 2). 

Figure  2.  Interface for the user (left) and for the wizard (middle) 
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The wizards working script can be roughly divided into four situations which serve to 
induce certain emotional states in the user. We make use of a dimensional emotion model 
which characterizes emotions in terms of the two continuous dimensions of arousal and 
valence (see (Lang, 1995)). Arousal refers to the intensity of an emotional response. Valence 
determines whether an emotion is positive or negative and to what degree. Apart from the 
ease of describing emotional states that cannot be distributed into clear-cut fixed categories, 
the two dimensions valence and arousal are well suited for emotion recognition. The four 
phases of the experiment correspond to four quadrants the 2-D emotion model in Fig. 1.(a): 
(1) low arousal, positive valence, (2) high arousal, positive valence, (3) low arousal, negative 
valence and (4) high arousal, negative valence. 
First, the users are offered a set of very easy questions every user is supposed to know to 
achieve equal conditions for all of them. This phase is characterized by a slight increase of 
the score and gentle appraisal of the agent and serves to induce an emotional state of 
positive valence and low arousal in the user. In phase 2, the user is confronted with 
extremely difficult questions nobody is supposed to know. Whatever option the user 
chooses, the agent pretends the users answer is correct so that the user gets the feeling that 
s/he hits the right option just by chance. In order to evoke high arousal and positive 
valence, this phase leads to a high gain of money. During the third phase, we try to stress 
the user by a mix of solvable and difficult questions that lead, however, not to a drastic loss 
of money. Furthermore, the agent provides boring information related to the topics 
addressed in the questions. Thus, the phase should lead to negative valence and low 
arousal. Finally, the user gets frustrated by unsolvable questions. Whatever option the user 
chooses, the agent always pretends the answer is wrong resulting in a high loss of money. 
Furthermore, we include simple questions for which we offer similar-sounding options. The 
user is supposed to choose the right option, but we make him/er believe that the speech 
recognizer is not working properly and deliberately select the wrong option. This phase is 
intended to evoke high arousal and negative valence. 

3.2 Used biosensors 

The physiological signals are measured by using the Procomp1 Infiniti™ with the 6-channel 
biosensors: electromyogram (EMG), skin conductivity (SC), electrocardiogram (ECG), blood 
volume pulse (BVP), temperature (Temp), and respiration (RSP). The sampling rates are 32 
Hz for EMG, SC, RSP, and Temp, 256 Hz for ECG and BVP. The positions and typical 
waveforms of the biosensors we used are illustrated in Fig. 3.
 Electrocardiogram (ECG): we used a pre-amplified electrocardiograph sensor (bandwidth: 
0.05Hz-1 KHz) connected with pre-gelled single Ag/AgCl electrodes. We cannot measure 
individual action potentials direct in the heart. We can however measure the average action 
potential on the skin. The mean movement of the action potential is along the ``electrical 
axis'' of the heart. The action potential starts high in the right atrium, moves to the centre of 
the heart, then down towards the apex of the heart. Therefore the main electrical signal from 
heart is flowing away from the upper right of the body, and towards the lower left of the 
body.

                                                                
1

This is an 8 channel multi-modal Biofeedback system with 14 bit resolution and a fiber optic cable 
connection to the computer. www.MindMedia.nl 
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Figure 3.  Position and typical waveforms of the biosensors: (a) ECG, (b) EMG, (c) RSP, (d) 
SC, (e) BVP, (f) Temp. 

Electromyogram (EMG): we used Myoscan-Pro™ sensor with active range 20-500Hz and pre-
gelled single Ag/AgCl electrodes. It can record EMG signals of up to 1600 micro volt. We 
positioned the sensor at the nape of the neck of the subjects. Electromyography measures 
muscle activity by detecting surface voltages that occur when a muscle is contracted. 
Therefore the best readings are obtained when the sensor is placed on the muscle belly and 
its positive and negative electrodes are parallel to the muscle fibers. Since the number of 
muscle fibers that are recruited during any given contraction depends on the force required 
to perform the movement, the intensity (amplitude) of the resulting electrical signal is 
proportional to the strength of contraction. Particularly, the EMG signal required additional 
pre-processing, such as deep smoothing because of the nature of the signal that all the 
muscle fibers within the recording area of the sensor contract at different rates. 
Respiration (RSP): a stretch sensor using latex rubber band fixed with velcro respiration belt 
is used to capture breathing activity of the subjects. It can be worn either thoracically or 
abdominally, over clothing. The amount of stretch in the elastic is measured as a voltage 
change and recorded. Rate of respiration and depth of breath are the most common 
measures of respiration. Although respiration rate generally decreases with relaxation, 
startle events and tense situations may result in momentary respiration cessation. Negative 
emotions generally cause irregularity in the respiration pattern. 
Skin Conductivity (SC): skin conductivity is one of the mostly used measurements to capture 
the affective state of users, especially for arousal difference in emotion. SC sensor measures 
skin's ability to conduct electricity. A small voltage is applied to the skin and the skin's 
current conduction or resistance is measured. Therefore, skin conductance is considered to 
be a function of the activity of the eccrine sweat glands (located in palms of the hands and 
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soles of the feet) and the skin's pore size. We used Ag/AgCl electrodes fixed with two finger 
band and positioned at the index and ring finger of the non-dominant hand. 
Temperature (Temp): Temp is a highly sensitive temperature sensor and can monitor skin 
temperature changes smaller than 0.0001 (1/10000th) degree between 10°C – 45°C (50°F - 
115°F ). The sensor can be applied on the finger, hands, or other parts of the body. 
Blood Volume Pulse (BVP): BVP sensor measures the relative blood flow in the hands (fingers) 
with near infrared light, using the method known as photoplethysmography. The sensor 
housed in a small finger worn package can be used to monitor HR, HRV (heart rate 
variability), bloodflow and pulse. 

3.3 Synchronized segmentation of the bimodal signals 

In the previous work (Kim et al., 2005), we segmented and labelled the data based on the 
four experimental phases taking into account that the agreement between coders annotating 
material of everyday emotions is usually not very high (Douglas-Cowie et al., 2005). All 
speech and physiological signals that may be interpreted as a response to the same question 
have been segmented into one chunk and labelled with the emotion corresponding to the 
experimental phase in which they occurred 

Figure 4.  Segmentation of bimodal signals based on verbal phrases: (a) speech, (b) BVP, 

(c) EMG, (d) RSP, (e) SC, (f) Temp. 

 For the analysis described in this paper, the segmentation and labelling was refined by two 
expert labellers considering the situative context as well as the audio-visual expression of 
the subjects. In this way, we tried to handle cases where we did not succeed in eliciting the 
intended emotion. To segment speech and physiological data, we started from verbal 
phrases. The borders of the segments for both modalities were chosen to lie in the middle of 
two verbal phrases so that they cover the same time span. For the analysis of speech, we 
only consider the part of the segment when the verbal phrase occurs while for the analysis 
of physiological data the complete segment is taken. As a consequence, the observations for 
speech are usually shorter than the observations for the physiological data, but the length of 
the corresponding segments is the same which facilitates the later fusion process. 
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In total, we got 343 samples for classification (343 x 6 channels = 2058 segments in total) 
from the dataset. Based on the four phases of the experiments, our labellers relied on 
dimensional rating (i.e. labelling within the 4 quadrants of the 2D emotion model). 
Disagreements between the ratings of the two labellers were discussed and resolved after 
the annotation process. 
Fig. 4 shows sample segmentation for data from the used channels. The length of the 
observations varies from 2 to 6 seconds for the speech and from 3 to 15 seconds for the 
biosignals. That is the observations are rather short-term compared to previous studies that 
start from a segment length between 50 and 300 seconds (Kim et al., 2004). 

3.4 Feature extraction 

An essential step in pattern classification is to extract class-relevant features (preferably in a 
compressed form) from the raw signal. Moreover the classification of short-term 
observations requires more reasonable treatments in signal processing stages, e.g. extracting 
spectral features in biosignals (containing very low frequencies) within limited bandwidth 
due to the very short window size. 
From the speech signal: for all segments, the conventional statistics in time domain are 
calculated, such as mean, absolute extremum, root mean square, standard deviation, 
energy/power, intensity in dB etc. In frequency domain, three spectrum contents are 
obtained using the STFT; pitches using a window length of 40 ms, energy spectrum, and 
formant object using a window length of 25 ms. In addition, 10 MFCCs from each segment 
are calculated using a window length of 15 ms. From pitch and energy spectrum, also the 
series of the minima and maxima, and of the distances, magnitudes and steepness between 
adjacent extrema were obtained. For the MFCCs, we first exponentiated the cepstral 
coefficients to obtain non-negative values and calculated the spectral entropy as in the case 
of the biosignal in order to capture the distribution of cepstral energy. From each feature 
content above, we tried to extract single features (i.e., mean, standard deviation, mean of 
first and second derivative) representing characteristics (i.e., variance and slop) of each time 
series vector of spectrum, instead of taking all feature vectors. As a result, we obtained a 
total of 61 features from the speech segments. 
From physiological data: differing from (Kim et al., 2005), we employ the BVP signal instead of 
the ECG signal and use the Temp signal as an additional channel from the dataset.2 To 
remove noisy signals, all segments of the 5- channel biosignals (BVP, EMG, SC, RSP, and 
Temp) are lowpass-filtered using pertinent cut-off frequencies that are empirically 
determined for each biosensor channel. Different types of artifacts were observed such as 
transient noise due to movement of the subjects during the recording, mostly at the begin 
and end of the each recording. Particularly to the EMG signal, we needed to pay closer 
attention because the signal contains artifacts generated by respiration and heart beat (Fig. 
5). We found that it was due to the position of EMG sensor at the nape of the neck. 

                                                                
2

Generally the ECG is measured by using electrodes which do need a firm skin contact, whereas the 
BVP is measured by using a photoplethysmograph. Hence, using the BVP signal has some 
advantages such as robustness against motion artifacts during recording process and stable baseline 
in the signal flow.
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Figure 5.  Example of EMG signal with heart beat artifacts and denoised signal 

From the raw BVP signal, we first calculated the 8 subband spectral powers using the 
conventional 512 points short-time Fourier transform (STFT). To capture the irregularity and 
the local spectral distribution, the spectral entropy is calculated from each subband by 
converting the spectrum into a PMF-like (Probability Mass Function) form. Heart rate 
variability (HRV) is the most frequently used characteristic of the heart activity in 
biomedical engineering to assess cardiac health. Using the QRS detection algorithm of (Pan 
& Tompkins, 1985), the HRV like time series (we refer to as PRV)3 is obtained and typical 
statistics (mean value, standard deviation, slope, etc.) are calculated from the time series. By 
calculating the standard deviations in different distances of pulse-pulse interbeats, we also 
added the Poincaré geometry in the feature set to capture the nature of pulse interval 
fluctuations. Figure 6 shows an example plot of the geometry. 

Figure 6.  Example of BVP Analysis: (a) detected pulse interbeats, (b) interpolated PRV like 
series, (c) Poincaré plot of the PRV 

                                                                
3

Strictly speaking, it is the pulse rate variability (PRV) when relying on the BVP, not on the ECG signal, 
because in BVP signal one can not observe the clear QRS waveform, which enables a fine analysis of 
HRV.
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Lastly from the spectrum of the PRV time series, power spectrum densities (PSD) from three 
subbands are calculated from the ranges of VLF (0-0.04Hz), LF (0.05-0.15 Hz), and HF (0.16-
0.4 Hz), respectively and the ratio of LF/HF. Since the RSP signal is quasi periodic we 
calculated similar types of features like the BVP features including the typical statistics, 
except for the geometric features and the PSDs. After appropriate detrending the signals 
using mean value and lowpass filter, we calculated the BRV (time series of the breathing 
rates) by detecting the peaks using the maxima ranks within zero-crossing. 

Figure 7.  Analysis examples of SC and EMG signals 

From the SC and EMG signal respectively we calculated 10 features including the mean 
value, standard deviation, and mean values of first and second derivations. The number of 
transient changes (occurrences) within 4 seconds in SC and EMG signals are calculated from 
two low-passed signals, very low-passed (SC: 0.08 Hz, EMG: 0.3 Hz) and low-passed signals 
(SC: 0.2 Hz, EMG: 0.8 Hz) respectively (see Fig. 7). From the Temp signals, three statistical 
features are calculated: mean value, standard deviation, and ratio of max/min. Finally, we 
obtained a total of 77 features from the 5-channel biosignals. 

3.5 Feature selection and classification 

As the next step, we tried to determine which features are most relevant to differentiate each 
affective state. Reducing the dimension of the feature space has two advantages. First of all, 
the computational costs are lowered and secondly the removal of noisy information may 
lead to a better separation of the classes. In all cases, we achieved indeed considerably 
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higher accuracy rates (an increase of about 30 %) when applying sequential backward 
selection (SBS) to reduce the set of features. Of course, the success of the selection process 
heavily depends on the employed classifier. Several features were selected by SBS for all 
three subjects, e.g., the subband spectral entropy from BVP, the number of occurrences in SC 
and EMG, and the mean values of the MFCCs in the speech features. However, due to the 
small number of subjects, these findings should not be generalized. 
After testing several classification schemes, such as kNN (k-nearest neighbour), MLP 
(multilayer perception), and LDA (Linear discriminant analysis), we have chosen the LDA 
classifier which gave the highest accuracy in our case and which we already used for 
emotion recognition from physiological data in (Wagner et al., 2005). However it should be 
noted that there is no single best classification algorithm and the choice of the best 
classification method strongly depends on characteristics of dataset to be classified. In work 
(King et al., 1995), for example, this conclusion has been supported by wide comparative 
studies of about 20 different machine learning algorithms, including symbolic learning, 
neural networks, and statistical approaches, evaluated on 12 different real-world datasets. 
To combine the two modalities, we need to decide at which level the single modalities 
should be fused. A straightforward approach is to simply merge the features calculated 
from each modality (feature-level). An alternative would be to fuse the recognition results at 
the decision-level based on the outputs of separate unimodal classifiers (decision-level). 
Finally, we may combine both methods by applying a hybrid integration scheme (see Figure 
8).

Figure 8.   Considered fusion schemes for integrating bimodal information 

We performed both feature-level fusion and decision-level fusion using LDA in combination 
with SBS. Feature-level fusion is performed by merging the calculated features from each 
modality into one cumulative structure, selecting the relevant features using SBS, and 
feeding them to the LDA classifier. Decision-level fusion caters for integrating 
asynchronous, but temporally correlated modalities. Each modality is first classified 
independently by the LDA classifier, and the final decision is obtained by fusing the output 
from the modality-specific classification processes. Three criteria, maximum, average, and 
product (Busso et al., 2004) were applied to evaluate the posterior probabilities of the 
unimodal classifiers at the decision stage. As a further variation of decision-level fusion, we 
employed a new hybrid scheme of the two fusion methods in which the output of feature-
level fusion is also fed as an auxiliary input to the decision-level fusion stage. 
In Table 1, the best results are summarized that we achieved by the classification schemes 
described above. We classified the bimodal data subject-dependently (Subject A, B, and C) 
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and subject-independently (All) since this gave us a deeper insight on what terms the 
multimodal systems could improve the results of unimodal emotion recognition. 

System  high/pos high/neg low/neg low/pos Average

Subject A 

Biosignal  0.95 0.92 0.86 0.85 0.90 

Speech signal  0.64 0.75 0.67 0.78 0.71 

Feature Fusion  0.91 0.92 1.00 0.85 0.92

Decision Fusion 0.64 0.54 0.76 0.67 0.65 

Hybrid Fusion  0.86 0.54 0.57 0.59 0.64 

Subject B 

Biosignal  0.50 0.79 0.71 0.45 0.61 

Speech Single  0.76 0.56 0.74 0.72 0.70 

Feature Fusion  0.71 0.56 0.94 0.79 0.75

Decision Fusion 0.59 0.68 0.82 0.69 0.70 

Hybrid Fusion  0.65 0.64 0.82 0.83 0.73 

Subject C 

Bio Single  0.52 0.79 0.70 0.52 0.63 

Speech Single  0.55 0.77 0.66 0.71 0.67 

Feature Fusion  0.50 0.67 0.84 0.74 0.69

Decision Fusion 0.32 0.77 0.74 0.64 0.62 

Hybrid Fusion  0.40 0.73 0.86 0.71 0.68 

All: Subject-independent 

Bio Single  0.43 0.53 0.54 0.52 0.51 

Speech Single  0.40 0.53 0.70 0.53 0.54 

Feature Fusion  0.46 0.57 0.63 0.56 0.55

Decision Fusion 0.34 0.50 0.70 0.54 0.52 

Hybrid Fusion  0.41 0.51 0.70 0.55 0.54 

Table 1.  Recognition results in rates (1.0=100% accuracy) achieved by using SBS, LDA, and 
leave-one-out cross validation. 

4. Analysis of results 

As shown in Table 1, the performance of the unimodal systems varies not only from subject 
to subject, but also for the single modalities. During our experiment, we could observe 
individual differences in the physiological and vocal expressions of the three test subjects 
and it is well revealed in the recognition results. The emotions of subject A were more 
accurately recognized by using biosignals (90 %) than by his voice (71 %) whereas it is the 
case of inverse for subject B and C (70 % and 67 % for voice and 61 % and 63 % for 
biosignals). In particular, for subject A, the difference between the accuracies of the two 
modalities is sizable. However, no suggestively dominant modality could be observed in the 
results of subject-dependent classification in general, which may be used as a decision 
criterion in the decision-level fusion process to improve the recognition accuracy. 
Different accuracy rates were also obtained by using the single fusion methods. Overall, we 
obtained the best results from feature-level fusion. Generally, feature-level fusion is more 
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appropriate for combining modalities with analogous characteristics. For instance, we got an 
acceptable recognition accuracy of 92 % for subject A when using feature-level fusion which 
considerably went down, however, when using decision-level or hybrid fusion. 
As our data show, a high accuracy obtained from one modality may be declined by a 
relatively low accuracy from another modality when fusing data at the decision level. This 
observation may indicate the limitations of the decision-level fusion scheme we used, which 
is based on to a pure arithmetic evaluation of the posterior probabilities at the decision stage 
rather than a parametric assessment process. Actually, the design of optimal strategies for 
decision-level fusion, such as the integration of a parametric refinement stage, is still an 
open research issue. 
As expected, the accuracy rates for subject-independent classification were not comparable 
to those obtained for subject-dependent classification. Figure 9 illustrates examples of Fisher 
projection which is often used to preview the distribution of the features. Obviously, 
merging the features of all subjects does not refine the information related to target 
emotions, but rather leads to scattered class boundaries. 

Figure 9.  Fisher projection examples for Subject A and all subjects (person-independent). 

5. Conclusion 

In this paper, we treated all stages of emotion analysis, from data collection to classification 
using short-term observations, and evaluated several fusion methods as well as a hybrid 
decision scheme. We also compared the results from multimodal classification with the 
unimodal results. As in our earlier work (Kim et al. 2005) where we relied on longer 
observation phases and a different set of features, the best results were obtained by feature-
level fusion method in combination with feature selection stage. In this case, not only user-
dependent, but also user-independent emotion classification could be improved compared 
to the unimodal methods. 
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We did not achieve the same high gains that were achieved for audio-visual data which 
seems to indicate that speech and physiological data contain less complementary 
information. Furthermore, in a natural setting like ours, we cannot exclude that the subjects 
are inconsistent in their emotional expression. Inconsistencies are less likely to occur in 
scenarios where actors are asked to deliberately express emotions via speech and mimics. In 
this case, it might be the reason why fusion algorithms lead to a greater increase of the 
recognition rate. Ambiguities in emotional expressions are also reflected by work on corpus 
annotation. For instance, (Cowie et al., 2005) noticed that the agreement between human 
coders labeling multimodal corpora of everyday emotions was lower when considering both 
audio and video than when relying on a single modality. 
Furthermore some important problems are pointed out, such as the use of posterior 
probabilities when fusing information with high disparity in accuracy. Most of the existing 
classifiers used in the literature are generalized methods based on statistics or estimating 
linear regression of given data. Such classifiers may not be able to capture emotion-specific 
features and to apply self-adapting decision rules that consider contextual information, for 
instance. Therefore, the design of an emotion-specific classification scheme is one of the 
most important issues for the future, and this issue becomes even more critical when 
classifying combined multimodal observations. To overcome these problems, we need to 
develop a multilayer fusion scheme with parametric refinement stages in each decision 
layer. 
More important issue in future work would be how to complementarily combine the multiple 
modalities, since it is obvious that combining modalities by equally weighting them does 
not always guarantee improving recognition accuracy. Toward the human-like analysis and 
finer resolution of recognizable emotion classes, an essential step would be therefore to find 
innate priority among the modalities to be preferred for each emotional state. A 
considerable scheme might be to decompose an emotion recognition problem into several 
refining processes using additional modalities, for example, arousal recognition through 
physiological channels, valence recognition by using audiovisual channels, and then 
resolving subtle uncertainty between adjacent emotion classes, or predicting even the 
“stance” in 3D emotion model, by cumulative analysis of user’s context information. 
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