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1. Introduction

Modern system designs become more and more complex due to the progress of VLSI manu-
facturing technologies. In nanometer IC technologies and SoC (System on Chip) design flow,
existing placement approaches face many serious challenges, including large size(billions of
transistors), mix-size cell placement, wire congestion, and more complex design constraints
(delay, noise, manufacturability, etc). Since the IC design market is more and more competi-
tive, it is necessary to have faster time to market, smaller silicon area utilization, and less wire
length for layout. Efficient and effective design methodologies of large scale design placement
are essential for modern SoC designs.
Many placement methods have been presented in the literature (Chang et al., 2000; Guo et al.,
1999; Lin & Chang, 2001; 2002a; Lin et al., 2003; Murata et al., 1995; Nakatake et al., 1996; Otten,
1982; Wong & Liu, 1986). Because of inflexibility in representing non-slicing placement and
non-hierarchical data structures, the performance of traditional placement algorithms were
not very good. Until recently, the B*-tree representation (Chang et al., 2000) provided an effi-
cient, effective, and flexible data structure for non-slicing placement. Furthermore, MB*-tree
algorithm (Lee et al., 2003) has presented multilevel framework which is more facilitating to
solve large-scale floorplanning/placement problem. However applying simulated annealing
approach in declustering stage spent much more time to search for better solutions.
On the other hand, the ǫ-neighborhood and λ-exchange algorithm, first presented in (Goto,
1981) and further applied in (Chan et al., 2000), was used for standard cell based placement.
This method, for permuting cells with wire length driven approach, gave better performance
compared with randomly interchanges of cells in simulated annealing paradigm. This lim-
ited trial permutation enable us to find a good local optimum solution more efficiently. The
challenge lies in the modification of this approach to large-scale modules placement.
In this work, we transform the ǫ-neighborhood and λ-exchange to fit in the large-scale mod-
ules placement and use it in the refinement stage of MB*-tree algorithm. This method searches
the solutions in the whole permutation of the selected modules. Although our ǫ-neighborhood
and λ-exchange approach takes much time for one perturbation, its efficiency will compen-
sate for the computation time by comparing with randomly interchanges, and more efficient
in general compared with original MB*-tree. The results are encouraging. We have obtained
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comparable or better results in area and wirelength metrics in less time spent (up to 30% im-
provement).
The remainder of this work is organized as follows. Section 2 gives a brief review on the
B*-tree representation and MB*-tree, and describes previous ǫ-neighborhood and λ-exchange
method. Section 3 presents our two-stage algorithm, clustering followed by declustering,
mainly showing our effective refined approach to obtaining good candidates more efficiently.
Section 4 shows the experimental results and Section 5 draws the conclusion.

2. Large-Scale Modules Placement with Neighborhood Exchange

In this section, we briefly review B*-tree representation and MB*-tree multilevel framework.
We then introduce previous ǫ-neighborhood and λ-exchange method originally for standard
cell placement.

2.1 Review of B*-tree and MB*-tree

Given a compacted placement that can neither move down nor move left called an admissible
placement, we can represent it by a unique B*- tree (Chang et al., 2000) (See Figure 1 for the B*-
tree representing the placement). A B*-tree is an ordered binary tree whose root corresponds
to the module on the bottom-left corner. Using the depth-first search (DFS) procedure, the B*-
tree for an admissible placement can be constructed in a recursive fashion. Starting from the
root, we first recursively construct the left subtree and then the right subtree. Let Ri denote
the set of modules located on the right-hand side and adjacent to mi. The left child of the node
ni corresponds to the lowest module in Ri that is unvisited. The right child of ni represents the
lowest module located above mi, with its x-coordinate equal to that of mi. The B*-tree keeps
the geometric relationship between two modules as follows. If node nj is the left child of node
ni, module mj must be located on the right-hand side of mi, with xj = xi + wi. Besides, if node
nj is the right child of ni, module mj must be located above module mi, with the x-coordinate
of mj equal to that of mi; i.e., xj = xi. Also, since the root of T represents the bottom-left
module, the coordinate of the module is (xroot, yroot) = (0, 0).
Inheriting from nice properties of ordered binary trees, the B*-tree is simple, efficient, effec-
tive, and flexible for handling non-slicing floorplans. It is particularly suitable for represent-
ing a non-slicing floorplan with various types of modules and for creating or incrementally
updating a floorplan. What is more important, its binary-tree based structure directly corre-
sponds to the framework of a hierarchical scheme, which makes it a superior data structure
for multilevel large-scale building module floorplanning/placement. In (Lee et al., 2003), a
multilevel floorplanning/placement framework based on the B*-tree representation, called
MB*-tree, is presented to handle the floorplanning and packing for large-scale building mod-
ules. There were already many works that manipulated multilevel or hierarchical approach
to disentangle the large scale issue in VLSI years ago: in graph/circuit partitioning such as
Chaco (Hendrickson & Leland, 1995), hMetis (Karypis & Kumar, 1999), and ML (Alpert et al.,
1998); in placement such as MPL (Chan et al., 2000); in routing such as MRS (Cong et al., 2001),
MR (Lin & Chang, 2002b), and MARS (Cong et al., 2002).
The MB*-tree adopts a two-stage technique, clustering followed by declustering. The cluster-
ing stage iteratively groups a set of modules based on a cost metric guided by area utilization
and module connectivity, and at the same time establishes the geometric relations for the
newly clustered modules by constructing a corresponding B*-tree for them. The declustering
stage iteratively ungroups a set of the previously clustered modules (i.e., perform tree expan-
sion) and then refines the floorplanning/placement solution by using a simulated annealing
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Fig. 1. An admissible placement and its corresponding B*-tree.

scheme. In particular, the MB*-tree preserves the geometric relations among modules dur-
ing declustering, which makes the MB*-tree good for the multilevel floorplanning/placement
framework.

2.2 Module Perturbation Based on Neighborhood Exchange

Those approaches were first brought forth in (Goto, 1981), and promoted in (Chan et al., 2000).
But they are all about gate array/cell based placement. We first review those approaches in
this subsection, then later show our improvement in our framework for efficient large-scale
modules placement. Based on different definitions on ǫ-neighborhood and λ-exchange, we
categorize them into two forms: unidirectional circulation form (UCF) and detoured circula-
tion form (DCF).

2.2.1 Unidirectional Circulation Form

Consider a board on which every module is placed. Pick one module and move it while
the other modules remain fixed. The wirelength of a signal net does not change as long as
the signal net is not connected to this module. The median of module M is defined as a
position where the routing length associated with module M is minimum. Then we sort all
the wirelengths associated with module M with respect to the module M position in ascending
order. Choose ǫ elements from the minimum one, the set of these ǫ positions is defined as the
ǫ-neighborhood for median of module M.
Let S be the set of all feasible solutions of this placement and let x be a feasible solution, x
∈ S. Consider the neighborhood of x, denoted by X(x), which is a subset of S. In the first
step, x is set to a feasible solution and a search is made in X(x) for a better solution x’ to
replace x. This process, which is referred to hereafter as a local transformation, is repeated
until no such x’ can be found. A solution x" is said to be a local optimum if x" is better than
any other elements of X(x). Many definitions may be considered for the neighborhood of a
solution. The set of solutions transformable from x by exchanging not more than λ elements
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is regarded as the neighboorhood of x. A solution x is said to be λ-optimum if x is better than
any other solutions in the neighborhood in this sense. Although the λ-optimum solution gets
better as λ increases, the computation time can easily go beyond the acceptable limit when
an exhaustive search is performed for large λ. Therefore (Goto, 1981) presented the following
method which does not examine all the elements in the neighborhood. The illustrations of
this approach are shown in Figure 2 and 3. Figure 2 shows the corresponding search tree for
module interchange and Figure 3 shows the trial interchange of modules. In this example, we
set ǫ=3 and λ = 4.

Fig. 2. The search tree of unidirectional circulation form, where ǫ=3 and λ = 4. Each node
represents a module and each edge represents a trial transformation. A path connecting node
A and one of the other nodes defines a possible interchange. The path A→B→E→O refers to
the trial interchange of four modules, as shown in Figure 3. Module A is placed on the slot
of B, then the median of B and its ǫ-neighborhood are generated. Here the ǫ-neighborhood
module are E, F, and G. Thus interchanges A→B→E, A→B→F, and A→B→G are tried.

2.2.2 Detoured Circulation Form

This form is presented in (Chan et al., 2000) and modified from previous form. Assuming all
modules except module v are fixed in their current locations, we can compute v’s optimal slot
locations. Suppose v’s optimal slot location is (r,c) where r is the row index and c is column
index in our grid. Modules located in slots at (i,j), where |i-r|+|j-c| ≦ ǫ, are called ǫ-neighbors
of module v (Figure 4).
λ-exchange algorithm used in (Chan et al., 2000) is different from UCF as well. Since the
search tree from previous form grows rapidly with slight increase in ǫ and λ, and module
exchange sequence may not be the best possible, λ-exchange procedure has been modified.
Suppose v1 is the first module to be moved. We find its ǫ-neighbors and randomly pick one
module, say v2, among these modules. Then for v2, we find its ǫ-neighbors, and randomly
pick one module, and continue in this fashion until we have λ modules. For the λ modules,
we try all of their placement permutations (the total number is λ!) and exchange modules
according to the least cost permutation. Figure 5 illustrates this change. Experimental results
in (Chan et al., 2000) show that UCF algorithm quickly gets stuck in local minimum. Later we
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Fig. 3. Trial interchange of modules, A→B→E→O→A in unidirectional circulation form.
Module A is placed on the slot of B, B is placed on E, E on O, and O on A, in a round robin
sequence. Although this transformation is a quadruple interchange, it includes a pairwise
interchange as a special case, i.e., paths A→B, A→C, and A→D.

show that we use detoured circulation form to develop our refined neighborhood exchange
approach.

2.3 Problem Formulation

The problem we concerned about is described as follows, same as in MB*-tree. Let M =
{m1,m2,...,mn} be a set of n rectangular modules. Each module mi ∈ M is associated with a
two tuple (hi, wi), where hi and wi denote the width and height of mi, respectively. Let N =
{n1,n2,...,nk} be a set of k net. Each net ni ∈ N is a set of modules which are connected together.
A placement P = {(xi, yi) | mi ∈ M} is an assignment of rectangular modules mi’s with the coor-
dinates of their bottomleft corners being assigned to (xi, yi)’s so that no two modules overlap.
The objective is to minimize a cost of combination of the area and half-perimeter wirelength.

3. The MBNE Algorithm

In this work, we decide to keep the multilevel hierarchy and the B*-tree representation of
MB*-tree, but replace its simulated annealing refinement method by ǫ-neighborhood and λ-
exchange algorithm for better performance. Since this algorithm combines the MB*-tree and
ǫ-neighborhood and λ-exchange methods, we called it MBNE algorithm. We present our
MBNE algorithm for multilevel large-scale building modules floorplanning/placement in this
section. This algorithm adopts a two-stage approach, clustering followed by declustering, by
using the B*-tree representation. Figure 6 shows the MBNE algorithm flow.
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Fig. 4. The ǫ-neighbors in detoured circulation form. Suppose the optimal slot location of
module A is occupied by module B. So A’s 1-neighbors (ǫ = 1) are {B, C, D, E, F}. Similarly,
assuming that D’s optimal slot is taken by G, we define module D’s 1-neighbors are {G, H, I,
J, K}.

The clustering operation results in two types of modules, namely primitive modules and clus-
ter modules. A primitive module m is a module given as an input (i.e., m ∈ M) while a cluster
one is created by grouping two or more primitive modules. Each cluster module is created by
a clustering scheme {mi, mj}, where mi (mj) denotes a primitive or a cluster module.
In the following subsections, we give a detailed review on clustering and declustering algo-
rithms in MB*-tree (Lee et al., 2003) and our refinement approaches in declustering phase to
improve the packing results.

3.1 The Clustering Phase

In this stage, we iteratively group a set of (primitive or cluster) modules until a single cluster
is formed (or until the number of cluster modules is smaller than a threshold) based on a
cost metric of area and connectivity. The clustering metric is defined by the two criteria: area
utilization (dead space) and the connectivity density among modules.
The area utilization for clustering two modules mi and mj can be measured by the resulting
dead space sij, representing the unused area after clustering mi and mj. Let stot denote the
dead space in the final floorplan P. We have stot = Atot - ∑mi∈M Ai, where Ai denotes the
area of module mi and Atot the area of the final enclosing rectangle of P. Since ∑mi∈M Ai is a
constant, minimizing Atot is equivalent to minimizing the dead space stot.
Let the connectivity cij denote the number of nets between two modules mi and mj . The
connectivity density dij between two (primitive or cluster) modules mi and mj is given by

dij = cij/(ni + nj) (1)
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Fig. 5. Search tree from A in detoured circulation form. Suppose we pick modules A, D,
and K. All six permutations will be tried: no exchange, A↔D, A↔K, D↔K, A→D→K→A,
A→K→D→A.

where ni (nj) denotes the number of primitive modules in mi (mj). Often a bigger cluster
implies a larger number of connections. The connectivity density considers not only the con-
nectivity but also the sizes of clusters between two modules to avoid possible biases.
Obviously, the cost function of dead space is for area optimization while that of connectivity
density is for timing and wiring area optimization. Therefore, the metric for clustering two
(primitive or cluster) modules mi and mj, φ : {mi,mj}→ℜ+⋃

{0}, is then given by

φ({mi, mj}) = αŝij +
β

d̂ij

(2)

where ŝij and d̂ij are respective normalized costs for sij and dij, α, β and K are user-specified
parameters/constants.
Based on φ, we cluster a set of modules into one at each iteration by applying the aforemen-
tioned methods until a single cluster containing all primitive modules is formed or the number
of modules is smaller than a given threshold. During clustering, we record how two modules
mi and mj are clustered into a new cluster module mk. If mi is placed left to (below) mj , then
mi is horizontally (vertically) related to mj, nj is the left (right) child of ni in its corresponding
B*-tree (see Figure 7). The relation for each pair of modules in a cluster is established and
recorded in the corresponding B*-subtree during clustering. It will be used for determining
how to expand a node into a corresponding B*-subtree during declustering.

3.2 The Declustering Phase

The declustering metric is defined by the two criteria: area utilization (dead space) and the
wirelength among modules. Dead space is the same as that defined in previous subsection.
The wirelength of a net is measured by half the bounding box of all the pins of the net, or
by the length of the center-to-center interconnections between the modules if no pin positions
are specified. The wirelength for clustering two modules mi and mj , wij, is measured by the
total wirelength interconnecting the two modules. The total wirelength in the final floorplan
P, wtot, is the summation of the length of the wires interconnecting all modules.
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Fig. 6. The MBNE algorithm flow. First clustering, then followed by declustering, using our
refined approaches to improve efficiency and the packing results.

Obviously, the cost function of dead space is for area optimization while that of wirelength is
for timing and wiring area optimization. Therefore, the metric for refining a floorplan solution
during declustering, ψij:{mi,mj}→ℜ+⋃

{0}, is then given by

ψij = γŝij + δŵij (3)

where ŝij and ŵij are respective normalized costs for sij and wij, and γ and δ are user-specified
parameters.
In our approach, the declustering stage iteratively ungroups a set of previously clustered mod-
ules (i.e., expand a node into a subtree according to the B*-tree constructed at the clustering
stage) and then refines the floorplan solution based on the ǫ-neighborhood and λ-exchange
method. We apply the same declustering algorithm shown in (Lee et al., 2003) in our MBNE
algorithm.

3.3 Our Refined Neighborhood Exchange Approach

At all levels of declustering, we apply the ǫ-neighborhood and λ-exchange method to refine
the floorplan for gaining a better solution. We redefine the ǫ and λ in the B*-tree represen-
tation. The original definition of ǫ-neighborhood of module v in (Goto, 1981) is the modules
located in slots at row i, column j where |i-r|+|j-c|≦ ǫ and (r,c) is the optimal slot location of v.
But in the non-slicing placement of large-scale circuit, the optimal slot location is hard to com-
pute and it will shift when perturbing the modules. Hence we redefine the ǫ-neighborhood
of module v as the modules away from v within ǫ branches in B*-tree. Figure 8 shows 1-
neighborhood and 2-neighborhood of module n2.
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Fig. 7. The relation of two modules and their clustering (Lee et al., 2003) (a) Two candidate
modules mi and mj. (b) The clustering and the corresponding B*-subtree for the case where
mi is horizontally related to mj. (c) The clustering and the corresponding B*-subtree for the
case where mi is vertically related to mj.

Fig. 8. The definition of ǫ-neighborhood in our refined neighborhood exchange approach.
(a)ǫ=1 and (b)ǫ=2. The highlighted nodes besides node n2 are the neighborhood modules.

In our refined neighborhood exchange algorithm, first we choose a starting module A, and
select the module B which in the same net with module A. We then randomly pick the module
Bλ in the ǫ-neighbors of module B, so we have A and Bλ for 2-exchange now. Furthermore,
we can continue selecting the module C which in the same net with A and B, and randomly
pick the module Cλ in ǫ-neighbors of module C for 3-exchange. Do this sequence until we
have λ modules for λ-exchange (see Figure 9).
After we get all the λ modules, we try all of their placement permutations. Since this is a
large-scale circuit placement, modules normally have different heights and widths. Therefore
the rotation of modules will affect the placement’s result. The total number of permutations
is λ! × 2λ. Finally, we keep the permutation with the lowest cost and start the next turn of
refinement.

3.4 Novel Move Based on Null Module Insertion

Our ǫ-neighborhood and λ-exchange approach can rotate and/or swap the modules to per-
turb the placement, but it can not move a module to another place. Thus, we replace one of the
λ-exchange modules by null module for permutations. The null module does not connect to
any module, and its height and width are equal to zero. When we decide to use null module
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Fig. 9. An example of λ-exchange in our approach, where λ=4.

by some probability, we insert it to be the replaced λ-exchange module’s child. When a mod-
ule swap with the null module, it is equivalent with moving the module to be the replaced
module’s child. Figure 10 is an example of null module insertion for refinement.
We have applied the null module in the ǫ-neighborhood and λ-exchange refinement, so we
can combine the original three operations (rotate, move, and swap) to perturb the placement,
and get the lowest cost one.

3.5 Floorplanner Flow

The MBNE algorithm integrates the aforementioned three algorithms. We first perform clus-
tering to reduce the problem size level by level and then enter the declustering stage. In
the declustering stage, we perform floorplanning for the modules at each level using the ǫ-
neighborhood and λ-exchange algorithm for refinement.
Figure 11 illustrates an execution of the MBNE algorithm (from (Lee et al., 2003)). For ex-
planation, we cluster three modules each time. Figure 11(a) lists seven modules to be packed,
mi’s, 1≤i≤7. Figure 11(b)-(d) illustrates the execution of the clustering algorithm. Figure 11(b)
shows the resulting configuration after clustering m5, m6, and m7 into a new cluster module
m8 (i.e., the clustering scheme of m8 is {{m5,m6},m7}). Similarly, we cluster m1,m2, and m4 into
m9 by using the clustering scheme {{m2, m4}, m1}. Finally, we cluster m3,m8, and m9 into m10

by using the clustering scheme {{m3, m8}, m9}. The clustering stage is done, and the decluster-
ing stage begins, in which ǫ-neighborhood and λ-exchange method are applied to refine the
coarse floorplan. In Figure 11(e), we first decluster m10 into m3, m8, and m9 (i.e., expand the
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Fig. 10. An example of null module insertion in refined neighborhood exchange.(a)Insert mod-
ele N to replace modele B for swaping. (b)After swap A→D→C→N→A. (c)Delete module
N.

node n10 into the B*-subtree illustrated in Figure 11(e)). We then move m8 to the top of m9

(perform Op2 for m8) during ǫ-neighborhood and λ-exchange refinement (see Figure 11(f)).
As shown in Figure 11(g), we further decluster m9 into m1, m2, and m4, and then rotate m2

and move m3 on top of m2 (perform Op1 on m2 and Op2 on m3), resulting in the configura-
tion shown in Figure 11(h). Finally, we decluster m8 shown in Figure 11(i) to m5, m6, and m7,
and move m4 to the right of m3 (perform Op2 for m4), which results in placement with good
quality shown in Figure 11(j).

4. Experimental Results

We implement the MBNE algorithm in C++ programming language. The platform is Intel Pen-
tium 4 2.4GHz CPU with 1.5GB memory. We have compared our approach with the MB*-tree
algorithm on benchmarks including industry (Lee et al., 2003), MCNC and GSRC benchmarks
for area, wirelength and simultaneous area and wirelength optimizations.
The circuit industry is a 0.18µm, 1GHz industrial design with 189 modules, 20 million gates
and 9,777 center-to-center interconnections. It is a large chip design and consists of three mod-
ules with aspect ratios greater than 19 and as large as 36. Table 1 shows the results of MBNE
compared with MB*-tree for this circuit. In each entry of the table, we list the best/average
values obtained in ten runs of MBNE and MB*-tree. We have achieved less area and wire-
length (WL) in averagely less time.
The ami49 is the largest MCNC benchmark circuit, (Lee et al., 2003) has created seven synthetic
circuits, named ami49_x, by duplicating the modules of ami49 by x times to test the capability
of our algorithm. The largest circuit ami49_200 contains 9800 modules. Moreover, we use
GSRC benchmarks which contains n100, n200, and n300 circuits as our experimental suites.
Table 2 and Table 3 shows the results of MBNE compared with MB*-tree in these two sets of
benchmarks. Again we have acheived less area and wirelength in less runtime. The reason is
that we use our refined neighborhood exchange approach to effectively and efficiently search
for solution cadidates, instead of near-random simulated annealing.
For demostrating the efficiency, we choose four circuits from the industry, MCNC, and GSRC
benchmark to compare for efficiency between MBNE and MB*-tree algorithm. We spend 70%
of runtime compared with MB*-tree algorithm for four circuits. Table 4 shows the results of
area, dead space and runtime of MBNE and MB*-tree. MBNE obtains dead space of 2.34%,
2.11%, 2.89% and 2.32% while MB*-tree requires dead space of 2.32%, 2.62%, 3.18% and 3.84%
in these four circuits.
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Fig. 11. An example of MBNE algorithm (Lee et al., 2003). In (f), we perform ǫ-neighborhood
and λ-exchange refinement.

5. Conclusion

In this work, we have shown improved approaches on the multilevel hierarchical
floorplan/placement for large-scale circuits. Our MBNE algorithm uses the improved format
of ǫ-neighborhood and λ-exchange algorithm in simulated annealing based multilevel floor-
planner. Experimental results have shown that the MBNE algorithm has better performance
compared with the MB*-tree, state of the art floorplanner, in several benchmarks.
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Area optimization WL optimization
Package

Area(mm2) Dead space(%) Time(min) WL(mm) Time(min)
MBNE 671.32/674.57 1.99/2.45 4.00/3.47 53723/58585 150.28/150.18

MB*-tree 673.60/679.41 2.32/3.15 3.95/3.84 55971/59759 180.45/184.54

Simultaneous area and WL optimization
Package

Area(mm2) Dead space(%) WL(mm) Time(min)
MBNE 730.70/742.07 9.95/11.30 63583/63956 150.12/150.10

MB*-tree 769.10/797.28 14.45/17.37 67179/66407 153.96/159.19

Table 1. Comparisons for area optimization alone, wirelength optimization alone, and simul-
taneous area and wirelength optimization between MBNE and MB*-tree based on the circuit
industry.
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# Total MB*-tree MBNE
modules area Area Dead space Time Area Dead space Time

Circuit (mm2) (mm2) (%) (min) (mm2) (%) (min)
ami49 49 35.445 36.46 2.79 1.19 36.22 2.14 1.00

ami49_4 196 141.780 146.86 3.46 6.29 144.86 2.12 5.00
ami49_20 980 708.908 732.19 3.18 10.21 727.81 2.60 10.08
ami49_60 2940 2126.724 2211.75 3.84 16.73 2195.76 3.14 15.17

ami49_100 4900 3544.540 3704.65 4.32 20.47 3681.56 3.72 20.18
ami49_150 7350 5316.750 5590.95 4.90 26.77 5560.33 4.38 25.58
ami49_200 9800 7089.808 7478.55 5.21 31.65 7454.86 4.91 30.13

Table 2. Comparisons for area and runtime between MBNE and MB*-tree in fabricated benchmarks from
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Area optimization WL optimization
n100

Area(0.001mm
2) Dead space(%) Time(min) WL(mm) Time(min)

MBNE 182.490 1.64 5.00 110.982 10.03

MB*-tree 184.338 2.62 5.17 111.819 10.89

Area optimization WL optimization
n200

Area(0.001mm
2) Dead space(%) Time(min) WL(mm) Time(min)

MBNE 179.452 2.09 7.00 241.696 15.37

MB*-tree 180.000 2.39 7.78 244.233 15.94

Area optimization WL optimization
n300

Area(0.001mm
2) Dead space(%) Time(min) WL(mm) Time(min)

MBNE 278.964 2.08 10.01 388.162 20.40

MB*-tree 279.310 2.20 10.17 391.651 21.45

area and wirelength optimization between MBNE and MB*-tree with GSRC benchmarks.
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# Total MB*-tree MBNE

modules area Area Dead space Time Area Dead space Time
Circuit

(0.001mm
2) (0.001mm

2) (%) (min) (0.001mm
2) (%) (min)

industry 189 657,984 673,600 2.32 3.95 673,731 2.34 2.77

n100 100 179.500 184.338 2.62 5.17 183.365 2.11 3.61

ami49_20 980 708,908 732,190 3.18 10.21 729,982 2.89 7.57

ami49_60 2940 2,126,724 2,211,750 3.84 16.73 2,199,793 3.32 11.73

Table 4. Comparisons for efficiency between MBNE and MB*-tree with four benchmarks.
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