
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Importance of the initial conditions and the time schedule in the Simulated Annealing 217

Importance of the initial conditions and the time schedule in the Simulated
Annealing

A Mushy State SA for TSP

X

Importance of the initial conditions
and the time schedule in the

Simulated Annealing

K. Shojaee1, H. Shakouri G2 and M. Behnam Taghadosi3
A Mushy State SA for TSP

Abstract

It is a long time that the Simulated Annealing (SA) procedure is introduced as a non-
derivative based optimization for solving NP-hard problems. Improvements from the
original algorithm in the recent decade mostly concentrate on combining its initial algorithm
with some heuristic methods. This is while modifications are rarely happened to the initial
condition selection methods from which the annealing schedules starts or the time schedule
itself. There are several parameters in the process of annealing the adjustment of which
affects the overall performance. This paper focuses on the initial temperature and proposes a
lower temperature with low energy to speed up the process, while using an auxiliary
memory to buffer the best solution. Such an annealing indeed starts from a mushy state
rather than a quite liquid molten material. The mushy state characteristics depends on the
problem that SA is being applied to solve. In this paper the Mushy State Simulated
Annealing (MSSA) is applied to the Traveling Salesman Problem (TSP). The mushy state
may be obtained by some simple methods like crossover elimination. A very fast version of
a Wise Traveling Salesman, who starts from a randomly chosen city and seeks for the
nearest one as the next, is also applied to initiate SA by a low-energy-low-temperature state.
This fast method results in quite accurate solutions compared to other recent novel methods.

Keywords
Combinatorial Optimization, Traveling Salesman, Initial Condition

1 Low-Power High-Performance Nanosystems Laboratory, School of Electrical and
Computer Engineering, University of Tehran, Tehran, Iran (email:k.shojaee@ece.ut.ac.ir)
2 Industrial Engineering Department, University of Tehran, Tehran, Iran (email:
hshakouri@ut.ac.ir)
3 Mechatronics Laboratory (LIM) , politecnico di Torino, Torino, Italy
(email:mojtaba.behnam@polito.it)

12

www.intechopen.com

Simulated Annealing, Theory with Applications218

1. Introduction

Simulated Annealing (SA) is one of the earliest methods for derivative-free optimization
such as Tabu Search (TS) [1]. Although it was introduced first to solve combinatorial
discrete problems [2], it has recently shown a high attitude for solution of continuous
problems as well [3]-[5]. SA is derived from physical behaviour of molten metals when the
temperature is slowly falling to form a regular crystalline solid structure. There are two key
parameters in the cooling process that determine how firm or amorphous will be the result
for the metal in its frozen state. The first one is the initial temperature from which the
cooling starts; and the second is the rate by which the temperature is falling.
Concerning the rate of decay, it should be low enough to allow the atoms in the molten
metal to line them up and give enough time to form a crystal lattice with the minimum
internal energy.
Evidently, a slow decay will lead to a long time for the solidifying process. To reduce the
time, one may think of a low initial temperature. However, on the other hand, if the initial
temperature is not high enough, atoms of the molten metal would not have enough freedom
to rearrange their positions in a very regular minimum energy structure.
Although there are some theoretical limits and formulations to choose a proper cooling rate
[6]-[22], there is not any deterministic criterion to set the initial pseudo-temperature in the
literature. For instance, applying SA to the travelling salesman problem (TSP), one may set it
to 0.5 and change by 10% at each step [9], while some other prefer 1000 reducing by a factor
of 0.99, i.e. 1% [10]. Moreover, the concept is a case dependent one and even may not fit to a
bounded range, e.g. in some articles it is even initialized in a range from 0.001 to 100 [11].
There are a few research papers that suggest a formulation to relate the initial temperature
to particular characteristics of the problem. Pao et al. considered an initial temperature such
that the initial acceptance rate is about 70% [12]. Feng-Tse Lin, et al. proposed an Annealing-
Genetic approach and use the following formula [13]:
T0 = E / (Population Size/2),
where E is the difference between the highest cost and the lowest cost found for the first
generation of the randomly generated population.
Thompson and Bilbro set the initial temperature by defining a probability function for
energy change in continuous problems. The probability of accepting a higher cost solution
was set to 0.75. Then, the following probability distribution is solved to find T0 [14]:
p = exp(E / T),
where E is the average cost of the random solutions plus its standard deviation.
Hao Chen et al. set the initial temperature such that the initial acceptance probability for an
average uphill move is 0.97 [15].
Although SA algorithms are conceptually simple, finding optimal parameters such as initial
temperature, the annealing schedule, the acceptance function parameters, etc., is by no
means simple or straightforward. First of all, setting parameters for SA is problem
dependent, and it is best accomplished through trial and error. Furthermore, many studies
have demonstrated that SA algorithms are very sensitive to parameters, and their
performances are largely dependent on fine tuning of the parameters [16]. The problem
dependent nature of setting parameters for SA and its sensitivity to parameters limit the
effectiveness and robustness of SA algorithms. SA possesses a formal proof of convergence
to the global optima. This convergence proof relies on a very slow cooling schedule of
setting the initial condition to a sufficiently large temperature and let it decay by Tk = T0 /

log(k), where k is bound by the number of iterations[17]. While this cooling schedule is
impractical, it identifies a useful trade-off where longer cooling schedules tend to lead to
better quality solutions.
Also, the stochastic simulated annealing (SSA) [7] tends to find a global optimum if the
annealing process is carried out sufficiently slowly. It means that SSA is able to find high-
quality solutions (global optima or near-global-optima), if the temperature is reduced
exponentially but with a sufficiently small exponent. For many applications, this may mean
prohibitively long relaxation time in order to find solutions of acceptable quality, and
conversely, reasonably long periods of time may still result in poor solutions. Lipo Wang et
al. have used chaotic neural networks to be combined with the best features of SSA and
have shown the effectiveness of this new stochastic chaotic simulated annealing (SCSA) [18].
However there is not any especial idea on the initializing or the cooling schedule in this
approach. Before, Yuyao He had applied a chaotic noise to a Hopfield neural network and
had set the annealing process such that the chaotic noise gradually reduced. Hence, it was
initially chaotic but eventually convergent, and, thus, had shown richer and more flexible
dynamics [19].
In brief, we observe that there is a trade off between choosing a high initial temperature or
choosing a low rate of cooling, and gaining a short processing time or finding the minimum
energy structure.
Exactly similar to such a trade off exists when applying SA to any optimization problem
such as TSP. Assuming the objective function of an optimization problem to be an energy
function, and the initial guesses for the unknown variables to be the initial problem, the
above mentioned trade off appears as shown by the following notation:

Initial temperature ↑  Optimization time ↑
Initial temperature ↓  Final energy ↑ (Local minima)
Rate of cooling ↑  Final energy ↑ (Local minima)
Rate of cooling ↓  Optimization time ↑

It is easy to deduce that selection of a proper set of optimization parameters for SA itself is a
multi-objective decision making (optimization) problem. In this paper we have discussed
the first one, i.e. the initial temperature, and propose an approach to speed up the algorithm
while obtaining accurate solutions for the chosen case study, which is TSP.
It is usual to select a very high temperature that provides a suitable initial condition with
enough mobility for the atoms to move freely to new locations faraway enough in order to
form as possible as minimum-energy structures. A certain criterion is to set it large enough
that almost any trial point (state) will be acceptable.
This may cause the SA process to experiment new accepted points with even higher energy
states. As the temperature decays, the probability to accept states that do not reduce the
energy decreases.
Since the cooling process that starts from a high temperature in a liquid-like state is a time
consuming, this paper proposes to start annealing from a state in a lower temperature with
a lower internal energy. Such a state may be called a mushy state, rather than a liquid state.
In such reduced temperatures with low energy, the ratio of acceptable states to the total
trials may be less than 10%, compared to that of usual high temperatures.

www.intechopen.com

Importance of the initial conditions and the time schedule in the Simulated Annealing 219

1. Introduction

Simulated Annealing (SA) is one of the earliest methods for derivative-free optimization
such as Tabu Search (TS) [1]. Although it was introduced first to solve combinatorial
discrete problems [2], it has recently shown a high attitude for solution of continuous
problems as well [3]-[5]. SA is derived from physical behaviour of molten metals when the
temperature is slowly falling to form a regular crystalline solid structure. There are two key
parameters in the cooling process that determine how firm or amorphous will be the result
for the metal in its frozen state. The first one is the initial temperature from which the
cooling starts; and the second is the rate by which the temperature is falling.
Concerning the rate of decay, it should be low enough to allow the atoms in the molten
metal to line them up and give enough time to form a crystal lattice with the minimum
internal energy.
Evidently, a slow decay will lead to a long time for the solidifying process. To reduce the
time, one may think of a low initial temperature. However, on the other hand, if the initial
temperature is not high enough, atoms of the molten metal would not have enough freedom
to rearrange their positions in a very regular minimum energy structure.
Although there are some theoretical limits and formulations to choose a proper cooling rate
[6]-[22], there is not any deterministic criterion to set the initial pseudo-temperature in the
literature. For instance, applying SA to the travelling salesman problem (TSP), one may set it
to 0.5 and change by 10% at each step [9], while some other prefer 1000 reducing by a factor
of 0.99, i.e. 1% [10]. Moreover, the concept is a case dependent one and even may not fit to a
bounded range, e.g. in some articles it is even initialized in a range from 0.001 to 100 [11].
There are a few research papers that suggest a formulation to relate the initial temperature
to particular characteristics of the problem. Pao et al. considered an initial temperature such
that the initial acceptance rate is about 70% [12]. Feng-Tse Lin, et al. proposed an Annealing-
Genetic approach and use the following formula [13]:
T0 = E / (Population Size/2),
where E is the difference between the highest cost and the lowest cost found for the first
generation of the randomly generated population.
Thompson and Bilbro set the initial temperature by defining a probability function for
energy change in continuous problems. The probability of accepting a higher cost solution
was set to 0.75. Then, the following probability distribution is solved to find T0 [14]:
p = exp(E / T),
where E is the average cost of the random solutions plus its standard deviation.
Hao Chen et al. set the initial temperature such that the initial acceptance probability for an
average uphill move is 0.97 [15].
Although SA algorithms are conceptually simple, finding optimal parameters such as initial
temperature, the annealing schedule, the acceptance function parameters, etc., is by no
means simple or straightforward. First of all, setting parameters for SA is problem
dependent, and it is best accomplished through trial and error. Furthermore, many studies
have demonstrated that SA algorithms are very sensitive to parameters, and their
performances are largely dependent on fine tuning of the parameters [16]. The problem
dependent nature of setting parameters for SA and its sensitivity to parameters limit the
effectiveness and robustness of SA algorithms. SA possesses a formal proof of convergence
to the global optima. This convergence proof relies on a very slow cooling schedule of
setting the initial condition to a sufficiently large temperature and let it decay by Tk = T0 /

log(k), where k is bound by the number of iterations[17]. While this cooling schedule is
impractical, it identifies a useful trade-off where longer cooling schedules tend to lead to
better quality solutions.
Also, the stochastic simulated annealing (SSA) [7] tends to find a global optimum if the
annealing process is carried out sufficiently slowly. It means that SSA is able to find high-
quality solutions (global optima or near-global-optima), if the temperature is reduced
exponentially but with a sufficiently small exponent. For many applications, this may mean
prohibitively long relaxation time in order to find solutions of acceptable quality, and
conversely, reasonably long periods of time may still result in poor solutions. Lipo Wang et
al. have used chaotic neural networks to be combined with the best features of SSA and
have shown the effectiveness of this new stochastic chaotic simulated annealing (SCSA) [18].
However there is not any especial idea on the initializing or the cooling schedule in this
approach. Before, Yuyao He had applied a chaotic noise to a Hopfield neural network and
had set the annealing process such that the chaotic noise gradually reduced. Hence, it was
initially chaotic but eventually convergent, and, thus, had shown richer and more flexible
dynamics [19].
In brief, we observe that there is a trade off between choosing a high initial temperature or
choosing a low rate of cooling, and gaining a short processing time or finding the minimum
energy structure.
Exactly similar to such a trade off exists when applying SA to any optimization problem
such as TSP. Assuming the objective function of an optimization problem to be an energy
function, and the initial guesses for the unknown variables to be the initial problem, the
above mentioned trade off appears as shown by the following notation:

Initial temperature ↑  Optimization time ↑
Initial temperature ↓  Final energy ↑ (Local minima)
Rate of cooling ↑  Final energy ↑ (Local minima)
Rate of cooling ↓  Optimization time ↑

It is easy to deduce that selection of a proper set of optimization parameters for SA itself is a
multi-objective decision making (optimization) problem. In this paper we have discussed
the first one, i.e. the initial temperature, and propose an approach to speed up the algorithm
while obtaining accurate solutions for the chosen case study, which is TSP.
It is usual to select a very high temperature that provides a suitable initial condition with
enough mobility for the atoms to move freely to new locations faraway enough in order to
form as possible as minimum-energy structures. A certain criterion is to set it large enough
that almost any trial point (state) will be acceptable.
This may cause the SA process to experiment new accepted points with even higher energy
states. As the temperature decays, the probability to accept states that do not reduce the
energy decreases.
Since the cooling process that starts from a high temperature in a liquid-like state is a time
consuming, this paper proposes to start annealing from a state in a lower temperature with
a lower internal energy. Such a state may be called a mushy state, rather than a liquid state.
In such reduced temperatures with low energy, the ratio of acceptable states to the total
trials may be less than 10%, compared to that of usual high temperatures.

www.intechopen.com

Simulated Annealing, Theory with Applications220

After that the state is set to a lower energy state in a lower initial temperature, the annealing
process can bring us the benefit of a faster local search and find the optimal state with the
minimum energy. Starting from a very high temperature the metal should be cooled slowly,
otherwise the atoms do not have time to orient themselves into a regular structure, but if the
initial state is imposed to the atoms in a low energy low temperature, we can adjust the
cooling rate to be faster.
Perhaps there are many optimization methods, even direct (random search methods) that
can be applied as a prelude for SA. A simple algorithm that is used in this paper is to
eliminate all intersecting paths in an initially selected random tour. A second simple
method is also applied to show independence of the proposed method to the method that
the initial tour is found.
The paper is organized in six sections. After this section we will have short introductions to
both the SA and the TSP in sections 2 and 3. Section 4 describes how we chose the initial
conditions and how schedule the annealing. The results obtained applying the proposed
method are given in section 5, where we have compared the best, the worst and the average
error in the final solution (if available) with some recent works. Finally, section 6 concludes
the paper.

2. A short overview on the SA

Rather than giving a detailed description of SA, herein the fundamental terminology of SA
is explained shortly [8][21]. The method consists of four main parts.

2.1 Objective function
An objective function f(.) is a mapping from an input vector x into a scalar E:

E = f(x), (1)

where each x is assumed as a point in an input space. The SA is to sample the input space
effectively to find an x that minimizes E. The input vector may be the structure of the atoms
and/or their movements limited to that structure, and E may be the internal energy of the
metal. In TSP, x is the tour sequence and E is the total cost (distance) of travelling.

2.2 Generating function
A generating function g(., .) specifies the probability density function of the difference
between the current point and the next point to be visited. Specifically, ∆x (= xnew – x) is a
random variable with probability density function g(∆x, T), where T is the pseudo-
temperature. If E is the internal energy of the metal, T is the real temperature, however, in
TSP can be interpreted as percentage of the new points that can reduce the total cost.
Clearly, if the number of intersecting paths in a tour x is high, we can assume that the
pseudo-temperature is high. Usually g(., .) is independent of the temperature. However, in
conventional SA, also known as Boltzmann machines, the generating function is a Gaussian
probability density function:

)]2/(||exp[)2(),(22/ TxTTxg n   , (2)

where n is the dimension of the space under exploration. The fatter tail of the Cauchy
distribution gives the chance to explore new points in the space farther from the current
point while searching the space.
For discrete or combinatorial optimization problems, like TSP, each x is not necessarily an n-
vector with unconstrained values. Instead, each x is restricted to be one of N points that
comprise the solution space or the input space. Usually N is very large but finite such that
reduces probability of a time consuming search without any result. Since, adding randomly
generated ∆x to a current point x may not generate another legal point in the solution space,
instead of using generating functions , a move set is usually defined to find the next legal
point, denoted by M(x). This creates the set of legal points available for exploration after x.
Usually the move set, M(x), is chosen in the sense that the objective function at any point of
the move set, i.e. a set of neighbouring points x+∆x, will not differ too much from the
objective function at x. The definition of the move set is problem dependent. For TSP there
are at least three kinds of move sets that are defined and used by researchers: Inversion,
Translation, and Switching [21]. An especial variant of inversion is the simple idea of
Crossover elimination.
Once the move set is defined, xnew is usually selected at random from the move set, such that
all neighbouring points have an equal probability of being chosen. In this paper, we have
fixed the move set to the inversion, which has shown better performance compared to the
others.

2.3 Acceptance function
After that the objective is evaluated for a new point xnew, SA decides whether to accept or
reject it based on the value of an acceptance function h(.,.). The most frequently used
acceptance function is the Boltzmann probability distribution:

))/((exp1
1),(

cTE
TEh


 (3)

where c is a constant, T is the temperature, and ∆E is the energy difference between xnew and x:

)()(xfxfE new  (4)

Usually xnew is accepted with probability h(∆E, T). If ∆E is negative, SA tends to accept the
new point to reduce the energy. Nevertheless, if ∆E is positive SA may also accept the new
point and move to a higher energy state. It means, SA can move uphill or downhill; but the
lower the temperature, the less likely to accept any significant upward change.
There are several alternatives for the acceptance function. A simple alternative with
approximately the same behaviour is:

)(-exp),(
cT
ETEh 

 (5)

www.intechopen.com

Importance of the initial conditions and the time schedule in the Simulated Annealing 221

After that the state is set to a lower energy state in a lower initial temperature, the annealing
process can bring us the benefit of a faster local search and find the optimal state with the
minimum energy. Starting from a very high temperature the metal should be cooled slowly,
otherwise the atoms do not have time to orient themselves into a regular structure, but if the
initial state is imposed to the atoms in a low energy low temperature, we can adjust the
cooling rate to be faster.
Perhaps there are many optimization methods, even direct (random search methods) that
can be applied as a prelude for SA. A simple algorithm that is used in this paper is to
eliminate all intersecting paths in an initially selected random tour. A second simple
method is also applied to show independence of the proposed method to the method that
the initial tour is found.
The paper is organized in six sections. After this section we will have short introductions to
both the SA and the TSP in sections 2 and 3. Section 4 describes how we chose the initial
conditions and how schedule the annealing. The results obtained applying the proposed
method are given in section 5, where we have compared the best, the worst and the average
error in the final solution (if available) with some recent works. Finally, section 6 concludes
the paper.

2. A short overview on the SA

Rather than giving a detailed description of SA, herein the fundamental terminology of SA
is explained shortly [8][21]. The method consists of four main parts.

2.1 Objective function
An objective function f(.) is a mapping from an input vector x into a scalar E:

E = f(x), (1)

where each x is assumed as a point in an input space. The SA is to sample the input space
effectively to find an x that minimizes E. The input vector may be the structure of the atoms
and/or their movements limited to that structure, and E may be the internal energy of the
metal. In TSP, x is the tour sequence and E is the total cost (distance) of travelling.

2.2 Generating function
A generating function g(., .) specifies the probability density function of the difference
between the current point and the next point to be visited. Specifically, ∆x (= xnew – x) is a
random variable with probability density function g(∆x, T), where T is the pseudo-
temperature. If E is the internal energy of the metal, T is the real temperature, however, in
TSP can be interpreted as percentage of the new points that can reduce the total cost.
Clearly, if the number of intersecting paths in a tour x is high, we can assume that the
pseudo-temperature is high. Usually g(., .) is independent of the temperature. However, in
conventional SA, also known as Boltzmann machines, the generating function is a Gaussian
probability density function:

)]2/(||exp[)2(),(22/ TxTTxg n   , (2)

where n is the dimension of the space under exploration. The fatter tail of the Cauchy
distribution gives the chance to explore new points in the space farther from the current
point while searching the space.
For discrete or combinatorial optimization problems, like TSP, each x is not necessarily an n-
vector with unconstrained values. Instead, each x is restricted to be one of N points that
comprise the solution space or the input space. Usually N is very large but finite such that
reduces probability of a time consuming search without any result. Since, adding randomly
generated ∆x to a current point x may not generate another legal point in the solution space,
instead of using generating functions , a move set is usually defined to find the next legal
point, denoted by M(x). This creates the set of legal points available for exploration after x.
Usually the move set, M(x), is chosen in the sense that the objective function at any point of
the move set, i.e. a set of neighbouring points x+∆x, will not differ too much from the
objective function at x. The definition of the move set is problem dependent. For TSP there
are at least three kinds of move sets that are defined and used by researchers: Inversion,
Translation, and Switching [21]. An especial variant of inversion is the simple idea of
Crossover elimination.
Once the move set is defined, xnew is usually selected at random from the move set, such that
all neighbouring points have an equal probability of being chosen. In this paper, we have
fixed the move set to the inversion, which has shown better performance compared to the
others.

2.3 Acceptance function
After that the objective is evaluated for a new point xnew, SA decides whether to accept or
reject it based on the value of an acceptance function h(.,.). The most frequently used
acceptance function is the Boltzmann probability distribution:

))/((exp1
1),(

cTE
TEh


 (3)

where c is a constant, T is the temperature, and ∆E is the energy difference between xnew and x:

)()(xfxfE new  (4)

Usually xnew is accepted with probability h(∆E, T). If ∆E is negative, SA tends to accept the
new point to reduce the energy. Nevertheless, if ∆E is positive SA may also accept the new
point and move to a higher energy state. It means, SA can move uphill or downhill; but the
lower the temperature, the less likely to accept any significant upward change.
There are several alternatives for the acceptance function. A simple alternative with
approximately the same behaviour is:

)(-exp),(
cT
ETEh 

 (5)

www.intechopen.com

Simulated Annealing, Theory with Applications222

where there is no need to check for the sign of ∆E. Instead, if h(∆E, T) is greater than a
uniformly distributed random number, the new point is accepted. A deterministic
alternative method is to use Threshold Accepting, where xnew is accepted just if ∆E<T [22].

2.4 Annealing schedule
An annealing or cooling schedule regulates how rapidly the temperature T goes from high
to low values, as a function of time or iteration counts. There are not so many works
discussing the initial temperature selection or even the cooling schedule. Indeed, the exact
interpretation of high and low and the specification of a good annealing schedule require
certain problem-specific physical insight and/or trial-and-error. The easiest way of setting
an annealing schedule is to decrease the temperature T by a certain percentage at the kth
iteration:

Tk+1 = α Tk (6)

where 0 < α < 1 is an adjusting parameter. It is proved that a Boltzmann machine using the
aforementioned generating function can find a global optimum of f(x) if the temperature T is
reduced not faster than T0 / log(k) [17]. Researchers have used various cooling strategies,
among which we choose the following:

Tk+1=Tk / log(k1/D), (7)

where D is set to two.

3. The Traveling Salesman Problem (TSP)

The Travelling Salesman Problem (TSP) seems to be the most well-known typical NP-hard
problem. Given a set of nodes and a set of weights specifying cost to travel between each
two nodes, the optimal solution is to find a closed loop of the paths with minimal total
weights in a finite complete graph.
Lets denote the set of “cities” in TSP as C = {c1 , c2 ,..., cn} in company with a matrix DT an
element of which is called dij that gives the distance or cost function (weight) for going from
ti, to tj. In real problems, usually the coordinates of the cities are given, by which the matrix
DT can be easily computed.
The path linking the two cities here is called a “link”. A sequence of cities C* = [cs1, cs2, …,
csn] denotes a legal solution of TSP (the salesman must visit each city once and only once),
where {s1, s2, ..., sn} is a sequence of {l, ..., n}. Then the Travelling Salesman Problem's optimal
goal can be expressed as minimizing the following objective function that can be interpreted
as energy function:








1

1
11

)(
n

i
ssss iin

ddCE . (8)

where C = [s1, s2, ..., sn] is the travelling tour. If all the costs between any two cities are equal
in both directions, i.e. DT is a symmetric matrix, the problem is called symmetric TSP;
otherwise, it is called asymmetric [23].
Sometimes DT is calculated based on the coordinates of the cities that may generate real
numbers. Normally dij’s are rounded to integer numbers to standardize the results according

to the standard code proposed in [23]. Generation of the distance matrix, DT, given the
coordinates is a straight forward procedure. However, the reverse process is not possible for
all cases.
Suppose the coordinates are given by two vectors namely X and Y. There are 2n elements in
the vectors X and Y, while a symmetric DT contains ½ n × (n – 1) elements. Each equation
can be written as:

(xi – xj)2 + (yi – yj)2 = dij2; i = 1, …, n; j = i + 1, …, n – 1; (9)

where xi , yi , xj and yj are the ith and jth elements in X and Y respectively. Therefore,
solution of n (n – 1)/2 nonlinear equations available from DT to find the 2n unknown
coordinates in X and Y requires:
2n ≤ ½ n × (n – 1),
or equivalently:
n ≥ 5.
Thus, there will not be a unique solution for cases with more than 5 cities. However, a
feasible solution will suffice to apply the above modification to all cases with n ≥ 5. Note that
the nonlinear equations should be solved just once to find the feasible solution for the
coordinates X and Y. It is obvious that for an asymmetric DT there is no solution without any
extra information.

4. Initializing and annealing schedule

As mentioned, there are not many articles talking about the initial condition when the
annealing process starts. The main idea proposed in this paper is originated from the
behaviour of the metal during the annealing process. The cooling schedule is an exponential
shape function of the time that can be divided into three parts. The first part is a rapidly
decaying curve with a high slope in average and the last one is the ending part of the
exponential function with almost frozen state. The first part should be passed as fast as
possible, while complying the lower bound on the rate of cooling. And the last part has
almost no significant effect on the final result. Therefore, none of these two states are of
interest in this paper. The initial temperature is proposed to be selected within the middle of
the curve, as shown typically in Fig. 1.

(a) Temperature decay, (b) Energy decay, (c) Entropy increase

Fig. 1. Typical behaviour of an annealing schedule; the mushy state falls in the middle;

Middle part

(a) Temperature decay (b) Energy decay (c) Entropy increase

Middle part Middle part

www.intechopen.com

Importance of the initial conditions and the time schedule in the Simulated Annealing 223

where there is no need to check for the sign of ∆E. Instead, if h(∆E, T) is greater than a
uniformly distributed random number, the new point is accepted. A deterministic
alternative method is to use Threshold Accepting, where xnew is accepted just if ∆E<T [22].

2.4 Annealing schedule
An annealing or cooling schedule regulates how rapidly the temperature T goes from high
to low values, as a function of time or iteration counts. There are not so many works
discussing the initial temperature selection or even the cooling schedule. Indeed, the exact
interpretation of high and low and the specification of a good annealing schedule require
certain problem-specific physical insight and/or trial-and-error. The easiest way of setting
an annealing schedule is to decrease the temperature T by a certain percentage at the kth
iteration:

Tk+1 = α Tk (6)

where 0 < α < 1 is an adjusting parameter. It is proved that a Boltzmann machine using the
aforementioned generating function can find a global optimum of f(x) if the temperature T is
reduced not faster than T0 / log(k) [17]. Researchers have used various cooling strategies,
among which we choose the following:

Tk+1=Tk / log(k1/D), (7)

where D is set to two.

3. The Traveling Salesman Problem (TSP)

The Travelling Salesman Problem (TSP) seems to be the most well-known typical NP-hard
problem. Given a set of nodes and a set of weights specifying cost to travel between each
two nodes, the optimal solution is to find a closed loop of the paths with minimal total
weights in a finite complete graph.
Lets denote the set of “cities” in TSP as C = {c1 , c2 ,..., cn} in company with a matrix DT an
element of which is called dij that gives the distance or cost function (weight) for going from
ti, to tj. In real problems, usually the coordinates of the cities are given, by which the matrix
DT can be easily computed.
The path linking the two cities here is called a “link”. A sequence of cities C* = [cs1, cs2, …,
csn] denotes a legal solution of TSP (the salesman must visit each city once and only once),
where {s1, s2, ..., sn} is a sequence of {l, ..., n}. Then the Travelling Salesman Problem's optimal
goal can be expressed as minimizing the following objective function that can be interpreted
as energy function:








1

1
11

)(
n

i
ssss iin

ddCE . (8)

where C = [s1, s2, ..., sn] is the travelling tour. If all the costs between any two cities are equal
in both directions, i.e. DT is a symmetric matrix, the problem is called symmetric TSP;
otherwise, it is called asymmetric [23].
Sometimes DT is calculated based on the coordinates of the cities that may generate real
numbers. Normally dij’s are rounded to integer numbers to standardize the results according

to the standard code proposed in [23]. Generation of the distance matrix, DT, given the
coordinates is a straight forward procedure. However, the reverse process is not possible for
all cases.
Suppose the coordinates are given by two vectors namely X and Y. There are 2n elements in
the vectors X and Y, while a symmetric DT contains ½ n × (n – 1) elements. Each equation
can be written as:

(xi – xj)2 + (yi – yj)2 = dij2; i = 1, …, n; j = i + 1, …, n – 1; (9)

where xi , yi , xj and yj are the ith and jth elements in X and Y respectively. Therefore,
solution of n (n – 1)/2 nonlinear equations available from DT to find the 2n unknown
coordinates in X and Y requires:
2n ≤ ½ n × (n – 1),
or equivalently:
n ≥ 5.
Thus, there will not be a unique solution for cases with more than 5 cities. However, a
feasible solution will suffice to apply the above modification to all cases with n ≥ 5. Note that
the nonlinear equations should be solved just once to find the feasible solution for the
coordinates X and Y. It is obvious that for an asymmetric DT there is no solution without any
extra information.

4. Initializing and annealing schedule

As mentioned, there are not many articles talking about the initial condition when the
annealing process starts. The main idea proposed in this paper is originated from the
behaviour of the metal during the annealing process. The cooling schedule is an exponential
shape function of the time that can be divided into three parts. The first part is a rapidly
decaying curve with a high slope in average and the last one is the ending part of the
exponential function with almost frozen state. The first part should be passed as fast as
possible, while complying the lower bound on the rate of cooling. And the last part has
almost no significant effect on the final result. Therefore, none of these two states are of
interest in this paper. The initial temperature is proposed to be selected within the middle of
the curve, as shown typically in Fig. 1.

(a) Temperature decay, (b) Energy decay, (c) Entropy increase

Fig. 1. Typical behaviour of an annealing schedule; the mushy state falls in the middle;

Middle part

(a) Temperature decay (b) Energy decay (c) Entropy increase

Middle part Middle part

www.intechopen.com

Simulated Annealing, Theory with Applications224

To assign a proxy for the temperature, we may use a ratio named  defined as follows:
 = the ratio of accepted new points to the total trials.
If the ratio is high, it means that the internal energy is high enough that many of motions by
the atoms in a way that reduce the energy are possible. The ratio should be close to one, say
90%. Conversely, if the ratio is low, say 10%, the metal is nearby to become frozen; there are
not so many new structures that reduce the energy. We propose to start annealing from such
an initial condition in the middle zone, i.e. a mushy or doughty state, rather than liquid or
firm states.

4.1 Initiating temperature and energy
We have applied two different methods to initialize both the temperature and energy in the
mushy state. The first one is a simple algorithm for crossover elimination and the second
one is an efficient fast simple method derived from a rough behaviour of a Wise Travelling
Salesman (WTS), who seeks for the next nearest city. The following subsections describe the
two methods.

4.1.1 Crossover Elimination
In the special case of TSP, knowing that the optimal tour will not contain any intersection of
the paths, a simple fast algorithm of intersection detection and elimination is applied.
Starting from a randomly generated initial tour, every couple of links with crossover should
be deleted and replace by swapping the two links. Figure 2 easily illustrates this idea.
To do so, without lacking generality, let’s continue describing the algorithm for the case that
the input data is given in terms of the co-ordinates. Based on this assumption, we assume
that the co-ordinates are arranged in two vectors named X and Y. Now, let’s assume that the
initial random tour is named C0. This vector is a sequence of the city indexes:
C0 = [1, …, ci, ci+1, …, cj, cj+1, …].

Fig. 2. Intersected Links Elimination

Suppose the subscripts of the elements of the sequence be the same shown in Fig. 2. Therefore,
the line equations for all links of the tour can be calculated, by which it is possible to check that if
each of the two paths are intersected or not. We need to solve ½ n × (n – 3) linear equations,
where any valid solution should be in range of the coordinates X and Y, subsequently requiring:
xmin < xc < xmax
ymin < yc < ymax

i

i+1

j

j+1 j+1

i

j

i+1

(a) Tour Cn (b) Tour Cm

where, xc and yc are coordinates of the intersection point of each pair of links with non-
common ends, and xmin, xmax, ymin and ymax are the minimum and maximum coordinates
found on the two links. Note that checking one of the above two conditions suffices to
ensure intersection occurrence. Then, if there is a cross over, like in Fig. 2 (a), the sequence
should be modified to generate Tm as follows:
Cm = [1, …, ci, cj, …, ci+1, cj+1, …].
which is shown in Fig. 2 (b). It means that the (i+1)th element should be exchanged with the
jth element. Then it is clear that the total cost will be reduced, i.e.:
E(Cm) < E(C0).
Once that crossover occurrence is checked ½ n × (n – 3) times for a tour and resolved by
swapping the links, there may be new intersections generated. Therefore, the algorithm is
iterated until no crossover is found in the final tour.
The algorithm is summarized in the following:

(a) Generate an initial tour randomly;
(b) Check for intersection of each path with all other non-neighbouring paths;
(c) If there is a crossover, remove it by swapping the paths;
(d) Repeat steps (b) and (c) until there is no crossover in the tour.

4.1.2 The Wise Traveling Salesman (WTS)
The basis thought beyond this algorithm is the way that a normal wise person may roughly
decide on its next destination at each current position. For the first time that a normal
human starts his/her travel, he/she may guess that a good path perhaps can continue from
the nearest city. Indeed, at each step, the next city to travel is chosen among the nearest
cities to the current city. Besides this original idea, one may apply a random walk process to
let the traveler experience new experiments while using his/her wisdom to choose its next
destination. It means that he/she examines other paths in the next experimental tour by
changing some of the cities in the sequence randomly. Finally, he/she will give a weighting
for his/her previously experienced tours in the next travel. However, in this paper we have
not applied these two factors for initializing the SA. Thus, the simplest version of this
method can be summarized in the following steps:

(a) Select the starting city randomly;
(b) Compute the cost from the current city to all unvisited cities in a vector;
(c) Sort the resulting vector elements and choose the next city with the less cost;
(d) After completing the tour, calculate the total cost (distance).

This way, the initial energy, and consequently the initial temperature when starting SA, will
be much lower than what is usual.

4.2 Annealing schedule
The proposed method also includes modifications to the annealing schedule to compensate
side effects of shortening the annealing process. The first modification is to repeat
generation of new points at each temperature until the acceptance is AMax. The maximum
iterations, sometimes called the Markov chain length, is initially considered such that AMax =
100×n, where n is number of the cities in TSP. Since acceptance probability exponentially
decreases, at each temperature we may reduce AMax by a constant ratio, say 0.9. However, in

www.intechopen.com

Importance of the initial conditions and the time schedule in the Simulated Annealing 225

To assign a proxy for the temperature, we may use a ratio named  defined as follows:
 = the ratio of accepted new points to the total trials.
If the ratio is high, it means that the internal energy is high enough that many of motions by
the atoms in a way that reduce the energy are possible. The ratio should be close to one, say
90%. Conversely, if the ratio is low, say 10%, the metal is nearby to become frozen; there are
not so many new structures that reduce the energy. We propose to start annealing from such
an initial condition in the middle zone, i.e. a mushy or doughty state, rather than liquid or
firm states.

4.1 Initiating temperature and energy
We have applied two different methods to initialize both the temperature and energy in the
mushy state. The first one is a simple algorithm for crossover elimination and the second
one is an efficient fast simple method derived from a rough behaviour of a Wise Travelling
Salesman (WTS), who seeks for the next nearest city. The following subsections describe the
two methods.

4.1.1 Crossover Elimination
In the special case of TSP, knowing that the optimal tour will not contain any intersection of
the paths, a simple fast algorithm of intersection detection and elimination is applied.
Starting from a randomly generated initial tour, every couple of links with crossover should
be deleted and replace by swapping the two links. Figure 2 easily illustrates this idea.
To do so, without lacking generality, let’s continue describing the algorithm for the case that
the input data is given in terms of the co-ordinates. Based on this assumption, we assume
that the co-ordinates are arranged in two vectors named X and Y. Now, let’s assume that the
initial random tour is named C0. This vector is a sequence of the city indexes:
C0 = [1, …, ci, ci+1, …, cj, cj+1, …].

Fig. 2. Intersected Links Elimination

Suppose the subscripts of the elements of the sequence be the same shown in Fig. 2. Therefore,
the line equations for all links of the tour can be calculated, by which it is possible to check that if
each of the two paths are intersected or not. We need to solve ½ n × (n – 3) linear equations,
where any valid solution should be in range of the coordinates X and Y, subsequently requiring:
xmin < xc < xmax
ymin < yc < ymax

i

i+1

j

j+1 j+1

i

j

i+1

(a) Tour Cn (b) Tour Cm

where, xc and yc are coordinates of the intersection point of each pair of links with non-
common ends, and xmin, xmax, ymin and ymax are the minimum and maximum coordinates
found on the two links. Note that checking one of the above two conditions suffices to
ensure intersection occurrence. Then, if there is a cross over, like in Fig. 2 (a), the sequence
should be modified to generate Tm as follows:
Cm = [1, …, ci, cj, …, ci+1, cj+1, …].
which is shown in Fig. 2 (b). It means that the (i+1)th element should be exchanged with the
jth element. Then it is clear that the total cost will be reduced, i.e.:
E(Cm) < E(C0).
Once that crossover occurrence is checked ½ n × (n – 3) times for a tour and resolved by
swapping the links, there may be new intersections generated. Therefore, the algorithm is
iterated until no crossover is found in the final tour.
The algorithm is summarized in the following:

(a) Generate an initial tour randomly;
(b) Check for intersection of each path with all other non-neighbouring paths;
(c) If there is a crossover, remove it by swapping the paths;
(d) Repeat steps (b) and (c) until there is no crossover in the tour.

4.1.2 The Wise Traveling Salesman (WTS)
The basis thought beyond this algorithm is the way that a normal wise person may roughly
decide on its next destination at each current position. For the first time that a normal
human starts his/her travel, he/she may guess that a good path perhaps can continue from
the nearest city. Indeed, at each step, the next city to travel is chosen among the nearest
cities to the current city. Besides this original idea, one may apply a random walk process to
let the traveler experience new experiments while using his/her wisdom to choose its next
destination. It means that he/she examines other paths in the next experimental tour by
changing some of the cities in the sequence randomly. Finally, he/she will give a weighting
for his/her previously experienced tours in the next travel. However, in this paper we have
not applied these two factors for initializing the SA. Thus, the simplest version of this
method can be summarized in the following steps:

(a) Select the starting city randomly;
(b) Compute the cost from the current city to all unvisited cities in a vector;
(c) Sort the resulting vector elements and choose the next city with the less cost;
(d) After completing the tour, calculate the total cost (distance).

This way, the initial energy, and consequently the initial temperature when starting SA, will
be much lower than what is usual.

4.2 Annealing schedule
The proposed method also includes modifications to the annealing schedule to compensate
side effects of shortening the annealing process. The first modification is to repeat
generation of new points at each temperature until the acceptance is AMax. The maximum
iterations, sometimes called the Markov chain length, is initially considered such that AMax =
100×n, where n is number of the cities in TSP. Since acceptance probability exponentially
decreases, at each temperature we may reduce AMax by a constant ratio, say 0.9. However, in

www.intechopen.com

Simulated Annealing, Theory with Applications226

very low temperatures the acceptance probability is very low and there should be a criterion
to agree that it is the freezing temperature. In this research, if the total iterations at each
temperature, i.e. the Markov chain length, exceed AMax × n, we stop the annealing process
and call the current temperature as the freezing point.
Furthermore, in a normal SA, if the optimum solution is lost once that the algorithm faces an
uphill acceptance there is enough opportunity to recover it in the future steps. When
starting the annealing from low temperatures the expected time to find the global optima is
shorter. Therefore, the first modification is a memory of the latest minimum energy solution
found during all steps passed in the annealing. The best tour found is saved and inserted
once to the process at each temperature to be compared with the current situation. This will
resolve the probability of missing the best previously obtained solution.
This way the annealing process is summarized to the following steps:

(a) Employing a simple locally optimizing algorithm, set the initial temperature to a
mushy state temperature, where the acceptance ratio, , is about 10%;

(b) Set maximum acceptance to AMax = 100×n;
(c) Start annealing as usual, while:

i. Changing AMax to 0.9 × AMax;
ii. Saving the best solution found up to now;

iii. Inserting the best solution to each Markov chain;
(d) Stop annealing if the current Markov chain length is greater than AMax × n.

5. The Results

The proposed initializing method, so called Mushy State Simulated Annealing (MSSA), is
applied to many benchmarks listed in TSPLIB [23]. MSSA is run 40 times: 20 runs with an
initial condition obtained by crossover elimination and 20 runs initialized by WTS. The
initial conditions, i.e. the initial pseudo-temperature and the initial energy are case
dependent parameters. As mentioned in Section 4, we used the ratio of accepted motions
(new points), which are found based on an acceptance function like (5), to the total number
of tried motions (). If this ratio tends to zero, the case is in its solid state, and if it is very
high (near 1), then it is in the liquid state.
Figure 3 shows relation between the pseudo-temperature and the acceptance-trial ratio for
the case of eli51. It is seen that in high temperatures the ratio saturates to about 1, and in low
temperatures the case has reached to its solid state with the minimum energy. Therefore, the
best initial condition to start annealing is a temperature close to the melting point or the take
off point in the curve, which is about the pseudo-temperature of 30 in this case.
The results for cases with below 1432 cities are given below in Table 1, through which it will
be easy to realize that the method has improved SA significantly. The optimal values given
by the TSBLIB site, for each case are listed in the second column of the table. We have
compared the best, the worst and the average of the error in the results obtained by the new
approach with other results given by recent novel works (if the best and/or the worst cases
are available). The error percentage is calculated by:
δ = 100 (E – E*) / E*
where E* is the optimal (minimum) energy.

Fig. 3. Relation between the Pseudo-Temperature and the Acceptance-Trial Ratio, for the
case of eli51.

The first method chosen for comparison is the Constructive Optimizing Neural Network
(CONN) proposed in [24], for which it is claimed that all runs has led to the same results, so
that the best, the worst and the average of the solutions are the same. The second one is a
Kohonen-Like decomposition method [25], in its three different versions abbreviated by KD,
KL and KG. The third is a Genetic Algorithm-Based Clustering [26]. Four variants of this
method are introduced and tested, the results of which are given as EER, SE, ECER and SP.
The fourth collection of the methods compared in the table are categorized under the
column entitles Self-Organizing neural networks. Four versions are given in the table
namely KNIES-global, KNIES-local, Budinich and ESOM [27]. The results for the normal SA
are also taken from the same reference. A set of enhanced methods called Self-Organizing
Map designed by Genetic Algorithms is the fifth set. There also four columns quoted for this
category from [16][28]. Finally, we have compared our results with the best and the average
error percentages of the results given in [29] for its memetic neural network.
It is easy to deduce that MSSA by both initializing methods has led to very accurate results,
with slightly weaker characteristics for WTS as a cost of speeding up the algorithm. The
proposed method has shown superiority to all other competing methods, though they are
not tested for the last benchmark, u1432, which perhaps will lead to more inaccurate results,
if tested. To accomplish our comparison, we have added another set of methods from [8], in
which 11 methods are run on 30 benchmarks from lin105 to u1432. For brevity purpose, the
problems are categorized into 3 groups, namely: small, medium and large size benchmarks.
The results are given in Table 2, where the average of the average error in each group is
shown. For detailed explanation of each method see [8].

Algorithms in [7] Average Error in Total Average
Error

Small Size Medium Size Large Size

SA (Simulated Annealing) 2.76 3.25 3.7 3.09

TA (Threshold Accepting) 5.37 4.18 9.95 5.75

RRT (Record-to-Record Travel) 4.22 6.79 13.96 6.78

0 100 200 300 400 500 0

0.2

0.4

0.6

0.8

1

A
cc

ep
ta

nc
e

/ T
ria

l R
at

io
 (

)

Pseudo-Temperature (T)

Mushy State

Freezing Temperature

Liquid State

www.intechopen.com

Importance of the initial conditions and the time schedule in the Simulated Annealing 227

very low temperatures the acceptance probability is very low and there should be a criterion
to agree that it is the freezing temperature. In this research, if the total iterations at each
temperature, i.e. the Markov chain length, exceed AMax × n, we stop the annealing process
and call the current temperature as the freezing point.
Furthermore, in a normal SA, if the optimum solution is lost once that the algorithm faces an
uphill acceptance there is enough opportunity to recover it in the future steps. When
starting the annealing from low temperatures the expected time to find the global optima is
shorter. Therefore, the first modification is a memory of the latest minimum energy solution
found during all steps passed in the annealing. The best tour found is saved and inserted
once to the process at each temperature to be compared with the current situation. This will
resolve the probability of missing the best previously obtained solution.
This way the annealing process is summarized to the following steps:

(a) Employing a simple locally optimizing algorithm, set the initial temperature to a
mushy state temperature, where the acceptance ratio, , is about 10%;

(b) Set maximum acceptance to AMax = 100×n;
(c) Start annealing as usual, while:

i. Changing AMax to 0.9 × AMax;
ii. Saving the best solution found up to now;

iii. Inserting the best solution to each Markov chain;
(d) Stop annealing if the current Markov chain length is greater than AMax × n.

5. The Results

The proposed initializing method, so called Mushy State Simulated Annealing (MSSA), is
applied to many benchmarks listed in TSPLIB [23]. MSSA is run 40 times: 20 runs with an
initial condition obtained by crossover elimination and 20 runs initialized by WTS. The
initial conditions, i.e. the initial pseudo-temperature and the initial energy are case
dependent parameters. As mentioned in Section 4, we used the ratio of accepted motions
(new points), which are found based on an acceptance function like (5), to the total number
of tried motions (). If this ratio tends to zero, the case is in its solid state, and if it is very
high (near 1), then it is in the liquid state.
Figure 3 shows relation between the pseudo-temperature and the acceptance-trial ratio for
the case of eli51. It is seen that in high temperatures the ratio saturates to about 1, and in low
temperatures the case has reached to its solid state with the minimum energy. Therefore, the
best initial condition to start annealing is a temperature close to the melting point or the take
off point in the curve, which is about the pseudo-temperature of 30 in this case.
The results for cases with below 1432 cities are given below in Table 1, through which it will
be easy to realize that the method has improved SA significantly. The optimal values given
by the TSBLIB site, for each case are listed in the second column of the table. We have
compared the best, the worst and the average of the error in the results obtained by the new
approach with other results given by recent novel works (if the best and/or the worst cases
are available). The error percentage is calculated by:
δ = 100 (E – E*) / E*
where E* is the optimal (minimum) energy.

Fig. 3. Relation between the Pseudo-Temperature and the Acceptance-Trial Ratio, for the
case of eli51.

The first method chosen for comparison is the Constructive Optimizing Neural Network
(CONN) proposed in [24], for which it is claimed that all runs has led to the same results, so
that the best, the worst and the average of the solutions are the same. The second one is a
Kohonen-Like decomposition method [25], in its three different versions abbreviated by KD,
KL and KG. The third is a Genetic Algorithm-Based Clustering [26]. Four variants of this
method are introduced and tested, the results of which are given as EER, SE, ECER and SP.
The fourth collection of the methods compared in the table are categorized under the
column entitles Self-Organizing neural networks. Four versions are given in the table
namely KNIES-global, KNIES-local, Budinich and ESOM [27]. The results for the normal SA
are also taken from the same reference. A set of enhanced methods called Self-Organizing
Map designed by Genetic Algorithms is the fifth set. There also four columns quoted for this
category from [16][28]. Finally, we have compared our results with the best and the average
error percentages of the results given in [29] for its memetic neural network.
It is easy to deduce that MSSA by both initializing methods has led to very accurate results,
with slightly weaker characteristics for WTS as a cost of speeding up the algorithm. The
proposed method has shown superiority to all other competing methods, though they are
not tested for the last benchmark, u1432, which perhaps will lead to more inaccurate results,
if tested. To accomplish our comparison, we have added another set of methods from [8], in
which 11 methods are run on 30 benchmarks from lin105 to u1432. For brevity purpose, the
problems are categorized into 3 groups, namely: small, medium and large size benchmarks.
The results are given in Table 2, where the average of the average error in each group is
shown. For detailed explanation of each method see [8].

Algorithms in [7] Average Error in Total Average
Error

Small Size Medium Size Large Size

SA (Simulated Annealing) 2.76 3.25 3.7 3.09

TA (Threshold Accepting) 5.37 4.18 9.95 5.75

RRT (Record-to-Record Travel) 4.22 6.79 13.96 6.78

0 100 200 300 400 500 0

0.2

0.4

0.6

0.8

1
A

cc
ep

ta
nc

e
/ T

ria
l R

at
io

 (
)

Pseudo-Temperature (T)

Mushy State

Freezing Temperature

Liquid State

www.intechopen.com

S
im

ulated A
nnealing, Theory w

ith A
pplications

228BD
 (Bounded D

em
on)

5.26
4.44

7.73
5.4

RBD
 (Random

ized Bounded D
em

on)
4.33

9.38
13.59

7.66

A
D

 (A
nnealed D

em
on)

3.24
3.27

10.4
4.49

RA
D

 (Random
ized A

nnealed D
em

on)
2.82

4.38
10.94

4.76

A
BD

 (A
nnealed Bounded D

em
on)

2.65
2.77

9.15
3.81

RA
BD

 (Random
ized A

nnealed Bounded D
em

on)
2.63

3.64
4.13

3.24

A
D

H
 (A

nnealed D
em

on H
ybrid)

2.97
2.95

9.19
4.03

A
BD

H
 (A

nnealed Bounded D
em

on H
ybrid)

2.69
2.89

8.52
3.76

M
SSA

 (the proposed m
ethod)

By C
rossover Elim

ination
1.10

2.22
2.63

1.63

By W
TS

1.24
2.42

2.88
1.81

Table 2. C
om

parison of M
SSA

 w
ith other m

ethods given in [8] for 29 benchm
arks (the

average of the average error in 25 runs)
 To have a better feeling from

 the speed of the algorithm
s, let’s first have a look at the fig. 4.

A
s explained before, if annealing starts from

 a very high tem
perature, say 500 or m

ore for
the case of eli51, w

ith m
ore than 90%

 for the ratio  (or an alternative param
eter like the

initial acceptance probability for an average uphill m
ove [15]), it m

ay take m
ore than 8000

evaluations of the energy function to reach the m
inim

um
, w

hile starting from
 a m

ushy state
w

ill lead to convergence in less than 2000 iterations. This m
eans 4 tim

es faster, as is
observed in Figure 4, w

here it is show
n how

 the annealing schedule w
ould be and from

w

hich point it is started in this m
ethod. It should be added here that the total calculation

tim
e to find a m

ushy state w
ith about  =10%

, done by any algorithm
 like the crossover

elim
ination or the W

TS, is less than one tenth of the total iteration tim
e needed for SA

 to
slow

 dow
n its initially high tem

perature w
ithin 6000 = 8000 – 2000 iterations.

A
s the final point, it is w

orthy to m
ention that com

parison of the speed of calculation for
different m

ethods is not accurate unless the m
ethods are run on one com

puter in the sam
e

condition. Since the speed of an algorithm
 is dependent to the properties of the com

puter by
w

hich the algorithm
 is being run, the num

ber of floating point operation (fpo) is a proper
alternative to com

pare the speeds. H
ow

ever, for the fact of random
ness, it is alm

ost
im

possible to com
pute and com

pare the right num
ber of fpo for each algorithm

. A
s it is

observed in this paper, w
e com

pared the proposed m
ethod w

ith a norm
al SA

 and approved
analytically that an M

SSA
 is m

uch faster. C
om

paring the m
ethod w

ith other m
ethods w

e
could just refer to the average (m

inim
um

/m
axim

um
) error in the final results of each

algorithm
.

 T
SP

 B
en

ch
m

ar
k

O
pt

im
al

 S
ol

ut
io

n

MSSA By Crossover
Elimination MSSA By WTS CONN [24]

KOHONEN-LIKE
Decomposition [25]

(Average δ)

Genetic Algorithm-Based
Clustering [26]

(Average δ)

Self-Organizing neural networks [27]
(Average δ)

Self-Organizing Map
designed by Genetic

Algorithms [28]
(Average δ)

Memetic
neural

network [29]

B
es

t
δ

Av
er

ag
e

δ

W
or

st

δ

B
es

t
δ

Av
er

ag
e

δ

W
or

st
 δ

B
es

t
δ

Av
er

ag
e

δ

W
or

st
 δ

KD

KL

KG

EE
R

SE

E
C

E
R

SP

K
N

IE
S

-g
lo

ba
l

K
N

IE
S

-lo
ca

l

SA

Bu
di

ni
ch

ES
O

M

Enhanced SOMs

B
es

t
δ

A
ve

ra
ge

 δ

C
E

N

Bu
di

ni
ch

ES
O

M

EI
SO

M

eil51 426 0 0.36 0.94 0 0.79 1.88 2.58 2.58 2.58 3.50 2.86 2.86 1.16 7.19 0.23 0.23 2.86 2.86 2.33 3.10 2.10 1.88 2.48 0.93 1.97 1.64 2.14

st70 675 0 1.02 1.63 0 0.90 1.48 2.96 2.96 2.96 3.67 1.51 2.33 - - - - 2.33 1.51 2.14 1.70 2.09 - - - - 0.59 0.99

eil76 538 0 0.82 1.67 0 0.70 2.04 5.02 5.02 5.02 6.49 4.98 5.48 4.27 3.41 0.92 2.18 5.48 4.98 5.54 5.32 3.89 - - - - 2.04 2.88

gr96 514 0 0.83 1.36 0 0.53 1.17 3.61 3.61 3.61 - - - 10.62 8.07 3.09 2.46 - - 4.12 2.09 1.03 4.39 0.46 0.46 0.53 - -

kroA100 21282 0 0.52 0.93 0.28 0.65 2.04 2.57 2.57 2.57 - - - 16.54 6.70 3.81 2.41 - - 5.94 3.68 1.01 1.60 0.93 0.81 0.54 0.24 1.14

rd100 7910 0.01 1.40 1.96 0.01 1.42 3.12 3.59 3.59 3.59 4.89 2.09 2.62 11.10 8.93 3.23 3.81 2.62 2.09 3.26 3.16 1.96 - - - - 0.99 2.65

eil101 629 0 0.90 1.91 0 1.97 3.34 4.61 4.61 4.61 6.84 4.66 5.63 17.99 8.71 4.55 4.12 5.63 4.66 5.74 5.24 3.43 2.07 4.31 2.72 2.92 2.07 3.15

lin105 14379 0 0.52 1.00 0 0.33 0.77 0.38 0.38 0.38 2.18 1.98 1.29 22.55 2.85 2.31 3.10 1.29 1.98 1.87 1.71 0.25 - - - - 0.00 0.34

pr107 44303 0 0.14 0.30 0 0.13 0.30 2.77 2.77 2.77 10.83 0.73 0.42 20.46 5.79 2.11 2.98 0.42 0.73 1.54 1.32 1.48 - - - - 0.14 0.67

pr124 59030 0 0.25 0.60 0 0.21 0.45 1.74 1.74 1.74 3.22 0.08 0.49 30.51 3.75 2.93 3.02 0.49 0.08 1.26 1.62 0.67 - - - - 0.26 1.52

bier127 118282 0.12 0.37 0.68 0.04 0.58 1.12 2.45 2.45 2.45 5.82 2.76 3.08 9.49 4.39 3.56 2.21 3.08 2.76 3.52 3.61 1.70 - - - - 1.25 2.78

pr136 96772 0.35 1.05 1.97 0.55 1.43 2.89 2.27 2.27 2.27 1.93 4.53 5.15 26.50 12.54 12.43 6.19 5.15 4.53 4.90 5.20 4.31 - - - - 0.73 3.10

gr137 698 0.14 0.63 1.29 0 0.92 2.00 4.69 4.69 4.69 - - - 23.85 6.58 2.54 4.22 - - 8.45 8.61 4.27 3.29 4.51 2.52 2.18 - -

kroA150 26524 1.36 2.18 3.37 0.48 1.47 2.22 4.78 4.78 4.78 - - - 29.15 7.10 8.01 5.17 - - - - - 2.90 2.23 1.69 1.26 1.64 2.73

kroA200 29368 0.48 1.22 2.50 1.03 1.49 2.30 4.40 4.40 4.40 5.66 5.72 6.57 40.97 10.46 7.72 5.91 6.57 5.72 5.61 6.13 2.91 3.22 2.67 1.96 1.21 1.08 2.20

pr226
80369

0.90 1.48 2.85 1.34 1.96 2.21 1.93 1.93 1.93 - - - 57.09 5.52 4.71 5.05 - - - - - - - - - - -

pr264
49135

0.85 2.91 5.55 1.66 2.83 4.49 3.58 3.58 3.58 - - - 54.08 10.26 10.49 9.37 - - - - - - - - - - -

lin318 42029 0.53 1.34 1.90 0.70 1.79 2.56 - - - - - - 53.18 12.06 12.49 12.99 - - 7.56 8.19 4.11 4.67 2.81 2.89 1.96 3.63 5.51

rd400 15281 1.90 2.48 2.85 2.30 2.54 2.80 5.77 5.77 5.77 - - - 56.83 17.25 14.33 15.95 - - - - - - - - - - -

w
w

w
.in

te
c
h
o
p
e
n
.c

o
m

Im
portance of the initial conditions and the tim

e schedule in the S
im

ulated A
nnealing

229

BD
 (Bounded D

em
on)

5.26
4.44

7.73
5.4

RBD
 (Random

ized Bounded D
em

on)
4.33

9.38
13.59

7.66

A
D

 (A
nnealed D

em
on)

3.24
3.27

10.4
4.49

RA
D

 (Random
ized A

nnealed D
em

on)
2.82

4.38
10.94

4.76

A
BD

 (A
nnealed Bounded D

em
on)

2.65
2.77

9.15
3.81

RA
BD

 (Random
ized A

nnealed Bounded D
em

on)
2.63

3.64
4.13

3.24

A
D

H
 (A

nnealed D
em

on H
ybrid)

2.97
2.95

9.19
4.03

A
BD

H
 (A

nnealed Bounded D
em

on H
ybrid)

2.69
2.89

8.52
3.76

M
SSA

 (the proposed m
ethod)

By C
rossover Elim

ination
1.10

2.22
2.63

1.63

By W
TS

1.24
2.42

2.88
1.81

Table 2. C
om

parison of M
SSA

 w
ith other m

ethods given in [8] for 29 benchm
arks (the

average of the average error in 25 runs)
 To have a better feeling from

 the speed of the algorithm
s, let’s first have a look at the fig. 4.

A
s explained before, if annealing starts from

 a very high tem
perature, say 500 or m

ore for
the case of eli51, w

ith m
ore than 90%

 for the ratio  (or an alternative param
eter like the

initial acceptance probability for an average uphill m
ove [15]), it m

ay take m
ore than 8000

evaluations of the energy function to reach the m
inim

um
, w

hile starting from
 a m

ushy state
w

ill lead to convergence in less than 2000 iterations. This m
eans 4 tim

es faster, as is
observed in Figure 4, w

here it is show
n how

 the annealing schedule w
ould be and from

w

hich point it is started in this m
ethod. It should be added here that the total calculation

tim
e to find a m

ushy state w
ith about  =10%

, done by any algorithm
 like the crossover

elim
ination or the W

TS, is less than one tenth of the total iteration tim
e needed for SA

 to
slow

 dow
n its initially high tem

perature w
ithin 6000 = 8000 – 2000 iterations.

A
s the final point, it is w

orthy to m
ention that com

parison of the speed of calculation for
different m

ethods is not accurate unless the m
ethods are run on one com

puter in the sam
e

condition. Since the speed of an algorithm
 is dependent to the properties of the com

puter by
w

hich the algorithm
 is being run, the num

ber of floating point operation (fpo) is a proper
alternative to com

pare the speeds. H
ow

ever, for the fact of random
ness, it is alm

ost
im

possible to com
pute and com

pare the right num
ber of fpo for each algorithm

. A
s it is

observed in this paper, w
e com

pared the proposed m
ethod w

ith a norm
al SA

 and approved
analytically that an M

SSA
 is m

uch faster. C
om

paring the m
ethod w

ith other m
ethods w

e
could just refer to the average (m

inim
um

/m
axim

um
) error in the final results of each

algorithm
.

 T
SP

 B
en

ch
m

ar
k

O
pt

im
al

 S
ol

ut
io

n
MSSA By Crossover

Elimination MSSA By WTS CONN [24]
KOHONEN-LIKE

Decomposition [25]
(Average δ)

Genetic Algorithm-Based
Clustering [26]

(Average δ)

Self-Organizing neural networks [27]
(Average δ)

Self-Organizing Map
designed by Genetic

Algorithms [28]
(Average δ)

Memetic
neural

network [29]
B

es
t

δ

Av
er

ag
e

δ

W
or

st

δ

B
es

t
δ

Av
er

ag
e

δ

W
or

st
 δ

B
es

t
δ

Av
er

ag
e

δ

W
or

st
 δ

KD

KL

KG

EE
R

SE

E
C

E
R

SP

K
N

IE
S

-g
lo

ba
l

K
N

IE
S

-lo
ca

l

SA

Bu
di

ni
ch

ES
O

M

Enhanced SOMs

B
es

t
δ

A
ve

ra
ge

 δ

C
E

N

Bu
di

ni
ch

ES
O

M

EI
SO

M

eil51 426 0 0.36 0.94 0 0.79 1.88 2.58 2.58 2.58 3.50 2.86 2.86 1.16 7.19 0.23 0.23 2.86 2.86 2.33 3.10 2.10 1.88 2.48 0.93 1.97 1.64 2.14

st70 675 0 1.02 1.63 0 0.90 1.48 2.96 2.96 2.96 3.67 1.51 2.33 - - - - 2.33 1.51 2.14 1.70 2.09 - - - - 0.59 0.99

eil76 538 0 0.82 1.67 0 0.70 2.04 5.02 5.02 5.02 6.49 4.98 5.48 4.27 3.41 0.92 2.18 5.48 4.98 5.54 5.32 3.89 - - - - 2.04 2.88

gr96 514 0 0.83 1.36 0 0.53 1.17 3.61 3.61 3.61 - - - 10.62 8.07 3.09 2.46 - - 4.12 2.09 1.03 4.39 0.46 0.46 0.53 - -

kroA100 21282 0 0.52 0.93 0.28 0.65 2.04 2.57 2.57 2.57 - - - 16.54 6.70 3.81 2.41 - - 5.94 3.68 1.01 1.60 0.93 0.81 0.54 0.24 1.14

rd100 7910 0.01 1.40 1.96 0.01 1.42 3.12 3.59 3.59 3.59 4.89 2.09 2.62 11.10 8.93 3.23 3.81 2.62 2.09 3.26 3.16 1.96 - - - - 0.99 2.65

eil101 629 0 0.90 1.91 0 1.97 3.34 4.61 4.61 4.61 6.84 4.66 5.63 17.99 8.71 4.55 4.12 5.63 4.66 5.74 5.24 3.43 2.07 4.31 2.72 2.92 2.07 3.15

lin105 14379 0 0.52 1.00 0 0.33 0.77 0.38 0.38 0.38 2.18 1.98 1.29 22.55 2.85 2.31 3.10 1.29 1.98 1.87 1.71 0.25 - - - - 0.00 0.34

pr107 44303 0 0.14 0.30 0 0.13 0.30 2.77 2.77 2.77 10.83 0.73 0.42 20.46 5.79 2.11 2.98 0.42 0.73 1.54 1.32 1.48 - - - - 0.14 0.67

pr124 59030 0 0.25 0.60 0 0.21 0.45 1.74 1.74 1.74 3.22 0.08 0.49 30.51 3.75 2.93 3.02 0.49 0.08 1.26 1.62 0.67 - - - - 0.26 1.52

bier127 118282 0.12 0.37 0.68 0.04 0.58 1.12 2.45 2.45 2.45 5.82 2.76 3.08 9.49 4.39 3.56 2.21 3.08 2.76 3.52 3.61 1.70 - - - - 1.25 2.78

pr136 96772 0.35 1.05 1.97 0.55 1.43 2.89 2.27 2.27 2.27 1.93 4.53 5.15 26.50 12.54 12.43 6.19 5.15 4.53 4.90 5.20 4.31 - - - - 0.73 3.10

gr137 698 0.14 0.63 1.29 0 0.92 2.00 4.69 4.69 4.69 - - - 23.85 6.58 2.54 4.22 - - 8.45 8.61 4.27 3.29 4.51 2.52 2.18 - -

kroA150 26524 1.36 2.18 3.37 0.48 1.47 2.22 4.78 4.78 4.78 - - - 29.15 7.10 8.01 5.17 - - - - - 2.90 2.23 1.69 1.26 1.64 2.73

kroA200 29368 0.48 1.22 2.50 1.03 1.49 2.30 4.40 4.40 4.40 5.66 5.72 6.57 40.97 10.46 7.72 5.91 6.57 5.72 5.61 6.13 2.91 3.22 2.67 1.96 1.21 1.08 2.20

pr226
80369

0.90 1.48 2.85 1.34 1.96 2.21 1.93 1.93 1.93 - - - 57.09 5.52 4.71 5.05 - - - - - - - - - - -

pr264
49135

0.85 2.91 5.55 1.66 2.83 4.49 3.58 3.58 3.58 - - - 54.08 10.26 10.49 9.37 - - - - - - - - - - -

lin318 42029 0.53 1.34 1.90 0.70 1.79 2.56 - - - - - - 53.18 12.06 12.49 12.99 - - 7.56 8.19 4.11 4.67 2.81 2.89 1.96 3.63 5.51

rd400 15281 1.90 2.48 2.85 2.30 2.54 2.80 5.77 5.77 5.77 - - - 56.83 17.25 14.33 15.95 - - - - - - - - - - -

w
w

w
.in

te
c
h
o
p
e
n
.c

o
m

Simulated Annealing, Theory with Applications230

pc
b4

42

50
77

8
2.

04

2.
26

2.

68

1.
78

2.

46

3.
09

5.

56

5.
56

5.

56
8.

00

11
.0

7
10

.4
5

60
.2

9
14

.1
1

19
.8

0
12

.7
6

10
.4

5
11

.0
7

9.
15

8.

43

7.
43

5.
31

6.

88

5.
11

5.

67
3.

57

6.
08

at
t5

32

87
55

0
1.

56

1.
96

2.

37

1.
92

2.

52

3.
37

5.

66

5.
66

5.

66
6.

15

6.
74

6.

80

67
.5

8
17

.7
2

16
.1

8
18

.4
1

6.
80

6.

74

5.
38

5.

67

4.
95

5.
81

4.

76

3.
54

2.

39
3.

29

4.
21

ra
t7

83

88
06

1.

46

1.
90

2.

43

1.
44

2.

27

3.
45

7.

59

7.
59

7.

59
9.

11

-
9.

53

72
.8

8
19

.8
9

25
.9

6
23

.2
8

-
-

-
-

-
-

-
-

-
5.

46

5.
95

pr
10

02

25
90

45

2.
07

2.

27

2.
48

2.

33

2.
57

2.

73

6.
94

6.

94

6.
94

7.
08

-

7.
60

-

-
-

-
-

-
6.

03

8.
75

5.

93
6.

99

7.
44

5.

07

4.
01

4.
75

6.

11

u1
43

2
15

29
70

2.

04

2.
99

3.

96

1.
97

3.

18

4.
28

-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

A
ve

ra
ge

0.

66

1.
33

2.

05

0.
74

1.

48

2.
34

4.

00

4.
00

4.

00
5.

69

3.
82

4.

69

32
.7

2
9.

20

7.
69

6.

94

4.
09

3.

82

4.
69

4.

64

2.
97

3.
83

3.

59

2.
52

2.

24
1.

94

3.
04

*M
S

S
A

B
y

C
ro

ss
ov

er

El
im

in
at

io
n

-
-

-
0.

66

1.
33

2.

05

0.
66

1.

33

2.
06

1.
10

0.

94

1.
10

1.

22

1.
22

1.

22

1.
22

0.

94

0.
94

0.

99

0.
99

0.

99
1.

32

1.
32

1.

32

1.
32

0.
63

1.

24

*M
S

S
A

B
y

W
ET

S

0.
74

1.

48

2.
34

-

-
-

0.
75

1.

47

2.
33

1.
32

1.

15

1.
32

1.

38

1.
38

1.

38

1.
38

1.

15

1.
15

1.

19

1.
19

1.

19
1.

56

1.
56

1.

56

1.
56

0.
66

1.

41

* T
he

 la
st

 tw
o

ro
w

s
co

nt
ai

n
av

er
ag

e
of

 th
e

ca
se

s
fo

r w
hi

ch
 th

e
co

rr
es

po
nd

in
g

m
et

ho
d

is
 ru

n
an

d
th

e
re

su
lts

 a
re

 g
iv

en
.

Ta
bl

e
1.

 C
om

pa
ri

so
n

be
tw

ee
n

M
SS

A
 a

nd
 o

th
er

 n
ew

 m
et

ho
ds

 fo
r 2

4
be

nc
hm

ar
ks

(a) Normal Simulated Annealing, (b) Mushy State Simulated Annealing

Fig. 4. Energy decay in the annealing process for eli51;

6. Conclusion

Simulated annealing is one of the top ten methods of non-derivative based optimization
methods, various versions of which are proposed by researchers during the two last decades.
Focusing on the initial condition by which the annealing starts, this paper proposes a novel
variant of the original SA named mushy state simulated annealing (MSSA). In this method we
start annealing not from a high temperature in a liquid state, but from a low temperature in a
mushy state. Moreover, we use a memory to save the best solution found previously. This
technique has speeded up the optimization process while achieving to quite accurate optimum
solutions. For the case study of TSP, two simple algorithms including crossover elimination and
the shortly introduced method of WTS are used to initiate the MSSA. Results are compared to
many recent new optimization methods that are applied to solve TSP. Despite of its higher speed
compared to the normal SA, superiority of the proposed method is observed in all cases with less
than 1432 cities. The average error obtained by MSSA for the 24 benchmarks is much less than all
other methods compared to this method.

7. References

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”

Science, vol. 220, pp. 671–680, 1983.
[2] M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory

of NP-Completeness", New York: Freeman, 1979.
[3] Herbert H. Tsang, and Kay C. Wiese "The Significance of Thermodynamic Models in

the Accuracy Improvement of RNA Secondary Structure Prediction Using
Permutation-based Simulated Annealing", IEEE Congress on Evolutionary
Computation (CEC), 2007.

[4] Ming-Hao Hung, Li-Sun Shu, Shinn-Jang Ho, Shiow-Fen Hwang, and Shinn-Ying Ho,
“A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing
Robust PID Controllers”, IEEE Transactions on Systems, Man, and Cybernetics—
PART A: Systems and Humans, Vol. 38, No. 2, pp. 319-330, March 2008.

0 1 2 3 4 5 6 7 8 9
Iterations [× 103]

400

600

800

1000

1200

1400

1600

1800

2000

E
ne

rg
y

 [T

ot
al

 D
is

ta
nc

e]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2400

450

500

550

600

650

700

Iterations [× 103]

(a) Normal Simulated
Annealing

(b) Mushy State Simulated Annealing

www.intechopen.com

Importance of the initial conditions and the time schedule in the Simulated Annealing 231

pc
b4

42

50
77

8
2.

04

2.
26

2.

68

1.
78

2.

46

3.
09

5.

56

5.
56

5.

56
8.

00

11
.0

7
10

.4
5

60
.2

9
14

.1
1

19
.8

0
12

.7
6

10
.4

5
11

.0
7

9.
15

8.

43

7.
43

5.
31

6.

88

5.
11

5.

67
3.

57

6.
08

at
t5

32

87
55

0
1.

56

1.
96

2.

37

1.
92

2.

52

3.
37

5.

66

5.
66

5.

66
6.

15

6.
74

6.

80

67
.5

8
17

.7
2

16
.1

8
18

.4
1

6.
80

6.

74

5.
38

5.

67

4.
95

5.
81

4.

76

3.
54

2.

39
3.

29

4.
21

ra
t7

83

88
06

1.

46

1.
90

2.

43

1.
44

2.

27

3.
45

7.

59

7.
59

7.

59
9.

11

-
9.

53

72
.8

8
19

.8
9

25
.9

6
23

.2
8

-
-

-
-

-
-

-
-

-
5.

46

5.
95

pr
10

02

25
90

45

2.
07

2.

27

2.
48

2.

33

2.
57

2.

73

6.
94

6.

94

6.
94

7.
08

-

7.
60

-

-
-

-
-

-
6.

03

8.
75

5.

93
6.

99

7.
44

5.

07

4.
01

4.
75

6.

11

u1
43

2
15

29
70

2.

04

2.
99

3.

96

1.
97

3.

18

4.
28

-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

A
ve

ra
ge

0.

66

1.
33

2.

05

0.
74

1.

48

2.
34

4.

00

4.
00

4.

00
5.

69

3.
82

4.

69

32
.7

2
9.

20

7.
69

6.

94

4.
09

3.

82

4.
69

4.

64

2.
97

3.
83

3.

59

2.
52

2.

24
1.

94

3.
04

*M
S

S
A

B
y

C
ro

ss
ov

er

El
im

in
at

io
n

-
-

-
0.

66

1.
33

2.

05

0.
66

1.

33

2.
06

1.
10

0.

94

1.
10

1.

22

1.
22

1.

22

1.
22

0.

94

0.
94

0.

99

0.
99

0.

99
1.

32

1.
32

1.

32

1.
32

0.
63

1.

24

*M
S

S
A

B
y

W
ET

S

0.
74

1.

48

2.
34

-

-
-

0.
75

1.

47

2.
33

1.
32

1.

15

1.
32

1.

38

1.
38

1.

38

1.
38

1.

15

1.
15

1.

19

1.
19

1.

19
1.

56

1.
56

1.

56

1.
56

0.
66

1.

41

* T
he

 la
st

 tw
o

ro
w

s
co

nt
ai

n
av

er
ag

e
of

 th
e

ca
se

s
fo

r w
hi

ch
 th

e
co

rr
es

po
nd

in
g

m
et

ho
d

is
 ru

n
an

d
th

e
re

su
lts

 a
re

 g
iv

en
.

Ta
bl

e
1.

 C
om

pa
ri

so
n

be
tw

ee
n

M
SS

A
 a

nd
 o

th
er

 n
ew

 m
et

ho
ds

 fo
r 2

4
be

nc
hm

ar
ks

(a) Normal Simulated Annealing, (b) Mushy State Simulated Annealing

Fig. 4. Energy decay in the annealing process for eli51;

6. Conclusion

Simulated annealing is one of the top ten methods of non-derivative based optimization
methods, various versions of which are proposed by researchers during the two last decades.
Focusing on the initial condition by which the annealing starts, this paper proposes a novel
variant of the original SA named mushy state simulated annealing (MSSA). In this method we
start annealing not from a high temperature in a liquid state, but from a low temperature in a
mushy state. Moreover, we use a memory to save the best solution found previously. This
technique has speeded up the optimization process while achieving to quite accurate optimum
solutions. For the case study of TSP, two simple algorithms including crossover elimination and
the shortly introduced method of WTS are used to initiate the MSSA. Results are compared to
many recent new optimization methods that are applied to solve TSP. Despite of its higher speed
compared to the normal SA, superiority of the proposed method is observed in all cases with less
than 1432 cities. The average error obtained by MSSA for the 24 benchmarks is much less than all
other methods compared to this method.

7. References

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”

Science, vol. 220, pp. 671–680, 1983.
[2] M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory

of NP-Completeness", New York: Freeman, 1979.
[3] Herbert H. Tsang, and Kay C. Wiese "The Significance of Thermodynamic Models in

the Accuracy Improvement of RNA Secondary Structure Prediction Using
Permutation-based Simulated Annealing", IEEE Congress on Evolutionary
Computation (CEC), 2007.

[4] Ming-Hao Hung, Li-Sun Shu, Shinn-Jang Ho, Shiow-Fen Hwang, and Shinn-Ying Ho,
“A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing
Robust PID Controllers”, IEEE Transactions on Systems, Man, and Cybernetics—
PART A: Systems and Humans, Vol. 38, No. 2, pp. 319-330, March 2008.

0 1 2 3 4 5 6 7 8 9
Iterations [× 103]

400

600

800

1000

1200

1400

1600

1800

2000

E
ne

rg
y

 [T

ot
al

 D
is

ta
nc

e]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2400

450

500

550

600

650

700

Iterations [× 103]

(a) Normal Simulated
Annealing

(b) Mushy State Simulated Annealing

www.intechopen.com

Simulated Annealing, Theory with Applications232

[5] Kevin I. Smith, Richard M. Everson, Jonathan E. Fieldsend , Chris Murphy, and
Rashmi Misra, “Dominance-Based Multiobjective Simulated Annealing”, IEEE
Transactions On Evolutionary Computation, vol. 12, no. 3, pp. 323-341, June 2008.

[6] S. A. Kravitz and R. A. Rutenbar, “Placement by simulated annealing on a
multiprocessor,” IEEE Transactions Computer-Aided Design Integr. CircuitsSyst., vol.
6, no. 4, pp. 534–549, Jul. 1987.

[7] E. Aarts and J. Korst, "Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing", New York:
Wiley, 1989.

[8] Joshua W. Pepper, Bruce L. Golden, and Edward A. Wasil, “Solving the Traveling
Salesman Problem With Annealing-Based Heuristics: A Computational Study”,
IEEE Transactions on Systems, Man, and Cybernetics—PART A: Systems and Humans,
Vol. 32, No. 1, Jan. 2002.

[9] Hyeon-Joong Cho, Se-Young Oh and Doo-Hyun Choi, “Population-oriented simulated
annealing technique based on local Temperature concept”, Electronics Letters, vol.
34, no. 3, pp.312-313, 5th February 1998.

[10] Percy P. C. Yip, and Yoh-Han Pao, “Combinatorial Optimization with Use of Guided
Evolutionary Simulated Annealing”, IEEE Transactions on Neural Networks, vol. 6,
no. 2, pp. 290-295, March 1995.

[11] Andrew Soh, “Parallel N-ary Speculative Computation of Simulated Annealing”, IEEE
Transactions on Parallel and Distributed Systems, vol. 6, no. 10, pp. 997-1005, October
1995.

[12] D. C. W. Pao, S. P. Lam and A. S. Fong, “Parallel implementation of simulated
annealing using transaction processing”, IEE Proc-Comput. Digit. Tech.. Vol. 146,
No. 2, March 1999, pp. 107-113.

[13] Feng-Tse Lin, Cheng-Yan Kao, and Ching-Chi Hsu, “Applying the Genetic Approach
to Simulated Annealing in Solving Some NP-Hard Problems”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 23. No. 6, Nov./Dec. 1993.

[14] Dale R. Thompson and Griff L. Bilbro, “Sample-Sort Simulated Annealing”, IEEE
Transactions on Systems, Man, and Cybernetics—PART B: Cybernetics, Vol. 35, No. 3,
pp. 625-632 Jun. 2005.

[15] Hao Chen, Nicholas S. Flann, and Daniel W. Watson, “Parallel Genetic Simulated
Annealing: A Massively Parallel SIMD Algorithm”, IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 2, pp.126-136, February 1998.

[16] K.L. Wong A.G.Constantinides, “Speculative parallel simulated annealing with
acceptance prediction”, Electronics Letters, vol. 34, no. 3, pp. 312-313, 5th February
1998.

[17] L. Ingber and B. Rosen, “Genetic Algorithms and Very Fast Simulated Reannealing: A
Comparison,” Mathematical Computer Modeling, vol. 16, no. 11, pp. 87-100, 1992.

[18] Lipo Wang, Sa Li, Fuyu Tian, and Xiuju Fu, “A Noisy Chaotic Neural Network for
Solving Combinatorial Optimization Problems: Stochastic Chaotic Simulated
Annealing”, Transactions on Systems, Man, and Cybernetics—PART B: Cybernetics,
Vol. 34, No. 5 pp. 2119-2125, Oct. 2004.

[19] Yuyao He, “Chaotic Simulated Annealing With Decaying Chaotic Noise”, IEEE
Transactions on Neural Networks, vol. 13, no. 6, pp. 1526-1531, November 2002.

[20] Sitao Wu and Tommy W. S. Chow, “Self-Organizing and Self-Evolving Neurons: A
New Neural Network for Optimization”, IEEE Transactions on Neural Networks, vol.
18, no. 2, pp. 385-396, March 2007.

[21] J. Jang, C. Sun, E. Mizutani, “Neuro-Fuzzy and Soft Computing”, Proc. of the Prentice
Hall 1997.

[22] G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization
algorithm appearing superior to simulated annealing,” J. Computer. Phys., vol. 90,
1990, pp. 161–175.

[23] G. Reinelt. Tsplib95, 1995. Available at: http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95.

[24] M. Saadatmand-Tarzjan, M. Khademi, M. R. Akbarzadeh-T., and H. Abrishami
Moghaddam, “A Novel Constructive-Optimizer Neural Network for the Traveling
Salesman Problem” IEEE Transactions on Systems, Man, and Cybernetics—PART B:
Cybernetics, Vol. 37, No. 4, Aug. 2007.

[25] Necati Aras, I. Kuban Altnel, and John Oommen, “A KOHONEN-LIKE
DECOMPOSITION METHOD FOR THE EUCLIDEAN TRAVELING SALESMAN
PROBLEM KNIES_DECOMPOSE”, IEEE Transactions on Neural Networks, vol. 14,
no. 4, July 2003.

[26] Chun-Hung Cheng, Wing-Kin Lee, and Kam-Fai Wong, “A Genetic Algorithm-Based
Clustering Approach for Database Partitioning”, IEEE Transactions on Systems, Man,
and Cybernetics—PART C: Applications and Reviews, Vol. 32, No. 3, Aug. 2002.

[27] Kwong-Sak Leung, Hui-Dong Jin, and Zong-Ben Xu, “An expanding Self-Organizing
neural network for the traveling salesman problem”, Neurocomputing, Vol. 62, pp.
267-292, Dec. 2004.

[28] Hui-Dong Jin, Kwong-Sak Leung, Man-Leung Wong and Zong-Ben Xu, “An Efficient
Self-Organizing Map Designed by Genetic Algorithms for the Traveling Salesman
Problem”, IEEE Transactions on Systems, Man, and Cybernetics—PART B: Cybernetics,
Vol. 33, No. 6, pp. 877-888, Dec. 2003.

[29] J. C. Creput, A. Koukam, “A memetic neural network for the Euclidean traveling
salesman problem”, Neurocomputing Accepted 22, January 2008.

www.intechopen.com

Importance of the initial conditions and the time schedule in the Simulated Annealing 233

[5] Kevin I. Smith, Richard M. Everson, Jonathan E. Fieldsend , Chris Murphy, and
Rashmi Misra, “Dominance-Based Multiobjective Simulated Annealing”, IEEE
Transactions On Evolutionary Computation, vol. 12, no. 3, pp. 323-341, June 2008.

[6] S. A. Kravitz and R. A. Rutenbar, “Placement by simulated annealing on a
multiprocessor,” IEEE Transactions Computer-Aided Design Integr. CircuitsSyst., vol.
6, no. 4, pp. 534–549, Jul. 1987.

[7] E. Aarts and J. Korst, "Simulated Annealing and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing", New York:
Wiley, 1989.

[8] Joshua W. Pepper, Bruce L. Golden, and Edward A. Wasil, “Solving the Traveling
Salesman Problem With Annealing-Based Heuristics: A Computational Study”,
IEEE Transactions on Systems, Man, and Cybernetics—PART A: Systems and Humans,
Vol. 32, No. 1, Jan. 2002.

[9] Hyeon-Joong Cho, Se-Young Oh and Doo-Hyun Choi, “Population-oriented simulated
annealing technique based on local Temperature concept”, Electronics Letters, vol.
34, no. 3, pp.312-313, 5th February 1998.

[10] Percy P. C. Yip, and Yoh-Han Pao, “Combinatorial Optimization with Use of Guided
Evolutionary Simulated Annealing”, IEEE Transactions on Neural Networks, vol. 6,
no. 2, pp. 290-295, March 1995.

[11] Andrew Soh, “Parallel N-ary Speculative Computation of Simulated Annealing”, IEEE
Transactions on Parallel and Distributed Systems, vol. 6, no. 10, pp. 997-1005, October
1995.

[12] D. C. W. Pao, S. P. Lam and A. S. Fong, “Parallel implementation of simulated
annealing using transaction processing”, IEE Proc-Comput. Digit. Tech.. Vol. 146,
No. 2, March 1999, pp. 107-113.

[13] Feng-Tse Lin, Cheng-Yan Kao, and Ching-Chi Hsu, “Applying the Genetic Approach
to Simulated Annealing in Solving Some NP-Hard Problems”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 23. No. 6, Nov./Dec. 1993.

[14] Dale R. Thompson and Griff L. Bilbro, “Sample-Sort Simulated Annealing”, IEEE
Transactions on Systems, Man, and Cybernetics—PART B: Cybernetics, Vol. 35, No. 3,
pp. 625-632 Jun. 2005.

[15] Hao Chen, Nicholas S. Flann, and Daniel W. Watson, “Parallel Genetic Simulated
Annealing: A Massively Parallel SIMD Algorithm”, IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 2, pp.126-136, February 1998.

[16] K.L. Wong A.G.Constantinides, “Speculative parallel simulated annealing with
acceptance prediction”, Electronics Letters, vol. 34, no. 3, pp. 312-313, 5th February
1998.

[17] L. Ingber and B. Rosen, “Genetic Algorithms and Very Fast Simulated Reannealing: A
Comparison,” Mathematical Computer Modeling, vol. 16, no. 11, pp. 87-100, 1992.

[18] Lipo Wang, Sa Li, Fuyu Tian, and Xiuju Fu, “A Noisy Chaotic Neural Network for
Solving Combinatorial Optimization Problems: Stochastic Chaotic Simulated
Annealing”, Transactions on Systems, Man, and Cybernetics—PART B: Cybernetics,
Vol. 34, No. 5 pp. 2119-2125, Oct. 2004.

[19] Yuyao He, “Chaotic Simulated Annealing With Decaying Chaotic Noise”, IEEE
Transactions on Neural Networks, vol. 13, no. 6, pp. 1526-1531, November 2002.

[20] Sitao Wu and Tommy W. S. Chow, “Self-Organizing and Self-Evolving Neurons: A
New Neural Network for Optimization”, IEEE Transactions on Neural Networks, vol.
18, no. 2, pp. 385-396, March 2007.

[21] J. Jang, C. Sun, E. Mizutani, “Neuro-Fuzzy and Soft Computing”, Proc. of the Prentice
Hall 1997.

[22] G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization
algorithm appearing superior to simulated annealing,” J. Computer. Phys., vol. 90,
1990, pp. 161–175.

[23] G. Reinelt. Tsplib95, 1995. Available at: http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95.

[24] M. Saadatmand-Tarzjan, M. Khademi, M. R. Akbarzadeh-T., and H. Abrishami
Moghaddam, “A Novel Constructive-Optimizer Neural Network for the Traveling
Salesman Problem” IEEE Transactions on Systems, Man, and Cybernetics—PART B:
Cybernetics, Vol. 37, No. 4, Aug. 2007.

[25] Necati Aras, I. Kuban Altnel, and John Oommen, “A KOHONEN-LIKE
DECOMPOSITION METHOD FOR THE EUCLIDEAN TRAVELING SALESMAN
PROBLEM KNIES_DECOMPOSE”, IEEE Transactions on Neural Networks, vol. 14,
no. 4, July 2003.

[26] Chun-Hung Cheng, Wing-Kin Lee, and Kam-Fai Wong, “A Genetic Algorithm-Based
Clustering Approach for Database Partitioning”, IEEE Transactions on Systems, Man,
and Cybernetics—PART C: Applications and Reviews, Vol. 32, No. 3, Aug. 2002.

[27] Kwong-Sak Leung, Hui-Dong Jin, and Zong-Ben Xu, “An expanding Self-Organizing
neural network for the traveling salesman problem”, Neurocomputing, Vol. 62, pp.
267-292, Dec. 2004.

[28] Hui-Dong Jin, Kwong-Sak Leung, Man-Leung Wong and Zong-Ben Xu, “An Efficient
Self-Organizing Map Designed by Genetic Algorithms for the Traveling Salesman
Problem”, IEEE Transactions on Systems, Man, and Cybernetics—PART B: Cybernetics,
Vol. 33, No. 6, pp. 877-888, Dec. 2003.

[29] J. C. Creput, A. Koukam, “A memetic neural network for the Euclidean traveling
salesman problem”, Neurocomputing Accepted 22, January 2008.

www.intechopen.com

Simulated Annealing, Theory with Applications234

www.intechopen.com

Simulated Annealing, Theory with Applications

Edited by Rui Chibante

ISBN 978-953-307-134-3

Hard cover, 292 pages

Publisher Sciyo

Published online 18, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book contains 15 chapters presenting recent contributions of top researchers working with Simulated

Annealing (SA). Although it represents a small sample of the research activity on SA, the book will certainly

serve as a valuable tool for researchers interested in getting involved in this multidisciplinary field. In fact, one

of the salient features is that the book is highly multidisciplinary in terms of application areas since it assembles

experts from the fields of Biology, Telecommunications, Geology, Electronics and Medicine.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kambiz Shojaee G., Hamed Shakouri G. and Mojtaba Behnam Taghadosi (2010). Importance of the Initial

Conditions and the Time Schedule in the Simulated Annealing, Simulated Annealing, Theory with Applications,

Rui Chibante (Ed.), ISBN: 978-953-307-134-3, InTech, Available from:

http://www.intechopen.com/books/simulated-annealing--theory-with-applications/importance-of-the-initial-

conditions-and-the-time-schedule-in-the-simulated-annealing

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

