
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Using the simulated annealing algorithm to solve the optimal control problem 189

Using the simulated annealing algorithm to solve the optimal control 
problem

Horacio Martínez-Alfaro

0

Using the simulated annealing algorithm

to solve the optimal control problem

Horacio Martínez-Alfaro
hma@itesm.mx

Tecnológico de Monterrey, Campus Monterrey
México

1. Introduction

A lot of research has been done in Automatic Control Systems during the last decade and
more recently in discrete control systems due to the popular use of powerful personal com-
puters. This work presents an approach to solve the Discrete-Time Time Invariant Linear
Quadratic (LQ) Optimal Control problem which minimizes a specific performance index (ei-
ther minimum time and/or minimum energy). The design approach presented in this paper
transforms the LQ problem into a combinatorial optimization problem. The Simulated An-
nealing (SA) algorithm is used to carry out the optimization.
Simulated Annealing is basically an iterative improvement strategy augmented by a criterion
for occasionally accepting configurations with higher values of the performance index (Mal-
horta et al., 1991; Martínez-Alfaro & Flugrad, 1994; Martínez-Alfaro & Ulloa-Pérez, 1996;
Rutenbar, 1989). Given a performance index J(z) (analog to the energy of the material) and
an initial configuration z0, the iterative improvement solution is seeked by randomly per-
turbing z0. The Metropolis algorithm (Martínez-Alfaro & Flugrad, 1994; Martínez-Alfaro &
Ulloa-Pérez, 1996; Rutenbar, 1989) was used for acceptance/rejection of the perturbed config-
uration.
In this design approach, SA was used to minimized the performance index of the LQ problem
and as result obtaining the values of the feedback gain matrix K that make stable the feedback
system and minimize the performance index of the control system in state space representa-
tion (Ogata, 1995). The SA algorithm starts with an initial feedback gain matrix K and eval-
uates the performance index. The current K is perturbed to generate another Knew and the
performance index is evaluated. The acceptance/rejection criteria is based on the Metropolis
algorithm. This procedure is repeated under a cooling schedule. Some experiments were per-
formed with first through third order plants for Regulation and Tracking, Single Input - Single
Output (SISO) and Multiple Input - Multiple Output (MIMO) systems. Matlab and Simulink
were used as simulation software to carry out the experiments.
The parameters of the SA algorithm (perturbation size, initial temperature, number of Markov
chains, etc.) were specially tunned for each plant.
Additional experiments were performed with non-conventional performance indices for track-
ing problems (Steffanoni Palacios, 1998) where characteristics like maximum overshoot
max(y(k)− r(k)), manipulation softness index |u(k + 1)− u(k)|, output softness index |y(k+
1)− y(k)|, and the error magnitude |r(k)− y(k)|.
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The proposed scheme with the use of the SA algorithm showed to be another good tool for
discrete optimal control systems design even though only linear time invariant plants were
considered (Grimble & Johnson, 1988; Ogata, 1987; 1995; Salgado et al., 2001; Santina et al.,
1994). A large CPU time was involved in this scheme in order to obtain similar results to the
ones by LQ. The design process is simplified due to the use of gain matrices that generate a sta-
ble feedback system. The equations required are those use for the simulation of the feedback
system which are very simple and very easy to implement.

2. Methodology

The procedure is described as follow:

1. Propose a initial solution Kinitial.

2. Evaluate the performance index and save initial cost Jinitial(Kinitial). Kinitial needs to be
converted to matrices K1 and K2 for tracking systems.

3. Randomly perturb Kinitial to obtain a Knew.

4. Evaluate the performance index and save initial cost Jnew(Knew).

5. Accept or reject Knew according to the Metropolis criterion.

6. If accepted, Kinitial ← Knew, decrement temperature according to Jnew/Jinitial.

7. Repeat from step 3.

Once a Markov chain is completed, decrement the temperature, Ti+1 = αTi, where Ti repre-
sents the current temperature and α = 0.9 (Martínez-Alfaro & Flugrad, 1994). The procedure
ends when the final temperature or a certain number of Markov chains has been reached.

3. Implementation

The code was implemented in Matlab, and the models were design for Regulation and Track-
ing, SISO and MIMO systems.
A discrete optimal control system can be represented as follows (Ogata, 1995):

x(k + 1) = G x(k) + H u(k) (1)

y(k) = C x(k) + D u(k) (2)

where x(n×1) is the state vector, y(m×1) is the output vector, u(r×1) is the control vector, G(n×n)

is the state matrix, H(n×r) is the input matrix, C(m×n) is the output matrix, and D(m×r) is the
direct transmission matrix.
In an LQ problem the solution determines the optimal control sequence for u(k) that mini-
mizes the performance index (Ogata, 1995).

3.1 Regulation

The equation that define the performance index for a Regulator is (Ogata, 1987):

J =
1

2

N−1

∑
k=0

[x′(k)Q x(k) + u′(k)R u(k)] (3)

where Q(n×n) is positive definite or positive semidefinite Hermitian matrix, Q(n×n) is pos-
itive definite or positive semidefinite Hermitian matrix, and N is the number of samples.
Equation 3 represents the objective function of the SA algorithm.
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3.2 Tracking

A tracking system can be represented as follows (Ogata, 1987):

x(k + 1) = G x(k) + H u(k), u(k) = K1 v(k)− K2 x(k)
y(k) = C x(k), v(k) = r(k)− y(k) + v(k − 1)

(4)

where x is the state vector, u is the control vector, y is the output vector, r is the input reference
vector, v is the speed vector, K1 is the integral control matrix, K2 is the feedback matrix, G is
the state matrix, H is the input matrix, and C is the output matrix.
The representation used in this work was a Regulator representation (Ogata, 1987):

ξ(k + 1) = Ĝ ξ(k) + Ĥ w(k), w(k) = −K̂ ξ(k) (5)

where:

ξ(k) =

[

xe(k)
ue(k)

]

, Ĝ =

[

G H

0 0

]

Ĥ =

[

0

Im

]

, K̂ = (R + Ĥ′ P̂ Ĥ)−1Ĥ′ P̂ Ĝ,

[K2 K1] = (K̂ + [0 Im])R

[

G − In H

C G C H

]−1

(6)

and the states are defined as

xe(k) = x(k)− x(∞), ue(k) = u(k)− u(∞) (7)

The performance index is:

J =
1

2

∞

∑
k=0

[

ξ ′(k) Q̂ ξ(k) + w′(k)R w(k)
]

with Q̂ =

[

Q 0

0 0

]

(8)

Since our simultaion is finite, the performance index should be evaluated for N samples:

J =
1

2

N

∑
k=0

[

ξ ′(k) Q̂ ξ(k) + w′(k)R w(k)
]

(9)

3.2.1 Non-conventional performance index

Non-conventional performance indexes are specially good when we desire to include certain
output and/or vector control characteristics in addition to the ones provided by a standard
LQ problem.
The propose performance index is (Steffanoni Palacios, 1998):

J = C1 ζ + C2 ϑ + C3 ϕ +
N

∑
k=0

[

C4 ξ ′(k) Q̂ ξ(k) + C5 w′(k)R w(k) + C6 ε(k)
]

(10)

where

• ζ is the softness index of u(k) defined by |u(k + 1)− u(k)|.

• ϑ is the maximum overshoot defined by max(y(k)− r(k)).

• ϕ is the output softness index defined by |y(k + 1)− y(k)|.

• ε(k) is the error defined by |r(k)− y(k)|.
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• ξ(k) is the augmented state vector.

• w(k) is the augmented state-input vector for the control law.

• Q̂ and R are the weighting matrices for quadratic error.

• Ci, i = 1, . . . , 6 are weighting constants. C4 y C5 take 0 or 1 values wheather or not to
include the quadratic error.

This description is valid only for SISO systems. The changes for MIMO systems (we consider
just n inputs and outputs) are:

Softness index in vector u(k)

ζ = max(max(|ui(k + 1)− ui(k)|), i = 1, . . . , n) (11)

Maximum overshoot

ϑ = max(max(yi(k)− ri(k)), i = 1, . . . , n) (12)

Output softness index

ϕ = max(max(|yi(k + 1)− yi(k)|), i = 1, . . . , n) (13)

Error
ε(k) = max(max(|ri(k)− yi(k)|), i = 1, . . . , n) (14)

The SA algorithm is based on the one used by (Martínez-Alfaro & Flugrad, 1994).

4. Experiments and Results

For SISO systems, many experiments were performed for regulator and tracking systems. In
this work we present just the experiments with third order plants. Very similar experiments
were performed with MIMO systems (regulator and tracking), but we only work with two-
input-two-output plants.

4.1 SISO systems

4.1.1 Regulator

The following values for a third order system were:

G =





0 0 −0.25
1 0 0
0 1 0.5



 , H =





1
0
1



 , Q =





1 0 0
0 1 0
0 0 1



 ,

R = 1, x(0) =





−5
4.3
−6.8





The SA algorithm parameters were: initial solution = 0, maximum perturbation = 1, initial
temperature = 100, number of Markov chains = 100, percentage of acceptance = 80. The SA
algorithm found a J = 68.383218 and LQ a J = 68.367889. Table 1 shows the gains.
Figure 1, presents the SA behavior. The states of both controllers performed similarly, Figure 3;
but we can appreciate that exist a little difference between them, Figure 2.
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J K

LQ J = 68.367889 [−0.177028 − 0.298681 − 0.076100]

SA J = 68.383218 [−0.193591 − 0.312924 − 0.014769]

Table 1. Controller gains
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Fig. 1. Behavior of the SA algorithm

According to Section 3.2, the tracking system experiment is next with is N = 100.

G =





0 1 0
0 0 1

−.12 −.01 1



 , H =





0
0
1



 , CT =





0.5
1
0



 ,

Q =





1 0 0
0 1 0
0 0 1



 , R = 10
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Fig. 2. Behavior of the state difference using LQ and SA.
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Fig. 3. Behavior of the states using LQ.
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Fig. 4. Behavior of states using SA.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Output

SA
LQ

www.intechopen.com



Using the simulated annealing algorithm to solve the optimal control problem 195

0 2 4 6 8 10 12 14 16 18 20
�0.08

�0.06

�0.04

�0.02

0

0.02

0.04

0.06
Error

0 2 4 6 8 10 12 14 16 18 20
�8

�6

�4

�2

0

2

4

6
States using LQ

0 2 4 6 8 10 12 14 16 18 20
�8

�6

�4

�2

0

2

4

6
States using SA

0 2 4 6 8 10 12 14 16 18 20
�8

�6

�4

�2

0

2

4

6
States using LQ

0 2 4 6 8 10 12 14 16 18 20
�8

�6

�4

�2

0

2

4

6
States using SA

Yielding

Ĝ =









0 1 0 0
0 0 1 0

−0.12 −0.01 1 1
0 0 0 0









, Ĥ =









0
0
0
1









The SA algorithm parameters were: initial solution = 0, maximum perturbation = 0.01, initial
temperature = 100, number of Markov chains = 100, percentage of acceptance = 80. LQ ob-
tained a J = 2.537522 and SA a J = 2.537810. Although the indexes are very similar, gain
matrices differ a little bit (shown in Table 2). Figure 6 shows the states and Figure 7the input.

K1 K2

LQ 0.290169 [−0.120000 0.063347 1.385170]

SA 0.294318 [−0.107662 0.052728 1.402107]

Table 2. Controller gain
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Fig. 5. Output

4.1.2 Tracking with non-conventional performance index

Several experiments were perform with type of index. This experiment was a third order
plant, the same of previous section. The coefficient values for the performance index were:
C1 = 10, C2 = 10, C3 = 20, C4 = 1, C5 = 1, and C6 = 10. The SA algorithm parameters
were: initial solution = 0, maximum perturbation = 1, initial temperature = 100, number of
Markov chains = 100, and the percentage of acceptance = 80. SA obtained a J = 46.100502,
with K1 = 0.383241, and K2 = [−0.108121, 0.189388, 1.424966]. Figure 8 shows the response
of the system and Figures 9 and 10 show the states and input, respectively.
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Fig. 6. States behavior

4.2 MIMO systems

4.2.1 Regulator

The system used was:

G =





3.5 0.5 0.5
1 2.5 0

1.5 −1 4



 , H =

[

1 0 0
0 1 0

]

, Q =





1 0 0
0 1 0
0 0 1



 ,

R =

[

1 0
0 1

]

, x(0) =





5
−1
3





The SA algorithm parameters were: initial solution = 0, maximum perturbation = 5, initial
temperature = 100, number of Markov chains = 100, and percentage of acceptance = 80.
LQ obtained a J = 732.375702 and SA a J = 733.428460. Gain matrices are very similar.
Figure 11 shows the states.
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Fig. 7. Input behavior
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Fig. 8. Tracking with Non-conventional index: unit step response.
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Fig. 9. Tracking with Non-conventional index: states behavior.
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Fig. 10. Tracking with Non-conventional index: input behavior.

4.2.2 Tracking

The number of samples was 100.
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Fig. 11. MIMO Regulator system.

Converting the tracking system to regulator
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





The SA algorithm parameters were: initial solution = 0, maximum perturbation = 0.02, initial
temperature = 100, number of Markov chains = 100, percentage of acceptance = 80. LQ
obtained a J = 6.132915 and SA a J = 6.134467. The value entries obtained for the gain matrix
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differ a little bit from the ones obtained by SA; however, the performance indexes are very
similar. Figure 12 shows the controller response.
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Fig. 12. MIMO tracking outputs.

4.2.3 Tracking with non-conventional performance index

Although several experiments were performed, only one is shown here. The plant used for
this experiment is the same as in the previous example and the performance index is the
same as the tracking for the SISO system example. The coefficient values were: C1 = 30,
C2 = 20, C3 = 50, C4 = 1, C5 = 1, and C6 = 30. The SA algorithm parameters were: initial
solution = 0, maximum perturbation = 0.1, initial temperature = 100, number of Markov

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Output 1

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Output 2

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Output 1

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Output 2

www.intechopen.com



Using the simulated annealing algorithm to solve the optimal control problem 201

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2
Output 1

SA
LQ

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Output 2

SA
LQ

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2
Output 1

SA
LQ

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Output 2

SA
LQ

chains=100, percentage of acceptance = 80. The results are:

J = 128.589993

K1 =

[

−0.029799 −0.874366
0.152552 0.560652

]

K2 =

[

−0.279253 0.165710 −0.398472
−0.007700 −0.132882 0.272621

]

The controller response is shown in Figure 13. The states are shown in Figure 14.
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Fig. 13. MIMO tracking with non-conventional index.
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Fig. 14. MIMO tracking with non-conventional index: States and inputs behavior.

5. Conclusions

The results presented here, show that this kind of algorithms and the SA technique used work
well. However, it is not possible to generalize the use of this scheme because the order of
the models for the plants used were just first, second, and third. SA is an algorithm whose
objective function must be adapted to the problem, and doing so (tuning), is where the use of
heuristics is required. Through these heuristics, we can propose the values for the algorithm
parameters that are suitable to find good solutions, but this is a long trial and error procedure.
The CPU time that SA algorithm takes for finding a good solution is larger than the time we
require to calculate LQ controller. But, in the case of tracking with non-conventional perfor-
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mance index, the method provided with SA algorithm works very well, and this is the main
idea, to provide a good tool for discrete-time optimal control systems design.
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