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1. Introduction

External beam radiation therapy and high dose-rate brachytherapy were among the first tested
medical applications for simulated annealing as an inverse planning optimization algorithm.
The choice of these two applications is justified, as the tissue response to a given radiation
dose is well established across different tissue types, leading to standardized clinical dosime-
try concepts. A brief overview of the current state of simulated annealing in radiotherapy
treatment planning is provided in Section 2. By contrast, the use of this popular optimization
technique for interstitial light therapies, such as interstitial photodynamic therapy (IPDT), in-
terstitial laser hyperthermia (ILH) and interstitial laser photocoagulation (ILP), requires an
appreciation of the unique dosimetry challenges and the resulting development of new com-
putational tools adapted to the requirements of light transport in tissue. Light transport is
governed by interaction coefficients varying as a function of wavelength and differs between
tissue types and between individuals.
This chapter introduces the clinical motivation behind conformal interstitial light therapies,
the concept of using light dosimetry as a basic approach to clinical dosimetry, as well as our
ongoing work on creating a computational framework for real-time light and clinical dosime-
try (http://code.google.com/p/gpu3d/) , in order to extend the benefit of simulated
annealing. This presents a very timely application for simulated annealing, as these light-
based therapies carry the possibility of low-cost general treatments in oncology and an alter-
native to surgical intervention. Presently, the efficacy of light-based therapies is, to a certain
extent, limited by currently used heuristic treatment plans to illuminate the clinical target
volume with sufficient energy or power density. Individualized treatment plans, tailored to a
specific patient’s anatomy and preferably also the local light-tissue interaction coefficients, can
overcome the shortcomings of the heuristic treatment plans, and thus maximize the benefits
and impact of light-based treatments.

2. Treatment planning using simulated annealing

To help readers understand how simulated annealing can be applied clinically for treatment
planning, this section reviews the progress made in the well-established field of radiotherapy
treatment planning. This provides the basis for the discussion of emerging interstitial light
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therapies and the clinical utility of simulated annealing in planning for these novel treatment
options.

2.1 Simulated annealing in radiotherapy
Simulated annealing has been used as an optimization technique for radiation treatment plan-
ning in the clinical setting, with successes reported in both external beam radiation therapy
(EBRT) (Aubry et al., 2006; Beaulieu et al., 2004; Morrill et al., 1995) and high dose-rate (HDR)
brachytherapy (Lessard & Pouliot, 2001; Martin et al., 2007). For EBRT, the basic optimization
problem is the determination of the appropriate temporal and spatial arrangements of multi-
ple external radiation beams, which can be tailored in highly sophisticated and precise ways in
modern 3-D conformal radiation therapy. For HDR-brachytherapy (which delivers a high ra-
diation dose directly by implanting intense radioactive sources within the tumour for a short
time), the optimization involves adjusting the duration (or dwell time) that a source pauses or
dwells at each position (called dwell position) along the implanted catheter. Treatment delivery
is accomplished using a computer-controlled robotic unit called a stepping source device or an
afterloader, which moves the radioactive sources (commonly 192Ir) along the catheters accord-
ing to the optimized dwell time distribution in order to deliver the desired radiation dose
distribution.
There is now a shift in paradigm as we strive to achieve the century-old objective of deliver-
ing a curative radiation dose to the tumour while sparing sensitive structures and surround-
ing normal tissues. That is, instead of manually specifying the treatment parameters and
repeatedly evaluating the resulting radiation dose distribution (forward planning), a desired
dose distribution is prescribed by the physician and the task of finding the appropriate treat-
ment parameters is automated with an optimization algorithm (inverse planning). The latter
approach, or inverse planning, is much more goal-oriented and efficient.
The concept of inverse planning, using simulated annealing as the optimization engine, can
be briefly summarized as follows. Note that the following description focuses on HDR-
brachytherapy and is greatly simplified, although the steps are quite similar for EBRT.

1. 3-D imaging of anatomical structures: The first step typically involves the defini-
tion and contouring of the anatomical structures of interest using 3-D imaging modal-
ities such as ultrasound, computed tomography (CT) and magnetic resonance imaging
(MRI). Functional imaging techniques such as magnetic resonance spectroscopy (MRS)
and positron emission tomography (PET) are also investigated for better localization
and targeting of the tumour, thus permitting the administration of an escalated dose to
the target (Scheidler et al., 1999). The anatomical structures of interest include the entire
tumour and an estimated margin for the microscopic tumour spread, together referred
to as the clinical target volume (CTV), as well as surrounding normal tissue and organs at
risk (OAR). For convenience, all these structures are considered the treatment planning
volume (TPV) in this chapter.

2. Specification of desired dose distribution: For each anatomical structure or organ,
the desired 3-D dose distribution is prescribed by the physician through a set of dose
constraints. Using the prostate as an example, a physician may define a minimum ac-
ceptable radiation dose Dmin to the prostate (CTV) to ensure complete coverage and a
maximum permissible dose Dmax to the surrounding structures such as the rectum or
urethra (OAR) to avoid complications. Each structure can be assigned a different set
of dose constraints (Dmin and Dmax). A weighting factor w is also used to specify the
relative importance of meeting a specific set of dose constraints or clinical objectives. A
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2.1 Simulated annealing in radiotherapy

penalty value pi, computed using Equation 1 (Lessard & Pouliot, 2001), can be assigned
to each dose point i (usually chosen to be either on the surface or inside the volume of
the CTV or OAR) after calculating the dose distribution Di resulting from a proposed
set of treatment parameters. For details on brachytherapy dose calculations, see the
American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report
(Rivard et al., 2004).

pi =







wmin(Di − Dmin) if Di < Dmin

wmax(Di − Dmax) if Di > Dmax

0 if Dmin
<= Di <= Dmax

(1)

To evaluate a treatment plan, a global penalty function called a cost function or objective
function, denoted E here, can be defined by summing the penalty values over all dose
points for every anatomical structure. Note that variations of the cost function defined
above exist, but the basic idea is similar in most cases. That is, the closer the calcu-
lated dose distribution is to the prescribed distribution, the lower the value of the cost
function becomes.

3. Optimization of treatment parameters: The objective becomes minimizing the cost
function, E, by solving for the appropriate combination of treatment parameters re-
quired to meet the clinical objectives. For example, in HDR-brachytherapy, one of the
treatment parameters that needs to be optimized is the dwell time values (or dwell
time distribution) for the different source positions or radioactive seed positions (also
known as dwell positions) to achieve the desired dose coverage (Lessard & Pouliot,
2001). To illustrate how simulated annealing can be applied to treatment planning in
HDR-brachytherapy, a generic pseudo code is shown in Algorithm 1 as a simplified
example. (Note that the exact implementation details, such as the choice of the ter-
minating condition, the definition of the cost function, or the selection of the cooling
schedule, can differ depending on the clinical scenario and computational resources
available.) First, the initial dwell time values are set and the corresponding cost func-
tion E0 for this initial distribution is computed. Then, the dwell time value for a ran-
domly chosen dwell position is randomly incremented or decremented. This change
leads to a new dwell time distribution, from which a new dose distribution Di and its
associated penalty pi can be computed. Next, the global penalty value or cost function
Ek is compared against the previous one Ek−1. If the new dwell time distribution leads
to a lower cost function (∆E < 0), then the change is accepted. Otherwise, the new treat-
ment parameter is accepted with a probability of P(∆E) = exp[−∆E/T(k)]. For shorter
computation time, a faster cooling schedule (fast simulated annealing) can be used by
defining T(k) = T0/kα where T0 is the initial temperature and α is the speed parameter.
The entire process can be repeated until the cost function has reached a threshold as
defined by clinical requirements or when further iterations do not produce a clinically
significant difference.

The end result of this inverse planning process is an optimized set of treatment parameters
forming the individualized treatment plan - in this case, a dwell time distribution delivered
by an afterloader that produces a clinically acceptable radiation dose distribution tailored to
an individual patient’s anatomy. The notion of precisely shaping the dose distribution to
match one’s anatomy forms the basis of conformal radiation therapy.
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Algorithm 1 Example of using simulated annealing for treatment planning

Initialize
while E > threshold do

Modify treatment parameters
Compute new dose distribution Di //NOTE: Dose definition and dose calculation for
radiotherapy and light-based therapies are fundamentally different.
Assign penalty pi (Eq. 1)
Compute cost function Ek ← ∑ pi

∆E = Ek − Ek−1

P(∆E) = exp[−∆E/T(k)]
if ∆E < 0 then

Accept new treatment parameters
else

Accept new treatment parameters with a probability of P(∆E)
end if
k ← k + 1

end while

2.2 Fundamental differences between radiation therapy and light-based therapies
As the mass attenuation coefficient of ionizing radiation is on the order of < 0.3 cm2/g for
clinical applications and scattering of high-energy photons is weak, conformality in radiation
therapy - that is, achieving high dose within the CTV combined with a steep dose gradient
at its boundary and resulting low dose in surrounding tissue and OAR - can be achieved
by superimposing radiation fields emanating from implanted sources, as described above, or
from external beams so that they overlap at the CTV. For external beams, further conformal-
ity can be achieved by spatially modifying the exposure over each beam’s cross section, as
in intensity-modulated radiation therapy (IMRT) (Bortfeld, 2006). However, in light-based
therapies, the very high attenuation coefficient and scattering coefficient necessitate different
means to achieve conformality. For interstitial PDT in particular, the parameter space is given
by the number and emission properties of implantable optical fibres and the length over which
they emit. While for ionizing radiation the tissue interaction coefficients of the CTV and the
OAR do not vary appreciably, light can encounter rather large differences in its interaction
coefficients with tissue, ranging from, for example, < 2 cm−1 to 30 cm−1 in pig muscle and
rabbit liver, respectively. Achieving conformality is further complicated if the other efficacy-
determining parameters are not homogeneously distributed across the TPV, as discussed next.
Despite these fundamental differences between radiation therapy and light-based therapies,
the optimization algorithm based on simulated annealing (shown in Algorithm 1) can be sim-
ilarly applied for planning light-based therapies, although the dose computation step would
differ significantly as new definitions of dose are required for these novel therapies.

3. Dosimetry concepts for light-based therapies

This section provides the clinical background for interstitial light therapies as well as their
unique treatment planning problem.

3.1 Dose definitions

3.1.1 Interstitial Laser Photocoagulation (ILP) and Interstitial Laser Hyperthermia (ILH)
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2.2 Fundamental differences between radiation therapy and light-based therapies

3. Dosimetry concepts for light-based therapies

3.1 Dose definitions
For any medical therapy, the preferred definition of "dose" is a measurable quantity directly
correlated with the desired biological or clinical outcome. In radiotherapy, this quantity is the
energy absorbed by the tissue, shown to correlate with the tissue’s response, and is possibly
modulated by various external and internal factors such as tissue hypoxia. While the sensi-
tivity of different tissues varies somewhat, the threshold to induce cell death varies by less
than a factor of 2. Because the attenuation of ionizing radiation in soft tissues is low and is a
function of its quantum energy, the energy density to be delivered can be directly calculated.
The dose definition is less clear for ILH and ILP due to the biological response to tempera-
ture increase and heat transfer: active, convection through the vascular system, or passive,
by diffusion. These two parameters depend on the extent of the vascular system, tissue den-
sity, and other structural tissue properties. For photodynamic therapy (PDT), owing to its
complex mechanism requiring a drug and molecular oxygen, different efficacy-determining
parameters apply. The dose definitions for these three therapies are further discussed below.

3.1.1 Interstitial Laser Photocoagulation (ILP) and Interstitial Laser Hyperthermia (ILH)
When describing photothermal applications such as ILP and ILH, the Bioheat Equation (Pennes,
1948) needs to be considered:

ρtct
∂T(�r, t)

∂t
= ∇(kt∇T(�r, t))− ωbcbρb(Tart(�r, t)− T(�r, t)) + S(�r, t) (2)

In Equation 2, S(�r, t) describes the heat source distribution as a function of space and time.
The resulting thermal energy distribution in the tissue, ∂T(�r, t)/∂t, is affected by the heat ca-
pacity of the vascular system cb and tissue ct, the thermal conductivity of the tissue kt, as well
as the general heat diffusion or blood perfusion rate ωb throughout the tissue. Other impor-
tant quantities include the density ρ and the temperature of the arterial blood Tart(�r, t). Note
that additional terms can be added to Equation 2 to account for other effects such as metabolic
heat generation and evaporation of water from the tissue. Equation 2 is sufficient for long
light exposure when a steady state of the heat distribution is achieved. For short exposure
time, and when using a pulsed light source, the actual damage for a given temperature is
better described by the Arrhenius Integral (Henriques Jr & Moritz, 1947), given in Equation
3, which also considers the tissue’s activation energy Eα, and tissue specific factors, A, tem-
perature, T, and universal gas constant, R. The thermal damage parameter, denoted Ω(�r, t)
[dimensionless], is a measure of the degree of thermal injury and is computed as follows:

Ω(�r, t) =

t∫

0

Ae
−Eα

RT(�r,t) dt (3)

Hence, accurate dosimetry for laser thermal therapies requires the knowledge of both the op-
tical properties (absorption coefficient µa and scattering coefficient µs) and thermal properties
(Eα) of tissue. Another significant complication is the temporal variation of these optical and
thermal parameters, such as through the thermal transition from normal to, for example, co-
agulated tissue. Hence, simulated annealing based optimizations would need to be executed
in a temporally resolved manner to account for such temporal variations in these thermal
therapies.
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Fig. 1. The photophysics, photochemistry, and photobiology of PDT. The symbol hν1 repre-
sents the incoming light, hν2 represents the fluorescence by the photosensitizer (PS), and hν3

is represents the singlet oxygen phosphorescence.

3.1.2 Interstitial Photodynamic Therapy (IPDT)
Before settling on a definition of dose for IPDT, one must understand the mechanism of its
therapeutic effect. Figure 1 shows the photophysical, photochemical, and photobiological
steps leading from the initial light absorption to cell apoptosis or tissue necrosis. The quan-
tum energy of a photon is absorbed by the photosensitizer (PS), lifting it into an electronic
excited singlet state. Photosensitizers have a high intersystem quantum yield, trapping them
for microseconds in the triplet state. Collisional exchange of spin and energy with ground
state molecular oxygen (3O2), which is a triplet, can result in highly reactive singlet oxygen
(1O2) and ground state PS. Singlet oxygen has a lifetime in the low nanoseconds in biologi-
cal systems and oxidizes lipids and proteins within its range indiscriminately (1T →

1TO∗).
Accumulation of oxidative damage disrupts normal cell function and triggers apoptosis or
necrosis. From this description, it should be clear that

1. Singlet oxygen is the main cytotoxic mediator of PDT-induced damage (Weishaupt
et al., 1976);

2. There are three main parameters that govern 1O2 production: light energy density, con-
centration and molar extinction coefficient of PS, and concentration of 3O2. Note that
all three parameters must be spatially and temporally co-localized.

Although 1O2 fulfills the requirement for an ideal dose metric by virtue of directly correlating
with the biological outcome, its quantification in vivo is very difficult and not currently feasible
for the desired interstitial applications. Its characteristic phosphorescence at 1270 nm has a
low quantum yield and there are few detectors with sufficient sensitivity at this wavelength.
The strategy, then, is to deduce 1O2 deposition based on the other PDT efficacy determining
parameters (i.e., light, PS, and oxygen). This approach is called explicit or extrinsic since [1O2] is
directly calculated based on the interactions of its precursors (Niedre et al., 2003). By contrast,
the implicit or intrinsic approach quantifies an interim photoproduct, the dynamics of which
is directly related to [1O2] and thus serves as a surrogate which implies the production of 1O2.
A possible interim photoproduct is the excited singlet state of the PS, quantified through its
fluorescence intensity (Pogue, 1994).

3.2 Light dosimetry models
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3.1.2 Interstitial Photodynamic Therapy (IPDT)

Among the explicit approaches to PDT dosimetry, one will find both empirical and analytical
models which aim to quantify the tissue response for a set of conditions. Empirical models
include the critical fluence model (Jankun et al., 2004) and the threshold model (Farrell et al.,
1998).

The critical fluence model defines the dose in terms of the light parameter alone; the quantity
of interest is the total fluence (in units of joules per unit area) delivered to the target. Details
on how this calculation is carried out will be explained in Section 3.2. When employing this
approach, one must assume that PS and 3O2 are present in unlimited quantities throughout
the target for the duration of irradiation.
In the threshold model, the dose definition is the number of photons absorbed by the pho-
tosensitizer per unit mass of tissue. Here, only ubiquitous molecular oxygen availability is
assumed. Information about the light distribution within and surrounding the target is com-
bined with information about the PS distribution, considering tissue specific responsivity.
Two analytical approaches include the 1O2 production (Zhu et al., 2007) and oxygen con-
sumption models (Wang et al., 2007), which solve a set of differential equations representing
the photophysical and photochemical reactions in PDT, assuming constant interaction coeffi-
cients.
Each of the models discussed above employs different definitions of dose and makes different
assumptions about the efficacy-determining parameters. The utility of each will depend on
the particular clinical problem. For clinical targets that are well-vascularized and confined
to surfaces (some examples include the skin, oesophagus, or bladder), one may confidently
apply the critical fluence or threshold model as the assumptions are likely justified. When
the target is a solid tumour in an enclosed site, such as the prostate (Aniola et al., 2003), or
a large, advanced tumour, these models are likely to fail. Solid tumours are known to have
hypoxic regions, and drug distribution within them is often heterogeneous (Di Paolo & Bocci,
2007). Furthermore, these deep-seated tumours require an interstitial approach to light deliv-
ery which will render treatment planning even more difficult. In spite of these known issues,
the prescribed dose used in the clinic remains the light energy density alone, due to limita-
tions in the current technical ability to collect all required data in a spatially resolved manner.
Typically, light energy density is calculated by applying the diffusion approximation to the
transport equation along with finite-element based methods and using population-averaged
tissue optical properties. These techniques are further detailed in Section 3.2. Optimizing con-
formal IPDT thus becomes an iterative process to attain the required minimum "dose" across,
preferably, the entire CTV without exceeding the maximum permissible dose for the OAR.
Minimization is executed in an N-dimensional parameter space comprising nominal (number
of optical fibres) and interval (length, orientation, emission profile, and total power delivered
for each fibre) data.

3.2 Light dosimetry models
With the exception of the oxygen consumption model in PDT, all other dose metrics require
knowledge of the light distribution or, more precisely, its propagation in tissue. Unlike ioniz-
ing radiation, two interaction coefficients - light scattering and absorption - need to be consid-
ered and their values are large (Cheong et al., 1990), leading to rather steep gradients of light
energy density. Additionally, there is a large difference in tissue optical properties between
organs and individuals, as is evident from the visible appearance of these organs. For most
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wavelengths of interest in IPDT, ILH, and ILP, the light scattering coefficient is larger than the
absorption coefficient and light transport follows the Boltzmann Transport equation. When
distal to boundaries and light sources, light transport can be well approximated by diffusion
theory.

3.2.1 Transport theory
Light has both wave-like and particle-like behaviours, and both treatments of it are widely
accepted among physical scientists. In tissue optics, it is often more useful to consider light in
terms of its particle-like properties owing to the heterogeneity in the coefficients of permittiv-
ity and permeability (ǫr, µr) within tissue. The quantities of interest, then, include

1. Photon distribution, N(�r, ŝ, t) with units [ 1
m3sr

], representing the number of photons
per unit volume propagating in the direction denoted ŝ within solid angle dω at position
�r at time t.

2. Radiance, L(�r, ŝ, t) = hνcN(�r, ŝ, t) with units [ W
m2sr

], where h is Planck’s constant, ν is
the frequency of light, and c is the speed of light. Note that the unit of radiance is the
power per unit area per steradian.

3. Fluence rate, φ(�r, t) =
∫

4π

L(�r, ŝ, t)dω with units [ W
m2 ], which is commonly used in tissue

optics as it can be readily measured.

There are two quantities used to describe scattering: the scattering coefficient, µs, and the
anisotropy, g ≡< cosθ >, where θ is the scattering angle (or deflection angle). µs is the
probability of a scattering event per unit length, while g describes the average cosine of the
scattering direction. Most tissues are forward-scattering and have g values of 0.9. These two
terms are often combined into the reduced scattering coefficient, µ′

s ≡ (1 − g)µs.
Absorption occurs when there is a match in energy between the incoming light and two elec-
tronic states of the chromophore upon which the light is incident. The absorption coefficient,
µa, is the probability of an absorption event per unit length. It is spectrally dependent for a
given chromophore, and for a given tissue may be represented as µa(λ) = ∑ ǫi(λi)Ci, where
ǫi and Ci are the extinction coefficient and concentration, respectively, for chromophore i in
the tissue.
The radiative transport equation (RTE) (Ishimaru, 1977) is a description of photon transport
through a medium, derived from conservation of energy:

∫

V

∂N

∂t
dV =

∫

V

q dV +
∫

V

vµs

∫

4π

p(ŝ′, ŝ)N dω′dV −

∮

S

vNŝn̂ dS −

∫

V

vµs N dV −

∫

V

vµaN dV (4)

The left-hand side of the equation represents the net change of photon distribution integrated
over a small volume V. The first two terms on the right-hand side of Equation 4 include a
source term (q = the number of photons emitted per unit volume, time, and steradian) and
another term describing any photons that are scattered from direction ŝ′ into the direction
of interest ŝ (where p(ŝ′, ŝ) is the scattering phase function and v is the speed of light in the
medium), respectively. The three loss terms are, from left to right, those photons lost to bound-
ary crossing (where S denotes the surface of the boundary and n̂ is the unit normal pointing
outwards), scattering out of the direction of interest, and absorption.

3.2.2 Finite-element method (FEM) based models
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3.2.1 Transport theory

The above equation can be re-written, in terms of the radiance, and without integrating over
volume:

1

v

∂L

∂t
= hνq + µs

∫

4π

p(ŝ′, ŝ)L dω′
− ŝ · ∇L − µsL − µaL (5)

There are only a few conditions for which an exact solution of Equation 5 is possible; therefore,
simplification of the RTE is necessary. The first-order diffusion approximation, developed
hereafter, is one such approach.
In this approach, the radiance, source term, and scattering function are expanded into a series
of spherical harmonics; the first-order diffusion approximation truncates the series at the first-
degree term. The radiance then becomes:

L(�r, ŝ, t) ≈
1

4π
φ(�r, t) +

3

4π
�F(�r, t) · ŝ (6)

where φ(�r, t) =
∫

4π

L(�r, ŝ, t)dω is the fluence rate in units of [W/m2], while�F(r, t)=
∫

4π

L(�r, ŝ, t)ŝdω

is the photon flux in units of [W/m2]. The first term on the right hand side is isotropic, and
the second is linearly anisotropic. Inserting Equation 6 into the RTE results in two coupled
equations:

(
1

v

∂

∂t
+ µa) φ +∇�F = q0 (7)

(
1

v

∂

∂t
+ µa + µ′

s)�F +
1

3
∇φ = �q1 (8)

Two assumptions are made at this point:

1. Sources are isotropic, i.e., the linearly anisotropic source term �q1 = 0.

2. Photon flux is in steady-state, i.e., ∂�F
∂t = 0

We are left with Fick’s Law:

�F = −
1

3(µa + µ′
s)
∇φ (9)

with diffusion coefficient D ≡
1

3(µa+µ′
s)

. This is substituted into Equation 7 to obtain the

Diffusion Equation:

1

v

∂φ(�r, t)

∂t
−∇D(�r)∇φ(�r, t) + µa(�r)φ(�r, t) = q0(�r, t) (10)

Since the assumption was made that sources are isotropic, diffusion theory may only be used
when µs’ is much larger than µa(a good rule of thumb is that µs’ > 10µa) or when the point of
interest is far (at least 1 mean free path, defined as 1/(µa + µ′

s) (Jacques & Pogue, 2008)) from
sources or boundaries. Small geometries are, therefore, excluded.

3.2.2 Finite-element method (FEM) based models
The finite-element method operates by first breaking the volume of interest into a mesh of dis-
crete elements. The diffusion equation is then solved over these discrete elements, assuming
a linear solution over the interpolation between nodes. FEM can handle heterogeneous tis-
sue optical properties and complex geometries, depending on the size of discretization. The
trade-off is the large amount of memory required, which will limit the mesh size, or number
of nodes (Davidson et al., 2009).
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3.2.3 Monte Carlo Method
The Monte Carlo (MC) method is a statistical sampling technique that has been widely applied
to a number of important problems in medical biophysics and many other fields, ranging from
photon beam modelling in radiation therapy treatment planning (Ma et al., 1999) to protein
evolution simulations in biology (Pang et al., 2005). The name Monte Carlo is derived from the
resort city in Monaco which is known for its casinos, among other attractions. As its name
implies, one of the key features of the MC method is the exploitation of random chance or
the generation of random numbers with a particular probability distribution to model the
physical process in question (Metropolis & Ulam, 1949). Since the MC method inherently
relies on repeated sampling to compute the quantity of interest, the development of the MC
method has parallelled the evolution of modern electronic computers. In fact, initial interests
in MC-based computations stemmed from von Neumann’s vision of using the first electronic
computer - the ENIAC (Goldstine & Goldstine, 1996) - for the modelling of neutron transport
(Metropolis, 1989), which was later adopted for the development of the atomic bomb in World
War II.
Despite the increased variety and sophistication of MC-based simulations today, most MC-
based models still retain the same essential elements, including the extensive use of random
numbers and repeated sampling. For example, in the case of photon transport, random num-
bers are used to determine the distance of photon propagation and the direction of scattering,
among other interactions. Each photon is tracked for hundreds of iterations and typically
thousands to millions of photons are required to accurately compute the quantity of interest,
such as the light dose distribution. Due to the large number of iterations required, different
variance reduction techniques (Kahn & Marshall, 1953) have been introduced to reduce the
number of samples required to achieve a similar level of statistical uncertainty or variance
in MC-based computations. Conversely, variation reduction schemes allow more equivalent
samples to be computed within the same amount of time. Unfortunately, the simulation time
remains high for solving complex optimization problems such as those for treatment planning,
which require many of these MC simulations (as shown earlier in Algorithm 1). To circum-
vent this obstacle, we propose a novel computational framework to make the MC method a
practical approach for light dosimetry in the next section.

4. Computational framework for light dosimetry

In biomedical optics, the MC method is considered the gold standard approach for model-
ing light transport in biological tissue due to its accuracy and flexibility in handling realistic
3-D geometry with heterogeneities in the light-tissue interaction coefficients. However, the
use of MC simulations in iterative optimization problems, such as treatment planning for
photodynamic therapy and other light-based therapies, has been hindered by its long com-
putation time (Luu, J. et al., 2009; Lo, W.C.Y. and Redmond, K. et al., 2009; Lo, W.C.Y. et al.,
2009). Hence, it is often replaced by diffusion theory, when homogeneous light-tissue inter-
action coefficients are assumed (Altschuler et al., 2005; Rendon, 2008), or diffusion theory in
combination with the finite element method (Davidson et al., 2009; Johansson et al., 2007).
Unfortunately, neither approach provides the flexibility desired for treatment planning. On
the other hand, the iterative nature of treatment planning within an N-dimensional parame-
ter space makes it infeasible for MC-based computation to become the core dose calculation
method in simulated annealing. Overcoming this computational burden is essential for the
clinical application of MC simulations and simulated annealing for treatment planning. In-
stead of using the traditional networked computer cluster approach, this section explores the

4.1 The MCML Algorithm
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3.2.3 Monte Carlo Method

4. Computational framework for light dosimetry
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Fig. 2. MC simulation of photon propagation in a skin model (λ=633 nm).

use of modern computer graphics processing units (GPUs) for acceleration. To demonstrate
the practicality of the GPU-based approach, a gold standard MC code package for modelling
light propagation in multi-layered biological media (called MCML) was implemented on mul-
tiple NVIDIA GPUs. The final implementation was validated using an optical skin model to
show the close correspondence between simulated isodose contours generated by the differ-
ent computational platforms.

4.1 The MCML Algorithm
The MCML algorithm (Wang et al., 1995) models steady-state light transport in multi-layered
turbid media using the MC method. The MCML implementation assumes infinitely wide
layers, each of which is described by its thickness and its optical properties, comprising the
absorption coefficient, scattering coefficient, anisotropy factor, and refractive index. A dia-
gram illustrating the propagation of photon packets in a multi-layered skin geometry (Tuchin,
1997) is shown in Figure 2, using ASAP (Breault Research Organization, Tucson, AZ) as the
MC simulation tool to trace the paths of photons (ASAP - Getting Started Guide, 2009).
In the MCML code, three physical quantities – absorption, reflectance, and transmittance – are
calculated in a spatially-resolved manner. Absorption is recorded in a 2-D absorption array
called A[r][z], which represents the photon absorption probability density [cm−3] as a func-
tion of radius r and depth z for a point source impinging on the tissue. Absorption probability
density can be converted into more commonly used quantities in treatment planning such as
photon fluence (measured in cm−2 for the impulse response of a point source). Fluence can
be obtained by dividing the absorption probability density by the local absorption coefficient.
To model finite-sized sources, the photon distribution obtained for the impulse response can
be convolved with tools such as the CONV program (Wang et al., 1997).
The simulation of each photon packet consists of a repetitive sequence of computational steps
and can be made independent of other photon packets by creating separate absorption ar-
rays and decoupling random number generation for each group using different seeds. There-
fore, a conventional software-based acceleration approach involves processing multiple pho-
ton packets simultaneously on multiple processors. Figure 3 shows a flow chart of the key
steps in an MCML simulation, which includes photon initialization, position update, direc-
tion update, fluence update, and photon termination. Further details on each computational
step may be found in the original papers by Wang et al.
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Fig. 3. Left: Flow-chart of the MCML algorithm. Right: Simplified representation used in
subsequent sections.

4.2 Programming Graphics Processing Units with CUDA
The rapid evolution of GPUs and recent advances in general-purpose GPU computing have
prompted the use of GPUs for accelerating scientific applications, including time-consuming
MC simulations. This section introduces the key terminology for understanding graphics
processing hardware, which was instrumental to the successful acceleration of the MCML
code. Similarly, for other related applications, this learning curve is required to fully utilize
this emerging scientific computing platform.
GPU-accelerated scientific computing is becoming increasingly popular with the release of an
easier-to-use programming model and environment from NVIDIA (Santa Clara, CA), called
CUDA, short for Compute Unified Device Architecture (CUDA Programming Guide 2.3, 2009).
CUDA provides a C-like programming interface for NVIDIA GPUs and it suits general-purpose
applications much better than traditional GPU programming languages. While some accel-
eration compared to the CPU is usually easily attainable, full performance optimization of a
CUDA program requires careful consideration of the GPU architecture.

4.2.1 NVIDIA GPU Architecture
The underlying hardware architecture of a NVIDIA GPU is illustrated in Figure 4 (CUDA Pro-
gramming Guide 2.3, 2009), showing both a unique processor layout and memory hierarchy.
Using the NVIDIA GeForce GTX 280 GPU as an example, there are 30 multiprocessors, each
with 8 scalar processors (SPs). Note that the 240 SPs (total) do not represent 240 independent
processors; instead, they are 30 independent processors that can perform 8 similar computa-
tions at a time. From the programmer’s perspective, computations are performed in parallel

4.2.2 Atomic Instructions

4.2.3 Related Work
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by launching multiple threads, each containing a parallel unit of work. For example, a thread
can simulate a group of photon packets in the MCML algorithm.
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Fig. 4. Simplified representation of the NVIDIA GPU architecture for GTX 280

Second, the programmer must understand the different layers or types of memory on the
GPU, due to the significant differences in memory access time. The outermost layer, which
is also the largest and slowest (with a latency of up to 600 clock cycles), is the off-chip device
memory (also known as global memory). Closer to the GPU are various kinds of fast, on-chip
memories, including registers with typically a single clock cycle of access time, shared memory
at close to register speed, and a similarly fast cache for constant memory. On-chip memories
are roughly a hundred times faster than the off-chip memory; however, their storage space
is limited. Finally, there is a region in device memory called local memory for storing large
data structures, such as arrays, which cannot be mapped into registers by the compiler. As
a result, it is important to map the computation efficiently to the different types of memories
(e.g., depending on the frequency of memory accesses for different variables) to attain high
performance.

4.2.2 Atomic Instructions
CUDA also provides a mechanism to synchronize the execution of threads using atomic in-
structions, which coordinate sequential access to a shared variable (such as the absorption
array in the MCML code). Atomic instructions guarantee data consistency by allowing only
one thread to update the shared variable at any time; however, in doing so, it stalls other
threads that require access to the same variable. As a result, atomic instructions can give rise
to performance bottlenecks. The cconcept of atomicity is illustrated in Figure 5.

4.2.3 Related Work
Previous attempts to use GPUs for MC-based photon simulations include the work by Aler-
stam et al., who reported ∼1000x speedup on the NVIDIA GeForce 8800GT graphics card com-
pared to an Intel Pentium 4 processor. Their implementation simulates time-resolved photon
migration (for photon time-of-flight spectroscopy) in a homogeneous, semi-infinite geometry
(Alerstam et al., 2008). Fang et al. recently reported a GPU implementation of the tMCimg
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Fig. 5. Concept of an atomic access represented by a funnel: as thread 3 is accessing the
absorption array, threads 1 and 2 must wait. Atomic instructions can cause bottlenecks in a
computation, especially with thousands of threads common in GPU programming.

code for modelling 3-D voxelized geometry, with a speedup of 300x (without using atomic
instructions to ensure data consistency) on the 8800GT graphics card compared to a 1.86GHz
Xeon processor (Fang & Boas, 2009). However, the speedup dropped to 75x, or 4 times slower,
when atomic instructions were used to guarantee data consistency. Note that one difference
between the implementations from these two groups is that Alerstam et al. only used a 1-D
vector output (for a time-of-flight histogram with 201 bins), while Fang et al. required a much
larger 3-D matrix that needs to be accessed atomically. One could argue that inconsistencies or
errors due to non-atomic memory access will only significantly affect the high-fluence region
close to the light sources and hence are of little consequence in the critical fluence and thresh-
old models. However, when considering the high photodynamic consumption of oxygen in
the high-fluence region, and the resulting PDT-induced hypoxia, a "low dose" region would
paradoxically be formed. As a result, for expanded PDT dose distributions, the assumption
may not hold true and errors due to non-atomic data accesses can have severe consequences
for treatment planning.
This work proposes a different approach to handle the inefficiency in the use of atomic in-
structions for large 2-D and 3-D result matrices, and addresses the question of how various
optimizations can dramatically affect the performance of MC-based simulations for photon
migration on NVIDIA GPUs. The final, optimized implementation was also extended to sup-
port multiple GPUs to show the possibility of using a cluster of GPUs for complex inverse
problems which may require additional computational resources.

4.3 GPU-accelerated MCML Code

4.3.1 Implementation Overview

4.3.2 Key Performance Bottleneck
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4.3 GPU-accelerated MCML Code
In this section, the implementation details of the GPU-accelerated MCML program (named
GPU-MCML) are presented, showing how a high level of parallelism is achieved, while avoid-
ing memory bottlenecks caused by atomic instructions and global memory accesses. The opti-
mization process is described to summarize the challenges encountered before arriving at the
final solution. This may assist other investigators in related efforts since the MC method is
widely applied in computational biophysics and most MC simulations share a set of common
features.

4.3.1 Implementation Overview
One difference between writing CUDA code and writing a traditional C program (for sequen-
tial execution on a CPU) is the need to devise an efficient parallelization scheme for the case of
CUDA programming. Although the syntax used by CUDA is in theory very similar to C, the
programming approach differs significantly. Figure 6 shows an overview of the parallelization
scheme used to accelerate the MCML code on the NVIDIA GPU. Compared to serial execution
on a single CPU where only one photon packet is simulated at a time, the GPU-accelerated
version can simulate many photon packets in parallel using multiple threads executed across
many scalar processors. Note that the total number of photon packets to be simulated are split
equally among all created threads.
The GPU program or kernel contains the computationally intensive part or the key loop in the
MCML simulation (represented by the position update, direction update, and fluence update
loop in the figure). Other miscellaneous tasks, such as reading the simulation input file, are
performed on the host CPU. Each thread executes a similar sequence of instructions, except
for different photon packets simulated based on a different random number sequence.
In the current implementation, the kernel configuration is specified as 30 thread blocks (Q=30),
each containing 256 threads (P=256). As shown in Figure 6, each thread block is physically
mapped onto one of the 30 multiprocessors and the 256 threads interleave their execution on
the 8 scalar processors within each multiprocessor. Increasing the number of threads helps to
hide the global memory access latency. However, this also increases competition for atomic
access to the common A[r][z] array. Therefore, the maximum number of threads, which is 512
threads per thread block on the graphics cards used in this work, was not chosen. A lower
number would not be desirable since more than 192 threads are required to avoid delays
in accessing a register (due to potential register read-after-write dependencies and register
memory bank conflicts (CUDA Programming Guide 2.3, 2009)). A similar reasoning applies to
the number of thread blocks chosen. A lower number than 30 thread blocks would under-
utilize the GPU computing resources since there are 30 multiprocessors available. A larger
number, such as 60 thread blocks, would decrease the amount of shared memory available for
caching and also increase competition for access to the A[r][z] array. The need to alleviate the
competition for atomic access is discussed in detail next.

4.3.2 Key Performance Bottleneck
To understand further why atomic accesses to the A[r][z] array could become a key per-
formance bottleneck, notice that all threads add to the same absorption array in the global
memory during the fluence update step. In CUDA, atomic addition is performed using the
atomicAdd instruction. However, using atomicAdd instructions to access the global mem-
ory is particularly slow, both because global memory access is a few orders of magnitude
slower than that of on-chip memories and because atomicity prevents parallel execution of
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Fig. 6. Parallelization scheme of the GPU-accelerated MCML code (Q=30 and P=256 for each
GPU). Note the mapping of the threads to the GPU hardware. In general, this is a many-to-one
mapping.

the code (by stalling other threads in the code segment where atomic instructions are located).
This worsens with increasing number of threads due to the higher probability of simultaneous
access to an element, also known as contention.
Note that although the A[r][z] array could, in theory, be replicated per thread to completely
avoid atomic instructions, this approach is limited by the size of the device memory and
would not be feasible in the general 3-D case with much larger absorption arrays. Therefore,
a more general approach was explored to solve this performance problem.

4.3.3 Solution to Performance Issue
To reduce contention and access time to the A[r][z] array, two memory optimizations, caching
in registers and shared memory, were applied.
The first optimization is based on the idea of storing the recent write history, representing
past absorption events, in temporary registers to reduce the number of atomic accesses to the
global memory. It was observed that consecutive absorption events can happen at nearby, or
sometimes the same, locations in the A[r][z] array, depending on the absorption grid geom-
etry and optical properties of the layers. Since the number of registers is limited, in the final
solution, only the most recent write history is stored in 2 registers – one for the last memory
location and one for the total accumulated weight. In each thread, consecutive writes to the
same location of the A[r][z] array are accumulated in these registers until a different memory
location is computed. Once a different location is detected, the total accumulated weight in
the temporary register is flushed into the global memory using an atomicAdd operation and
the whole process is repeated.
The second optimization, illustrated in Figure 6, is based on the high event rate, and hence
memory access rate, for the A[r][z] elements near the photon source (or at the origin in the
MCML model), causing significant contention when atomic instructions are used. Therefore,
the region of the A[r][z] array near the source is cached in the shared memory. This optimiza-
tion has two significant implications. First of all, contention in the most competitive region

4.3.4 Other Key Optimizations

4.3.5 Scaling to Multiple GPUs
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4.3.3 Solution to Performance Issue

of the A[r][z] array is reduced by up to 30-fold since the shared memory copy of the array
is updated atomically by only 256 threads within each thread block instead of 7680 threads
across 30 blocks. Second of all, accesses to the shared memory are ∼100-fold faster than those
to the global memory. Together, these two factors explain the significant improvement in
performance (∼2x) observed after this optimization. (Note that the 3000-fold improvement
suggested earlier is an optimistic upper bound estimate and is not likely attainable due to the
small size of the shared memory and other technical limitations such as shared memory bank
conflicts.)
To store as many elements near the photon source as possible in the shared memory, the size
of each element in the A[r][z] array was reduced to 32 bits (as opposed to 64 bits for the master
copy in the global memory). Given the size of the shared memory is 16 kB, 3584 32-bit ele-
ments can be cached compared to only 1792 elements if 64-bit elements were used (3584 x 32
bits or 4 bytes = 14 kB, with the remaining shared memory space allocated elsewhere). How-
ever, this reduction also causes a greater risk of computational overflow, which occurs when
the accumulated value exceeds ∼232 (instead of ∼264 in the 64-bit case). To prevent overflow,
the old value is always checked before adding a new value. If overflow is imminent, the value
is flushed to the absorption array in global memory, which still uses a 64-bit integer represen-
tation. From this calculation, it also becomes evident that 32-bit shared memory entries may
not be optimal for 3D applications and 16 bits may be preferable to better cover the larger high
access volume.
As an additional optimization technique to avoid atomic access, in the GPU version, pho-
ton packets at locations beyond the coverage of the absorption grid no longer accumulate
their weights at the perimeter of the grid, unlike in the original MCML code. Note that these
boundary elements were known to give invalid values in the original MCML code (Wang
et al., 1995). This optimization does not change the correctness of the simulation, yet it ensures
that performance is not degraded if the size of the detection grid is decreased, which forces
photon packets to be absorbed at boundary elements (significantly increasing contention and
access latency to these elements in the A[r][z] array).

4.3.4 Other Key Optimizations
Another major problem with the original MCML code for GPU-based implementation is its
abundance of branches (e.g., if statements), leading to significant code divergence. In the
CUDA implementation, the function for computing the internal reflectance and determining
whether a photon packet is transmitted or reflected at a tissue interface was significantly re-
structured to remove or to reduce the size of a large number of branches.
Finally, this implementation also includes a number of other optimizations, such as using
GPU-intrinsic math functions (namely __sincosf(x) and __logf(x)), reducing local memory us-
age by expanding arrays into individual elements, and storing read-only tissue layer specifi-
cations in constant memory.

4.3.5 Scaling to Multiple GPUs
To scale the single-GPU implementation to multiple GPUs, multiple host threads were cre-
ated on the CPU side to simultaneously launch multiple kernels, to coordinate data transfer
to and from each GPU, and to sum up the partial results generated by the GPUs for final out-
put. The same kernel and associated kernel configuration were replicated N times where N
is the number of GPUs, except that each GPU initializes a different set of seeds for the ran-
dom number generator and declares a separate absorption array. This allows the independent
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simulation of photon packets on multiple GPUs, similar to the approach taken in CPU-based
cluster computing.

4.4 Performance
The execution time of the GPU-accelerated MCML program (named GPU-MCML) was first
measured on a single GPU — the NVIDIA GTX 280 graphics card — with 30 multiprocessors.
The code was migrated to a Quad-GPU system consisting of two NVIDIA GTX 280 graphics
cards and a NVIDIA GTX 295 graphics card with 2 GPUs. This Quad-GPU system contains
a total of 120 multiprocessors. The final GPU-MCML was compiled using the CUDA Toolkit
and was tested in both a Linux and Windows environment. The number of GPUs used can be
varied at run-time and the simulation is split equally among the specified number of GPUs.
For baseline performance comparison, a high-performance Intel Xeon processor (Xeon 5160)
was selected. The original, CPU-based MCML program (named here CPU-MCML) was com-
piled with the highest optimization level (gcc -O3 flag) and its execution time was measured
on one of the two available cores on the Intel processor.

4.4.1 Skin Model
For performance comparison, a seven-layer skin model at λ=600 nm (shown in Table 1) (Meglin-
sky & Matcher, 2001) was used. Table 2 shows the execution time of the GPU-MCML program
as the number of GPUs was increased. In all cases, the kernel configuration for each GPU was
fixed at 30 thread blocks, each with 256 threads. Using one GTX 280 graphics card or 1 GPU
with 30 multiprocessors (which contain a total of 240 scalar processors), the speedup was 309x
when absorption, reflectance, and transmittance were recorded. The speedup increased to 483
x when absorption was not recorded. Using all 4 GPUs or equivalently 960 scalar processors,
the simulation time for 50 million photon packets in the skin model was reduced from approx-
imately 3 h on an Intel processor to only 9.7 s on 4 GPUs. This represents an overall speedup
of 1101x ! When only reflectance and transmittance were recorded, the simulation took 5.9 s
(1810x) ! Note that the overhead of synchronization between the GPUs and the summation of
the partial simulation results would not be noticeable with larger simulation runs.

Layer n µa (cm−1) µs (cm−1) g Thickness (cm)

1. stratum corneum 1.53 0.2 1000 0.9 0.002
2. living epidermis 1.34 0.15 400 0.85 0.008
3. papillary dermis 1.4 0.7 300 0.8 0.01
4. upper blood net dermis 1.39 1 350 0.9 0.008
5. dermis 1.4 0.7 200 0.76 0.162
6. deep blood net dermis 1.39 1 350 0.95 0.02
7. subcutaneous fat 1.44 0.3 150 0.8 0.59

Table 1. Tissue optical properties of a seven-layer skin model (λ=600 nm).

4.5 Validation
Figure 7 shows the simulated fluence distribution after launching 107 photon packets in the
skin model shown in Table 1. The outputs produced by the GPU-MCML and CPU-MCML
programs match very well. To further quantify any potential error introduced in the imple-

5. Current challenges
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4.4 Performance

4.4.1 Skin Model

4.5 Validation

Number of GPUs Platform Configuration Time (s) Speedup
1 GTX 280 34.6 (22.1) 309x (483x)
2 2 x GTX 280 17.5 (11.3) 610x (945x)
3 1 x GTX 280 + GTX 295 (2 GPUs) 12.7 (7.6) 841x (1405x)
4 2 x GTX 280 + GTX 295 (2 GPUs) 9.7 (5.9) 1101x (1810x)

Table 2. Speedup as a function of the number of GPUs for simulating 5x107 photon packets
in a skin model (λ=600 nm). Baseline (1x) execution time on the Intel Xeon CPU was 10680 s
or ∼3 h. Values in brackets were generated without tracking absorption; only reflectance and
transmittance were recorded.
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Fig. 7. Logarithm of simulated fluence distribution in the skin model (107 photon packets) for
the impulse response: (a) generated by GPU-MCML, (b) generated by CPU-MCML.

mentation, the relative error E[ir][iz] is computed for each voxel using Equation 11.

E[ir][iz] =
|Agpu[ir][iz]− Acpu[ir][iz]|

Acpu[ir][iz]
(11)

where Acpu is the gold standard absorption array produced by the CPU-MCML software
while Agpu contains the corresponding elements produced by the GPU-MCML program.
Figure 8 plots the relative error as a function of position, showing that the differences observed
are within the statistical uncertainties between two simulation runs of the gold standard CPU-
MCML program using the same number of photon packets.

5. Current challenges

The current challenges in this field mainly arise from the complexity of light-tissue interac-
tion and that of the implementation of full 3D models in hardware. The complicated interac-
tions among light treatment parameters - namely the light fluence rate, photosensitizer, and
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Fig. 8. Distribution of relative error for the skin model (107 photon packets): (a) GPU-MCML
vs. CPU-MCML, (b) CPU-MCML vs. CPU-MCML. Colour bar represents percent error from
0% to 10%.

ground-state oxygen for IPDT or light absorption and bioheat equation for ILH and ILP -
clearly indicate that a solely light-based approach to treatment planning and monitoring of
delivered dose will be insufficient in attaining the best achievable clinical outcome, particu-
larly in cases of tissue hypoxia, heterogeneity in photosensitizer concentration, heterogeneity
in tissue optical properties, or presence of major vessels. In ILP and ILH, major vessels will
result in significant local heat convection. Conversely, the characteristic leakiness of the tu-
mour blood vessels plays a part in the preferential accumulation of PS in the tumour, and
their characteristic tortuosity leads to hypoxic or anoxic regions, resulting in poor PDT effi-
cacy. Additionally, over the course of an IPDT treatment, there will be events such as photo-
sensitizer photobleaching, vascular shutdown, oxygen depletion, or inflammation, which will
affect PDT efficacy. These complications are driving technical advances in monitoring one or
more of the three efficacy-determining parameters: fluence rate, concentration of photosensi-
tizer, and tissue pO2. Ideally, treatment monitoring devices would capture the dynamics of
the photochemical reactions and the spatial heterogeneities as dictated by the anatomy and
physiology of the target. The desired spatial sampling of the light fluence rate will be on the
order of µe f f , approximately 4 cm−1. For PDT, temporally, a relatively low sampling rate,
around 0.03 Hz, is sufficient to capture the changes in tissue optical properties due to vascular
events such as inflammation or thrombus formation which occur on the order of minutes. For
ILP in particular, a sampling rate closer to 1 Hz may be required. The spatial distribution of
the photosensitizer will depend on its delivery via the vasculature; for an intercapillary dis-
tance of 100 µm, one would want at least 2 samples per 100 µm, or 0.02 µm−1. Photobleaching
will affect the temporal variation in [PS]; thus, sampling at 0.05 Hz is desired, based on re-
ported rates of photobleaching in vitro (Kruijt et al., 2009). No such monitoring is required
for ILP and ILH. As for the photosensitizer, availability of molecular oxygen is dependent on

6. Future direction: Real-time, adaptive treatment planning

7. Acknowledgements
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the vasculature - spatially 0.02 µm−1 is the approximate sampling resolution goal. For a PDT
consumption rate of 30 µMs−1, a temporal sampling rate of 0.08 Hz is required.
While it is possible to monitor these quantities at selected points using implanted optical sen-
sors, there is a limit on the number of fibres which can be inserted and thus a limit on the
spatial resolution of treatment monitoring; the volume will be under-sampled, and means to
extrapolate the desired quantity to the entire volume are required. These dynamic changes in
the CTV and the OAR need to be considered and the treatment plan should be re-adjusted in
real time, as discussed further in Section 6. In terms of the hardware implementation of the
complete computational framework, memory access time is currently an important consider-
ation for real-time treatment planning. This problem is exacerbated in 3D treatment planning,
and it needs to be addressed.

6. Future direction: Real-time, adaptive treatment planning

With the rapid improvement of GPU hardware and the release of the next-generation Fermi
GPU architecture for general-purpose computing, GPU-based, real-time treatment planning
may soon become a reality. In particular, the new Fermi GPU architecture from NVIDIA
features a new memory/cache architecture that offers better memory access time, including
faster atomic accesses which are especially important for 3D treatment planning. The dramatic
reduction in treatment planning time potentially accomplished by a GPU cluster may, in the
future, enable real-time adaptive treatment planning based on the most recent dose param-
eters obtained from the treatment volume. Currently, pretreatment models assume constant
values for tissue optical properties based on population-averaged historical data and ignore
the dynamic nature of tissues over the course of the therapy, which directly affects treatment
outcomes in interstitial light therapies, especially for ILH and ILP. The implications of real-
time dosimetry on the parameter space for optimization are also important. For example,
the post-implantation constraints in the optical fibre positions would result in a more con-
fined search space, making simulated annealing an even more attractive approach. From the
original N-dimensional search space, only the total power per optical source fibre would re-
main. However, time-dependent changes in light-tissue interaction parameters and treatment
efficacy determining coefficients require frequent execution of the algorithm. Considering a
typical PDT treatment lasts 10 to 60 minutes, a temporal resolution of ∼5 seconds can be set
for real-time computation as an initial research goal. Finally, to realize the full potential of real-
time treatment planning, there is a need for more comprehensive dosimetry models that take
into account not only physical parameters, but also biological parameters, possibly through
real-time treatment monitoring. As we move towards conformal interstitial light therapies
with the development of a real-time computational framework for treatment planning, (Lo,
W.C.Y. et al., 2010) simulated annealing will likely become an indispensable tool for exploring
the increasingly sophisticated landscape of optimization.
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The GPU implementation described in this chapter has been integrated with the CUDAM-
CML software (Alerstam et al.). The most updated source code and documentation can be
downloaded from http://code.google.com/p/gpumcml/
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