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1. Introduction 

Using Laplace-Hankel integral transformations, transient closed-form solutions of the 
thermally induced ground surface displacements, excess pore water pressure and 
temperature increment due to an instantaneous point heat source buried in an isothermal 
permeable half space are presented and discussed. The basic formulations of the governing 
equations are on the basis of Biot’s three-dimensional consolidation theory of porous media.  
Numerical results show that the maximum ground surface horizontal displacement is 
around 38.5% of the maximum ground surface vertical displacement.  The study concludes 
that the thermally induced horizontal displacement is significant. The solutions can be used 
to test numerical models and numerical simulations of the thermoelastic processes near the 
heat sources. 
Heat source buried in the stratum leads to thermo-mechanical responses of fluid saturated 
porous medium.  The heat source such as a canister of radioactive waste can cause 
temperature rise in the soil. The solid skeleton and pore fluid expand due to the heat source, 
and the volume increase of pore fluid is greater than that of the voids of solid matrix.  This 
leads to an increase in pore fluid pressure and a reduction in effective stress.  Therefore, 
thermal failure of soil will occur as a result of losing shear resistance due to the decrease in 
effective stress. 
Attention is focused on the analytical solutions of the transient thermoelastic responses of an 
isotropic stratum due to an instantaneous point heat source.  The responses of the stratum 
were satisfactorily modeled by assuming it as a thermoelastic porous continuum (Booker & 
Savvidou, 1985).  It suggested that linear theory was adequate for a repository design based 
on technical conservatism. For example, Hueckel and Peano (1987) indicated that European 
guidelines require that temperature increments in the soil close to the heat source should not 
exceed 80C while the temperature increments at the ground surface are limited to less than 
1C. Given these modest temperature increments, Hollister et al. (1981) observed that any 
significant non-linear behavior and/or plastic deformation of the soil would be confined to a 
relatively small volume of soil around the waste canister itself. In this case, a linear model 
can provide a reasonable approximation to the assessment of a proposed design (Smith & 
Booker, 1996).  Hudson et al. (2005) given advices on how to incorporate thermo-hydro-
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mechanical coupled processes into performance and safety assessments and design studies 
for radioactive waste disposal in geological formations. 
Governing equations of a fluid-saturated poroelastic solid in an isothermal quasi-static state 
were developed by Biot (1941, 1955). Lu and Lin (2006) displayed transient ground surface 
displacement produced by a point heat source/sink through analog quantities between 
poroelasticity and thermoelasticity. Booker and Savvidou (1984, 1985), Savvidou and Booker 
(1989) derived an extended Biot theory including the thermal effects and presented solutions 
of thermo-consolidation around the spherical and point heat sources.  In their solutions, the 
isotropic or transversely isotropic flow properties are considered, whereas the isotropic 
elastic and thermal properties of the soils are introduced. 
Based on Biot’s three-dimensional consolidation theory of porous media, analytical 
solutions of the transient thermo-consolidation deformation due to a point heat source of 
constant strength buried in a saturated isotropic poroelastic half space were presented by Lu 
and Lin (2007).  In this paper, instantaneous point heat source induced transient ground 
surface displacements are derived by using Laplace-Hankel integral transforms. The soil 
mass is modeled as a homogeneous isotropic saturated elastic half space of porous medium.  
Case of isothermal permeable half space boundary is investigated.  Results are illustrated 
and compared to provide better understanding of the time dependent thermoelastic 
responses due to an instantaneous point heat source. The solutions can be used to test 
numerical models and the detailed numerical simulations of the thermoelastic processes 
near the buried heat sources. 

 
2. Mathematical Model 

2.1 Basic Equations 
Figure 1 shows an instantaneous point heat source buried in a saturated porous stratum at 
depth h . The porous soil mass is considered as a homogeneous isotropic thermoelastic half 
space.  The constitutive behaviours of the elastic soil skeleton are presented as: 
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Here, ij , ij  and   are the total stress components, strain components and temperature 
increment measured from the reference state of the porous medium, respectively;   is the 
volume strain of the porous medium; ij  is the Kronecker delta.  The excess pore water 
pressure p  is positive for compression.  The constants  , G  and s  are Poisson’s ratio, 
shear modulus, and linear thermal expansion coefficient of the skeletal materials, 
respectively. 
The strains ij  and displacement components iu  are given by the linear law: 
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Fig. 1. Instantaneous point heat source buried in a homogeneous poroelastic half space 
 
The total stress components satisfy the following equilibrium equations: 
 
 , 0  ij j ib , (3) 
 
where ib  denote the body forces. From Eqs. (1) and (2), the equilibrium equations (3) for 
axially symmetric problem without body forces ib  can be expressed in terms of 
displacements iu , excess pore water pressure p  and temperature change   of the 
thermoelastic half space in cylindrical coordinates  , ,r z  as below: 
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where the volume strain of the porous medium   can be denoted as 

,r r zu r u r u z         while the Laplacian operator 2 2 2 2 21r r r z          . 
According to Darcy’s law, the governing equation of the conservation of mass can be 
expressed as 
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where k  and n  are the permeability and porosity of the porous medium, respectively;   
and w  are the compressibility and unit weight of pore water, respectively; 

 1u s wn n     , in which w  is the coefficient of linear thermal expansion of the pore 
water. 
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mechanical coupled processes into performance and safety assessments and design studies 
for radioactive waste disposal in geological formations. 
Governing equations of a fluid-saturated poroelastic solid in an isothermal quasi-static state 
were developed by Biot (1941, 1955). Lu and Lin (2006) displayed transient ground surface 
displacement produced by a point heat source/sink through analog quantities between 
poroelasticity and thermoelasticity. Booker and Savvidou (1984, 1985), Savvidou and Booker 
(1989) derived an extended Biot theory including the thermal effects and presented solutions 
of thermo-consolidation around the spherical and point heat sources.  In their solutions, the 
isotropic or transversely isotropic flow properties are considered, whereas the isotropic 
elastic and thermal properties of the soils are introduced. 
Based on Biot’s three-dimensional consolidation theory of porous media, analytical 
solutions of the transient thermo-consolidation deformation due to a point heat source of 
constant strength buried in a saturated isotropic poroelastic half space were presented by Lu 
and Lin (2007).  In this paper, instantaneous point heat source induced transient ground 
surface displacements are derived by using Laplace-Hankel integral transforms. The soil 
mass is modeled as a homogeneous isotropic saturated elastic half space of porous medium.  
Case of isothermal permeable half space boundary is investigated.  Results are illustrated 
and compared to provide better understanding of the time dependent thermoelastic 
responses due to an instantaneous point heat source. The solutions can be used to test 
numerical models and the detailed numerical simulations of the thermoelastic processes 
near the buried heat sources. 

 
2. Mathematical Model 

2.1 Basic Equations 
Figure 1 shows an instantaneous point heat source buried in a saturated porous stratum at 
depth h . The porous soil mass is considered as a homogeneous isotropic thermoelastic half 
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where k  and n  are the permeability and porosity of the porous medium, respectively;   
and w  are the compressibility and unit weight of pore water, respectively; 

 1u s wn n     , in which w  is the coefficient of linear thermal expansion of the pore 
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For an instantaneous point heat source of strength 0Q  buried at point  0,h , the uncoupled 
governing equation in axially symmetry is obtained from the conservation of energy and 
heat conduction law as following: 
 

      2 0 0
2t
Qm r z h t

t r
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in which t  is the heat conduction coefficient of the porous stratum; the symbol 

 1 s s w wm n c n c    , sc  and wc  are the specific heats of the skeletal materials and pore 

water, while s , w  are their densities, respectively;  r  or  t  is Dirac delta function.  
Eqs. (4a), (4b), (5) and (6) constitute the basic governing equations of the time-dependent 
axially symmetric thermoelastic responses of a saturated porous medium. 

 
2.2 Boundary Conditions and Initial Conditions 
The half space surface, 0z  , is treated as a traction-free, isothermal and permeable 
boundary for all time 0t  .  Its mathematical statements of the boundary conditions are: 
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It’s reasonable to assume that the instantaneous point heat source has no effect on the far 
boundary at z   for all time.  Hence 
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Assuming no initial change in displacements, temperature increment and seepage for the 
poroelastic medium, then the initial conditions at time 0t   of the mathematical model due 
to an instantaneous point heat source can be treated as: 
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The transient ground surface displacements can be derived from the differential equations 
(4a), (4b), (5) and (6) corresponding with the boundary conditions at 0z  , z  , and 
initial conditions at time 0t  . 

 
3. Analytic Solutions 

3.1 Laplace-Hankel Transformations 
Applying initial conditions of Eq. (8), the governing partial differential equations (4a), (4b), 
(5) and (6) are reduced to ordinary differential equations by performing appropriate 
Laplace-Hankel transforms (Sneddon, 1951) with respect to the time variable t  and the 
radial coordinate r : 
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where   and s  are Hankel and Laplace transform parameters, respectively; 

   1 1 2     ; and the symbols ru , zu , p ,   are defined as: 
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in which  J x  represents the first kind of Bessel function of order  . 
The general solutions of equations (9a)-(9d) are obtained as below: 
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For an instantaneous point heat source of strength 0Q  buried at point  0,h , the uncoupled 
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   1 1 2     ; and the symbols ru , zu , p ,   are defined as: 
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in which  J x  represents the first kind of Bessel function of order  . 
The general solutions of equations (9a)-(9d) are obtained as below: 
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in which 
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where a b cc c c   and 
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The constants  1, 2, , 8iA i    in Eqs. (11a)-(11d) are functions of the transformed variables 
  and s  which must be determined from the transformed mechanical, flow and thermal 
boundary conditions.  The upper and lower signs in equation (11b) are for the conditions of 
  0z h   and   0z h  , respectively. 

 
3.2 Transformed Boundary Conditions 
Taking Laplace-Hankel transforms for the boundary conditions at 0z  , the Eq. (7a), yields 
the transformed boundary conditions as following: 
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  0; , 0p s  , and  0; , 0s   . (14a) 
 
In this manipulation, the boundary conditions at z   are used to perform the integral 
transformations as below: 
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Here, ru , zu , p  and   follow the definitions of Eqs. (10a)-(10d). 
The constants  1, 2, , 8iA i    of the general solutions can be determined by the 
transformed half space boundary conditions at 0z   and the remote boundary conditions at 
z  .  Finally, the desired quantities ru , zu , p  and   are obtained by applying 

appropriate inverse Laplace-Hankel transformations with the help of mathematical 
handbook (Erdelyi et al., 1954). 

 
3.3 Expressions for Ground Surface Displacements 
The study is focused on horizontal and vertical displacements of the ground surface, 0z  , 
due to an instantaneous point heat source.  The transformed transient ground surface 
displacements  0; ,ru s  and  0; ,zu s  due to an instantaneous point heat source are 
derived from the transformed general solutions (11a)-(11b) and mechanical boundary 
conditions at 0z   and z  , the Eqs. (14a)-(14b), as below: 
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The Laplace-Hankel inversion formulae for displacements are defined as following: 
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Using integral transform handbook (Erdelyi et al., 1954) and integral inversions listed in Eqs. 
(16a)-(16b), the transient horizontal displacement  ,0,ru r t  and vertical displacement 

 ,0,zu r t  of the ground surface due to an instantaneous point heat source of strength 0Q  are 
obtained as follows: 
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in which 
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where a b cc c c   and 
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The constants  1, 2, , 8iA i    in Eqs. (11a)-(11d) are functions of the transformed variables 
  and s  which must be determined from the transformed mechanical, flow and thermal 
boundary conditions.  The upper and lower signs in equation (11b) are for the conditions of 
  0z h   and   0z h  , respectively. 

 
3.2 Transformed Boundary Conditions 
Taking Laplace-Hankel transforms for the boundary conditions at 0z  , the Eq. (7a), yields 
the transformed boundary conditions as following: 
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  0; , 0p s  , and  0; , 0s   . (14a) 
 
In this manipulation, the boundary conditions at z   are used to perform the integral 
transformations as below: 
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Here, ru , zu , p  and   follow the definitions of Eqs. (10a)-(10d). 
The constants  1, 2, , 8iA i    of the general solutions can be determined by the 
transformed half space boundary conditions at 0z   and the remote boundary conditions at 
z  .  Finally, the desired quantities ru , zu , p  and   are obtained by applying 

appropriate inverse Laplace-Hankel transformations with the help of mathematical 
handbook (Erdelyi et al., 1954). 

 
3.3 Expressions for Ground Surface Displacements 
The study is focused on horizontal and vertical displacements of the ground surface, 0z  , 
due to an instantaneous point heat source.  The transformed transient ground surface 
displacements  0; ,ru s  and  0; ,zu s  due to an instantaneous point heat source are 
derived from the transformed general solutions (11a)-(11b) and mechanical boundary 
conditions at 0z   and z  , the Eqs. (14a)-(14b), as below: 
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The Laplace-Hankel inversion formulae for displacements are defined as following: 
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Using integral transform handbook (Erdelyi et al., 1954) and integral inversions listed in Eqs. 
(16a)-(16b), the transient horizontal displacement  ,0,ru r t  and vertical displacement 

 ,0,zu r t  of the ground surface due to an instantaneous point heat source of strength 0Q  are 
obtained as follows: 
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where  erfc x  denotes the complementary error function;  I x  is known as the modified 
Bessel function of the first kind of order  .  The transient ground surface horizontal and 
vertical displacements shown in Eqs. (17a)-(17b) vanished when t   in this linear elastic 
model. 
The maximum ground surface horizontal displacement r maxu  of the half space due to an 

instantaneous point heat source is derived from Eq. (17a) by letting 2 0.707r h h  .  
After doing so, we have 
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in which the value 2r h  is derived when  ,0,0rdu r dr  is equal to zero. 

The maximum ground surface vertical displacement z maxu  of the isothermal permeable half 
space due to an instantaneous point heat source is derived from Eq. (17b) by letting 0r  .  
Hence 
 

    
0

20,0,0
2 2 1

a
z max z

c Qu u
Gmh 

 


. (19) 

 
The absolute value of the ratio of r max z maxu u  can be derived from Eqs. (18) and (19) as 
below: 
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The above result shows the maximum ground surface horizontal displacement is around 
38.5% of the maximum vertical displacement for the isothermal permeable ground surface 
due to an instantaneous point heat source. 

 
3.4 Expressions for Excess Pore Water Pressure and Temperature Increment of the 
Stratum 
The study also addressed the excess pore water pressure and temperature increment of the 
poroelastic half space due to an instantaneous point heat source.  The transformed excess 
pore water pressure and temperature increment are obtained from Eqs. (11c)-(11d) with the 

 

help of transformed hydraulic the thermal boundary conditions in equations (14a)-(14b) and 
can be expressed as following:  
 

    
1

2 2 20 2

1 1 1 1

; ,
4

b

t

Q c c s s sp z s exp z h exp z h
c c c c

   


                           
  

  
1

2 2 2

2 2 2

s s sexp z h exp z h
c c c

  
                           

, (21a) 

    
1

2 2 20

2 2 2

; ,
4 t

Q s s sz s exp z h exp z h
c c c

    


     
                    

 . (21b) 

 
The Laplace-Hankel inversion formulae for  ; ,p z s  and  ; ,z s   are defined as below: 
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The transient excess pore water pressure  , ,p r z t  and temperature increment  , ,r z t  of 
the saturated isothermal permeable half space due to an instantaneous point heat source are 
obtained as following: 
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4. Numerical Results 

Following Ma and Hueckel (1992, 1993), Bai and Abousleiman (1997), the selected 
representative parameters are listed in Table 1 to verify the proposed solutions.  The 
constants  1, 2, 3, , ,ic i a b c  are derived as shown in Table 2 by using the parameters listed 
in Table 1, Eqs. (12a)-(12c) and Eqs. (13a)-(13c). 
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where  erfc x  denotes the complementary error function;  I x  is known as the modified 
Bessel function of the first kind of order  .  The transient ground surface horizontal and 
vertical displacements shown in Eqs. (17a)-(17b) vanished when t   in this linear elastic 
model. 
The maximum ground surface horizontal displacement r maxu  of the half space due to an 

instantaneous point heat source is derived from Eq. (17a) by letting 2 0.707r h h  .  
After doing so, we have 
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in which the value 2r h  is derived when  ,0,0rdu r dr  is equal to zero. 

The maximum ground surface vertical displacement z maxu  of the isothermal permeable half 
space due to an instantaneous point heat source is derived from Eq. (17b) by letting 0r  .  
Hence 
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The absolute value of the ratio of r max z maxu u  can be derived from Eqs. (18) and (19) as 
below: 
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The above result shows the maximum ground surface horizontal displacement is around 
38.5% of the maximum vertical displacement for the isothermal permeable ground surface 
due to an instantaneous point heat source. 

 
3.4 Expressions for Excess Pore Water Pressure and Temperature Increment of the 
Stratum 
The study also addressed the excess pore water pressure and temperature increment of the 
poroelastic half space due to an instantaneous point heat source.  The transformed excess 
pore water pressure and temperature increment are obtained from Eqs. (11c)-(11d) with the 

 

help of transformed hydraulic the thermal boundary conditions in equations (14a)-(14b) and 
can be expressed as following:  
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The Laplace-Hankel inversion formulae for  ; ,p z s  and  ; ,z s   are defined as below: 
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The transient excess pore water pressure  , ,p r z t  and temperature increment  , ,r z t  of 
the saturated isothermal permeable half space due to an instantaneous point heat source are 
obtained as following: 
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4. Numerical Results 

Following Ma and Hueckel (1992, 1993), Bai and Abousleiman (1997), the selected 
representative parameters are listed in Table 1 to verify the proposed solutions.  The 
constants  1, 2, 3, , ,ic i a b c  are derived as shown in Table 2 by using the parameters listed 
in Table 1, Eqs. (12a)-(12c) and Eqs. (13a)-(13c). 
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Symbol Value Unit 

Shear modulus of the skeletal material, G  100 MPa 

Poisson’s ratio of the skeletal material,   0.23 Dimensionless 

Porosity of the porous medium, n  0.2 Dimensionless 

Coefficient of heat conduction of the porous medium, t  1.69 J/smC 
Linear thermal expansion coefficient of the pore water, w  3.33  10-6 ºC-1 

Linear thermal expansion coefficient of the skeletal material, s  3.33  10-7 ºC-1 

Specific heat of the pore water, wc  500 J/kgºC 

Specific heat of skeletal material, sc  200 J/kgºC 

Density of the pore water, w  1,000 kg/m3 

Density of the skeletal material, s  2,000 kg/m3 

Permeability of porous medium, k  1  10-11 m/s 

Unit weight of the pore water, w  9,810 N/m3 

Compressibility of the pore water,   5  10-10 Pa-1 

Table 1. Selected representative parameters (Ma and Hueckel, 1992, 1993; Bai and 
Abousleiman, 1997) 
 

Symbol Value Unit 

1c  2.826  10-7 m2/s 

2c  4.024  10-6 m2/s 

3c  3.062  10-10 ºCm4/Ns 

ac  7.714  102 N/ºCm2 

bc  6.974  101 N/ºCm2 

cc  8.411  102 N/ºCm2 

Table 2. Values of  1, 2, 3, , ,ic i a b c  

 
Fig. 2. Vertical displacement profile at the ground surface 0z   

 

 
Fig. 3. Horizontal displacement profile at the ground surface 0z   
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Fig. 4. Distribution of normalized temperature increments   1.5 3
2 0, , 8 tr z t c Q h      
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Symbol Value Unit 
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Coefficient of heat conduction of the porous medium, t  1.69 J/smC 
Linear thermal expansion coefficient of the pore water, w  3.33  10-6 ºC-1 

Linear thermal expansion coefficient of the skeletal material, s  3.33  10-7 ºC-1 

Specific heat of the pore water, wc  500 J/kgºC 

Specific heat of skeletal material, sc  200 J/kgºC 

Density of the pore water, w  1,000 kg/m3 

Density of the skeletal material, s  2,000 kg/m3 

Permeability of porous medium, k  1  10-11 m/s 

Unit weight of the pore water, w  9,810 N/m3 

Compressibility of the pore water,   5  10-10 Pa-1 

Table 1. Selected representative parameters (Ma and Hueckel, 1992, 1993; Bai and 
Abousleiman, 1997) 
 

Symbol Value Unit 

1c  2.826  10-7 m2/s 

2c  4.024  10-6 m2/s 

3c  3.062  10-10 ºCm4/Ns 

ac  7.714  102 N/ºCm2 

bc  6.974  101 N/ºCm2 
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Fig. 2. Vertical displacement profile at the ground surface 0z   

 

 
Fig. 3. Horizontal displacement profile at the ground surface 0z   
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Fig. 4. Distribution of normalized temperature increments   1.5 3
2 0, , 8 tr z t c Q h      
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The profiles of vertical and horizontal displacements at the ground surface 0z   are 
normalized by z maxu  as shown in Figures 2 and 3, respectively.  The results shown in Figures 
2 and 3 indicate that the ground surface displacements due to instantaneous point heat 
source can reach its extreme values initially, and then the displacements decreases 
gradually.   Figure 3 shows that the maximum ground surface horizontal displacement is 
around 38.5% of the maximum ground surface vertical displacement.  Figures 2 and 3 also 
concluded that the long-term thermoelastic ground surface deformations due to an 
instantaneous point heat source vanished in this linear elastic model. 
From Eq. (23b), the profiles of normalized temperature increment   1.5 3

2 0, , 8 tr z t c Q h      

of isothermal permeable half space at six different dimensionless time factor 2
2c t h  0.2, 

0.4, 0.6, 0.8, 1.0 and 2.0 are illustrated in Figures 4(a)-(f), respectively.  The changes in 
temperature increment have positive value of   which is caused by the heating of 
instantaneous point heat source. It’s observed that the positive temperature change 
increases to a wider region of the half space initially and then gradually decreased.  The 
stratum temperature rise caused by instantaneous point heat finally disappeared, and the 
elastic deformations due to instantaneous point heat source fully recovered as the 
temperature increment vanished. 
The presented closed-form solutions can be used to test numerical models for thermoelastic 
processes. It can also be used in more detailed numerical simulations of the processes near 
the buried heat sources. 

 
5. Conclusions 

Using Laplace-Hankel transformations, the transient closed-form solutions of the 
thermoelastic consolidation due to an instantaneous point heat source in an isothermal 
permeable half space are obtained.  The results show: 
1. The maximum ground surface horizontal displacement is around 38.5% of the maximum 

ground surface vertical displacement of the isothermal permeable half space at 
2 0.707r h h  . 

2. It’s observed that the positive temperature change increases to a wider region of the half 
space initially and then gradually decreased. The stratum temperature rise caused by 
instantaneous point heat finally disappeared, and the elastic deformations due to 
instantaneous point heat source fully recovered as the temperature increment vanished. 
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The profiles of vertical and horizontal displacements at the ground surface 0z   are 
normalized by z maxu  as shown in Figures 2 and 3, respectively.  The results shown in Figures 
2 and 3 indicate that the ground surface displacements due to instantaneous point heat 
source can reach its extreme values initially, and then the displacements decreases 
gradually.   Figure 3 shows that the maximum ground surface horizontal displacement is 
around 38.5% of the maximum ground surface vertical displacement.  Figures 2 and 3 also 
concluded that the long-term thermoelastic ground surface deformations due to an 
instantaneous point heat source vanished in this linear elastic model. 
From Eq. (23b), the profiles of normalized temperature increment   1.5 3

2 0, , 8 tr z t c Q h      

of isothermal permeable half space at six different dimensionless time factor 2
2c t h  0.2, 

0.4, 0.6, 0.8, 1.0 and 2.0 are illustrated in Figures 4(a)-(f), respectively.  The changes in 
temperature increment have positive value of   which is caused by the heating of 
instantaneous point heat source. It’s observed that the positive temperature change 
increases to a wider region of the half space initially and then gradually decreased.  The 
stratum temperature rise caused by instantaneous point heat finally disappeared, and the 
elastic deformations due to instantaneous point heat source fully recovered as the 
temperature increment vanished. 
The presented closed-form solutions can be used to test numerical models for thermoelastic 
processes. It can also be used in more detailed numerical simulations of the processes near 
the buried heat sources. 

 
5. Conclusions 

Using Laplace-Hankel transformations, the transient closed-form solutions of the 
thermoelastic consolidation due to an instantaneous point heat source in an isothermal 
permeable half space are obtained.  The results show: 
1. The maximum ground surface horizontal displacement is around 38.5% of the maximum 

ground surface vertical displacement of the isothermal permeable half space at 
2 0.707r h h  . 

2. It’s observed that the positive temperature change increases to a wider region of the half 
space initially and then gradually decreased. The stratum temperature rise caused by 
instantaneous point heat finally disappeared, and the elastic deformations due to 
instantaneous point heat source fully recovered as the temperature increment vanished. 
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8. Notation of Symbols 

 , ,ib i r z  Body forces of the poroelastic half space (N/m3) 

1c  Parameter,  1 2 2 1 wc Gk Gn      (m2/s) 

2c  Parameter, 2 tc m  (m2/s) 

3c  Parameter,      3 1 3 1 1u s wc k             (ºCm4/Ns) 

ac  Parameter,  1

3

2 1
1 2

s
a

Gcc
c

 



 


 (N/ºCm2) 

bc  Parameter, 
 

2
1

3 2 1
b

cc
c c c




 (N/ºCm2) 

cc  Parameter, 
 

 1 2

3 2 1

2 1
1 2

s
c

Gc cc
c c c

 



 

 
 (N/ºCm2) 

sc  Specific heat of the skeletal material (J/kgºC) 

wc  Specific heat of the pore water (J/kgºC) 
 erfc x  Complementary error function (Dimensionless) 

G  Shear modulus of the isotropic poroelastic half space (Pa) 
h  Buried depth of instantaneous point heat source (m) 
 I x  Modified Bessel function of the first kind of order   (Dimensionless) 

 J x  First kind of the Bessel function of order   (Dimensionless) 
k  Permeability of the isotropic poroelastic half space (m/s) 
m  Thermal parameter,  1 s s w wm n c n c     (J/ºCm3) 
n  Porosity of the poroelastic half space (Dimensionless) 
p  Excess pore fluid pressure of the isotropic poroelastic half space (Pa) 
p  Laplace-Hankel transforms of p , Eq. (10c) 

0Q  Strength of instantaneous point heat source (J) 
 , ,r z  Cylindrical coordinates system (m, radian, m) 
s  Laplace transform parameter (s-1) 
t  Time (s) 
 ,iu i r z  Displacement components of the poroelastic half space (m) 

r maxu , z maxu  Maximum ground surface horizontal/vertical displacement of the 
poroelastic half space (m) 

 ,iu i r z
 Laplace-Hankel transforms of iu , Eqs. (10a)-(10b) 

s  Linear thermal expansion coefficient of skeletal of the stratum (ºC-1) 

u  Linear thermal expansion factor,  1u s wn n      (ºC-1) 

w  Linear thermal expansion coefficient of pore water (ºC-1) 
  Compressibility of pore water (Pa-1) 

w  Unit weight of pore water (N/m3) 

 

 t  Dirac delta function (s-1) 

 x  Dirac delta function (m-1) 

ij  Kronecker delta (Dimensionless) 
  Volume strain of the poroelastic half space (Dimensionless) 
 , , ,ij i j r z   Strain components of the poroelastic half space (Dimensionless) 

  Parameter,    1 1 2      (Dimensionless) 
  Temperature change of the poroelastic half space (ºC) 
  Laplace-Hankel transform of  , Eq. (10d) 

t  Thermal conductivity of the poroelastic half space (J/smC) 
  Poisson’s ratio of the isotropic poroelastic half space (Dimensionless) 
  Hankel transform parameter (m-1) 

s  Density of skeletal material (kg/m3) 

w  Density of pore water (kg/m3) 
 , , ,ij i j r z   Total stress components of the poroelastic half space (Pa) 

2  Laplacian operator, 2 2 2 2 21r r r z          (m-2) 
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