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1. Introduction 

One major concern in the design of speech recognition systems is their performance in real 
environments. In such conditions, different sources could exist which may interfere with the 
speech signal. The effects of such sources could generally be classified as additive noise and 
channel distortion. As the names imply, noise is usually considered as additive in spectral 
domain while channel distortion is multiplicative and therefore appears as an additive part 
in logarithmic spectrum. These could both result in severe performance degradations in 
automatic speech recognition (ASR) systems. Thus, in recent years, a substantial amount of 
research has been devoted to improving the performance of Automatic Speech Recognition 
(ASR) Systems in such environments. 
The main approaches taken to improve the performance of ASR systems could be roughly 
divided into three main categories, namely, robust speech feature extraction; speech 
enhancement and model-based compensation for noise. 
The main goal of the robust speech feature extraction techniques is to find a set of 
parameters, to represent speech signal in the ASR system, that are robust against the 
variations in the speech signal due to noise or channel distortions. Extensive research has 
resulted in such well-known techniques as RASTA filtering (Hermansky & Morgan, 1994), 
cepstral mean normalization (CMN) (Kermorvant, 1999), use of dynamic spectral features 
(Furui, 1986), short-time modified coherence (SMC) (Mansour & Juang, 1989a) and also one-sided 
autocorrelation LPC (OSALPC) (Hernando & Nadeu, 1997), differential power spectrum (DPS) 
(Chen et al., 2003) and relative autocorrelation sequence (RAS) (Yuo & Wang, 1998, 1999). 
In the case of speech enhancement, some initial information about speech and noise is 
needed to allow the estimation of noise and clean up of the noisy speech. Widely used 
methods in this category include spectral subtraction (SS) (Beh & Ko, 2003; Boll, 1979) and 
Wiener filtering (Lee et al., 1996). 
In the framework of model-based compensation, statistical models such as Hidden Markov 
Models (HMMs) are usually considered. The compensation techniques try to remove the 
mismatch between the trained models and the noisy speech to improve the performance of 
ASR systems. Methods such as parallel model combination (PMC) (Gales & Young, 1995, 1996), 
vector Taylor series (VTS) (Acero et al., 2000; Kim et al., 1998; Moreno, 1996; Moreno et al., 
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1996; Shen et al., 1998) and weighted projection measure (WPM) (Mansour & Juang, 1989b) can 
be classified into this category. 
From another point of view, methods can be categorized according to the type of distortion 
they deal with. Methods used to suppress the effect of additive noise such as SS, lin-log 
RASTA, PMC, DPS, minimum variance distortion-less response (MVDR) (Yapanel & 
Dharanipragada, 2003; Yapanel and Hansen, 2003) and RAS can be placed in one category 
while those trying to remove channel distortion such as CMN, logarithmic-RASTA, blind 
equalization (BE) (Mauuary, 1996, 1998) and weighted Viterbi recognition (WVR) (Cui et al., 
2003) are placed in the other category. 
Although all the aforementioned efforts had a certain level of success in speech recognition 
tasks, it is still necessary to investigate new algorithms to further improve the performance 
of ASR systems. Extracting appropriate speech features is crucial in obtaining good 
performance in ASR systems since all of the succeeding processes in such systems are highly 
dependent on the quality of the extracted features. Therefore, robust feature extraction has 
attracted much attention in the field. Use of the autocorrelation domain in speech feature 
extraction has recently proved to be successful for robust speech recognition. A number of 
feature extraction algorithms have been devised using this domain as the initial domain of 
choice. These algorithms were initiated with the introduction of SMC (Mansour & Juang, 
1989a) and OSALPC (Hernando & Nadeu, 1997). Recently, further improvements in this 
field have been reported (Yuo & Wang, 1998, 1999; Shannon and Paliwal, 2004).  
Pole preserving is an important property of the autocorrelation domain, i.e. if the original 
signal can be modelled by an all-pole sequence which has been excited by an impulse train 
and a white noise, the poles of the autocorrelation sequence would be the same as the poles 
of the original signal (McGinn & Johnson, 1989). This means that the features extracted from 
the autocorrelation sequence could replace the features extracted from the original speech 
signal. Another property of autocorrelation sequence is that for many typical noise types, 
noise autocorrelation sequence is more significant in lower lags. Therefore, noise-robust 
spectral estimation is possible with algorithms that focus on the higher lag autocorrelation 
coefficients such as autocorrelation mel-frequency cepstral coefficient (AMFCC) method 
(Shannon & Paliwal, 2004). Moreover, as the autocorrelation of noise could in many cases be 
considered relatively constant over time, a high pass filtering of the autocorrelation 
sequence, as is done in RAS, could lead to substantial reduction of the noise effect. 
Furthermore, it has been shown that preserving spectral peaks is very important in 
obtaining a robust set of features for ASR (Padmanabhan, 2000; Strope & Alwan, 1998; 
Sujatha et al., 2003). Methods such as peak-to-valley ratio locking (Zhu, 2001) and peak isolation
(PKISO) (Strope & Alwan, 1997) have been found very useful in speech recognition error 
rate reduction. In DPS, as an example, differentiation in the spectral domain is used to 
preserve the spectral peaks while the flat parts of the spectrum, that are believed to be more 
vulnerable to noise, are almost removed.  
Each of the above-mentioned autocorrelation-based methods has its own disadvantages. 
RAS, while working well in low SNRs, does not perform as well in higher SNRs and clean 
condition. The main reason is that while filtering the lower frequency parts of noisy 
autocorrelation sequence can lead to the suppression of noise in low SNR conditions (large 
noise energies), it in fact filters out parts of the signal autocorrelation sequence in high 
SNRs. However, the removal of the lower lags of the sequence leads to a good performance 
in high SNRs in comparison to high-pass filtering.  
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(a)                                                                             (b) 

(c)                                                                            (d) 

 (e) 

Figure 1. (a) Autocorrelation sequence of white noise, (b) Autocorrelation sequence of 
factory noise, (c) Autocorrelation sequence for one frame of speech signal contaminated 
with white noise at 10 dB SNR, (d) Autocorrelation sequence for one frame of speech signal 
contaminated with factory noise at 10 dB SNR, (e) Autocorrelation of clean speech signal 
(vowel).



Robust Speech Recognition and Understanding 242

According to (Shannon & Paliwal, 2004), AMFCC works well for car and subway noises of 
the Aurora 2 task, but in babble and exhibition noises does not work as well. This is 
attributed to high similarities between the properties of the latter two and speech.  
Fig. 1 displays examples of white and factory noise autocorrelation sequences (a and b), 
together with sequences for a speech signal (vowel) contaminated with those noises. 
Apparently, the lower lags of white noise are more important in comparison to those of 
factory noise that features a more spread out sequence.  
Also we can classify autocorrelation-based robust feature extraction methods, from another 
point of view, into two major fields, i.e. magnitude and phase domains. Some examples of 
the methods that work in the magnitude domain are RAS, AMFCC, SS, RASTA filtering etc. 
On the other hand, an example for a phase domain method is phase autocorrelation (PAC) 
(Ikbal et al., 2003). However, recent studies on speech perception have revealed the 
importance of the phase of speech signal (Paliwal & Alsteris, 2003; Bozkurt et al., 2004; 
Bozkurt & Couvreur, 2005). The above-mentioned findings in the phase domain have 
persuaded further work using signal phase information in the feature vector.  
In this chapter, we discuss some of the newest robust feature extraction approaches.

2. Autocorrelation-based Feature Extraction Background 

While different methods have used different approaches to autocorrelation-based feature 
extraction, these methods could roughly be divided into two sub-categories: those that use 
the amplitude and those that use the phase. We will discuss these two groups of methods 
separately.  

2.1. Autocorrelation amplitude-based approaches 

2.1.1. Calculation of the autocorrelation for noisy signal 

If we assume v(m,n) to be the additive noise, x(m,n) noise-free speech signal and h(n)
impulse response of the channel, then the noisy speech signal y(m,n) can be written as 

),()(),(),( nmvnhnmxnmy +∗=                 10 −≤≤ Mm ,     10 −≤≤ Nn ,   (1) 

where * denotes the convolution operation, N is the frame length, n is the discrete time index 
in a frame, m is the frame index and M is the number of frames. If x(m,n), v(m,n) and h(n) are 
considered uncorrelated, the autocorrelation of the noisy speech can be expressed as  

),()()(),(),( kmrkhkhkmrkmr vvxxyy +∗∗=        10 −≤≤ Mm ,     10 −≤≤ Nk ,   (2) 

where ),( kmryy  , ),( kmrxx  and ),( kmrvv are the short-time autocorrelation sequences of the 

noisy speech, clean speech and noise respectively and k is the autocorrelation sequence 
index within each frame. Since additive noise is assumed to be stationary, its autocorrelation 
sequence can be considered the same for all frames. Therefore, the frame index, m, can be 
omitted from the additive noise part in (2) leading to 

    )()()(),(),( krkhkhkmrkmr vvxxyy +∗∗= 10 −≤≤ Mm ,     10 −≤≤ Nk . (3) 

The one-sided autocorrelation sequence of each frame can then be calculated using an 
unbiased estimator. However, alternatively, one may use a biased estimator for its 
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calculation. The unbiased and biased estimators for the calculation of one-sided 
autocorrelation sequence are given in (4) and (5) respectively (Yuo & Wang, 1998, 1999). 
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2.1.2. Filtering of one-sided autocorrelation sequence 

As our target in this chapter is to remove, or reduce, the effect of additive noise from noisy 
speech signal, the channel effect, h(k), may be removed at this point from (3).  We will then 
have

)(),(),( krkmrkmr vvxxyy +=        10 −≤≤ Mm ,   10 −≤≤ Nk .  (6) 

In order to reduce the effect of channel distortion, one may add a simple approach, such as 
cepstral mean normalization, to the final cepstral coefficients, as we will mention later.  
Considering the noise autocorrelation to be constant over the frames of concern, 
differentiating both sides of equation (6) with respect to m, will remove the noise 
autocorrelation and yields (Yuo & Wang, 1999) 
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Equation (7) is equal to a filtering process on the temporal one-sided autocorrelation 
trajectory by a FIR filter where L is the length of the filter. This filtering process can be 
written in z domain as 
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2.1.3. Lower lag elimination 

As we mentioned before, the main effects of noise autocorrelation on the clean speech signal 
autocorrelation is on its lower lags. Therefore eliminating the lower lags of the noisy speech 
signal autocorrelation should lead to removal of the main noise components. The maximum 
autocorrelation index to be removed is usually found experimentally. The resulting 
sequence would be 
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),(),(ˆ kmrkmr yyyy = ,         1−≤< MmD ,     10 −≤< Kk

                        0),(ˆ =kmryy ,                            Dm ≤≤0 ,           10 −≤≤ Kk ,   (9) 

where D is the elimination threshold. 

2.2. Autocorrelation phase-based approaches 

As mentioned earlier, feature extraction from magnitude spectrum will be obtained by 
applying DFT on the frame samples. DFT assumes each frame, y(m,n), is a part of periodic 
signal, ),(~ nmy , which is defined as : 
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)kNn,m(y)n,m(y~            10 −≤≤ Mm , 10 −≤≤ Nn . (10) 

The estimator for the calculation of autocorrelation sequence is then given as: 
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Another view to equation (11) is that ),(~ kmryy  gives the correlation between the samples 

spaced at interval k, which is computed as dot product of two vectors in N-dimensional 
domain, i.e. 

{ })1,(~),...,1,(~),0,(~
0 −= NmymymyY

{ })1,(~),...,0,(~),1,(~),...,,(~ −−= kmymyNmykmyYk

k

T

yy YYkmr 0),(~ = .     (12) 

If we carry out these steps for clean speech, x(n,m), we would have 

{ })1,(~),...,1,(~),0,(~
0 −= NmxmxmxX                  

{ })1,(~),...,0,(~),1,(~),...,,(~ −−= kmxmxNmxkmxX k

k

T

xx XXkmr 0),(~ =   (13) 

where ),(~ nmx  is the periodic signal obtained from x(m,n).

Clearly, the autocorrelation sequences for clean and noisy signals are different. Therefore, 
features extracted from autocorrelation sequences would be sensitive to noise. From (12), the 

magnitudes of two vectors 0Y and kY  are the same. If we assume )(mY  to be the magnitude 

of vectors and ),( kmyθ  the angle between them, then the relationship between the 

autocorrelation, ),(~ kmryy , magnitude of the vectors and the angle between them would be  

),(cos)(),(~ 2
kmmYkmr yyy θ= ,       10 −≤≤ Mm , 10 −≤≤ Nk . (14) 

Now the angle ),( kmyθ  between the two vectors will be calculated as: 
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−
=

2
)(

),(~
1

cos),(

mY

kmyyr
kmyθ           10 −≤≤ Mm , 10 −≤≤ Nk . (15) 

3. Autocorrelation-based robust feature extraction 

In this section we will describe several autocorrelation-based approaches developed by the 
authors to deal with the problem of robust feature extraction. These methods use either 
amplitude or phase in the autocorrelation domain, as discussed above. Performance of these 
methods in various noisy speech recognition tasks will be discussed in a later section. 

3.1. Differentiated autocorrelation sequence (DAS) 

In this section first we present the calculation of differential power spectrum and then 
describe DAS method. 

3.1.1. Calculating differential power spectrum (DPS)

Although not necessarily an autocorrelation-based approach, we discuss DPS here as it will 
be used in the following discussions. If the noise and clean speech signals are assumed 
mutually uncorrelated, by applying short-time DFT to both sides of equation (6), we can 
calculate the relationship between autocorrelation power spectrums of noisy speech signal, 
clean speech signal and noise as follows: 

    )()()}({)},({)},({)( ωωω VXkrFTkmrFTkmrFTY vvxxyy +=+≈= , (16) 

where [.]FT  denotes the Fourier Transform andω indicates radian frequency. The differential 

power spectrum will then be defined as 
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where
ωd

d
 or prime represent differentiation with respect toω .

Therefore, by applying differentiation to both sides of equation (16) we have: 
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where )(ωXDiff and )(ωVDiff are differential autocorrelation power spectrums of clean speech 

signal and noise respectively. 
In discrete domain, the definition of DPS can be approximated by the following equation 
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  (a)  (b) 

Figure 2. (a) A sample speech signal, and (b) the autocorrelation spectrum magnitude and 
the differentiated autocorrelation spectrum magnitude of the same signal with a 512-point 
FFT. Only 128 points of the spectrum are shown for clarity. The sample signal is one frame 
of phone /iy/ (Farahani et al., 2007).

where P and Q are the orders of the difference equation, la  are real-valued weighting 

coefficients and K is the length of FFT. The absolute value of the differentiation indicates the 
peak points of the spectrum. 

3.1.2. DAS algorithm 

This approach combines the advantages of RAS and DPS. In this algorithm (Farahani & 
Ahadi, 2005; Farahani et al., 2007), splitting the speech signal into frames and applying a 
pre-emphasis filter, the autocorrelation sequence of the frame signal is obtained using either 
an unbiased or a biased estimator, as shown in (4) and (5). A FIR filter is then applied to the 
noisy speech signal autocorrelation sequence. Hamming windowing and short-time Fourier 
transform constitute the next stages. Then, the differential power spectrum of the filtered 
signal is calculated. By differentiation of the spectrum, we preserve the peaks, except that 
each peak is split into two, one positive and one negative, and the flat part of the power 
spectrum is approximated to zero. 
Fig. 2 depicts a sample speech signal, its short-time autocorrelation spectrum and the 
differentiated short-time autocorrelation spectrum. This sample signal is one frame of phone 
/iy/. In order to simplify the representation, only the significant lower-frequency parts of 
the spectrum have been shown and the non-significant parts omitted. 
As shown in Fig. 2 and mentioned above, the flat parts of the spectrum have been 
transformed to zero by differentiation and each peak of it split into two positive and 
negative parts. Since the spectral peaks convey the most important information in speech 
signal, this fact that the differential power spectrum retains spectral peaks means that we 
will not lose the important information of the speech signal (Chen et al., 2003). Furthermore, 
since noise spectrum is often flat and the differentiation either reduces or omits the 
relatively flat parts of the spectrum, it will lead to suppression of the noise effect on the 
spectrum. A set of cepstral coefficients can then be derived by applying a conventional mel-
frequency filter-bank to the resultant spectrum and finally passing the logarithm of bin 
outputs to the DCT block. Fig. 3 displays the overall front-end diagram of this method. We 
call these new features Differentiated Autocorrelation Sequence (DAS). 
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Figure 3. Block diagram of DAS front-end for robust feature extraction. 

3.1.3. Experiments 

If the process of feature extraction does not include the extraction of autocorrelation spectral 
peaks, as mentioned in (Yuo & Wang, 1999), using 5 frames of speech for filtering can lead 
to the best results. Therefore, in order to be able to compare our results to the best results of 
RAS, the same filter length (L=2) is used. Thus, equation (8) will be simplified as 
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Furthermore, as discussed in (Chen et al., 2003), the best results for spectral differentiation 
was obtained using the following equation 

)1()()( +−= kYkYkDiff , (21) 

i.e. a simple difference. 
The above-mentioned parameter and formula were used in the implementation of RAS, 
DPS, DAS, SPFH, ACP, ACPAF and APP methods on different mentioned tasks, unless 
otherwise specified. All model creation, training and tests in all our experiments have been 
carried out using the HMM toolkit (HTK, 2002).  

3.1.3.1. Database 

Three speech corpora have been used throughout the experiments reported in this chapter. 
These include an isolated-word Farsi task, a continuous Farsi task and Aurora 2, a noisy 
English connected digits task. 
The Isolated-word Farsi task is a set of isolated-word Farsi (Persian) speech data collected 
from 65 male and female adult speakers uttering the names of 10 Iranian cities. The data was 
collected in normal office conditions with SNRs of 25dB or higher and a sampling rate of 16 
kHz. Each speaker uttered 5 repetitions of words, some of which were removed from the 
corpus due to problems that occurred during the recordings. A total of 2665 utterances from 
55 speakers were used for HMM model training. The test set contained 10 speakers (5 male 
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& 5 female) that were not included in the training set. The noise was then added to their 
speech in different SNRs. The noise data was extracted from the NATO RSG-10 corpus 
(SPIB, 1995). We have considered babble, car, factory and white noises and added them to 
the clean signal at 20, 15, 10, 5, 0 and -5 dB SNRs.
The Continuous Farsi task is a speaker-independent medium-vocabulary continuous speech 
Farsi (Persian) corpus. FARSDAT speech corpus was used for this set of experiments 
(Bijankhan et al., 1994; FARSDAT). This corpus was originally collected from 300 male and 
female adult speakers uttering 20 Persian sentences in two sessions. The sentences uttered 
by each speaker were randomly selected from a set of around 400 sentences. Some of the 
speakers were removed from the corpus due to their accent or problems occurred during the 
recordings. The data was originally collected in quiet environment with SNRs of 25dB or 
higher and a sampling rate of 44.1 kHz. The sampling rate was later reduced to 16 kHz. A 
total of 1814 utterances from 91 speakers were used for HMM model training in these 
experiments. The test set contained 46 speakers that were not included in the training set. A 
total of 889 utterances were used as the test set. The noise was then added to the speech in 
different SNRs. As with the isolated-word experiments, the noise data was extracted from 
the NATO RSG-10 corpus and included babble, car, factory and F16 noises added to the 
clean signal at 20, 15, 10, 5, 0 and -5 dB SNRs. 
Aurora 2 (Hirsch & Pearce, 2000) is a noisy connected-digit recognition task. It includes two 
training modes, training on clean data only (clean-condition training) and training on clean 
and noisy data (multi-condition training). In clean-condition training, 8440 utterances from 
TIDigits speech corpus (Leonard, 1984) containing those of 55 male and 55 female adults are 
used. For multi-condition mode, 8440 utterances from TIDigits training part are split equally 
into 20 subsets with 422 utterances in each subset. Suburban train, babble, car and exhibition 
hall noises are added to these 20 subsets at SNRs of 20, 15, 10, 5, 0 and -5 dB.  
Three test sets are defined in Aurora 2, named A, B and C. 4004 utterances from TIDigits test 
data are divided into four subsets with 1001 utterances in each. One noise is added to each 
subset at different SNRs. 
In test set A, suburban train, babble, car and exhibition noises are added to the above 
mentioned four subsets, leading to a total of 100174 ××  utterances. Test set B is created 

similar to test set A, but with four different noises, namely, restaurant, street, airport and 
train station. Finally, test set C contains two of four subsets with speech and noise filtered 
using different filter characteristics in comparison to the data used in test sets A and B. The 
noises used in this set are suburban train and street. 

3.1.3.2. Results on the isolated-word Farsi task 

The experiments were carried out using MFCC (for comparison purposes), MFCC applied to 
the signal enhanced by spectral subtraction, RAS-MFCC, cepstral coefficients derived using 
DPS and DAS. In all cases, 25 msec. frames with 10 msec. of frame shifts and a pre-emphasis 
coefficient of 0.97 were used. Also, for each speech frame, a 24-channel mel-scale filter-bank 
was used. Here, each word was modelled by an 8-state left-right HMM and each state was 
represented by a single-Gaussian PDF. The feature vectors were composed of 12 cepstral 
and log-energy parameters, together with their first and second order derivatives (39 
coefficients in total). Fig. 4 depicts the results of the implementation.  
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(a) (b)

    
         (c)                                                                           (d) 

Figure 4. Isolated-word recognition results for speech signal contaminated with (a) babble, 
(b) car, (c) factory and (d) white noises in different SNRs. The results correspond to MFCC, 
MFCC+CMN, DPS+CMN, RAS+CMN, DAS+CMN and SS methods for isolated-word task 
with 1 mixture component per state. 

Also, in Tables 1 and 2, the clean recognition results and the average noisy speech 
recognition results are included for comparison purposes. The average values mentioned in 
Table 2 were calculated over the results obtained from 0 dB to 20 dB SNRs, omitting the 
clean and -5 dB results. This is in accordance with average result calculations in Aurora 2 
task.
Note that, all the reported results are for clean-trained models and no matched condition or 
multi-conditioned noisy training was carried out. Furthermore, also for comparison 
purposes, the results of an implementation of cepstral mean normalization, as a feature 
post-processing enhancement method, applied after standard MFCC, DPS and DAS 
parameter extractions, are included. These are denoted by CMN. Note that, for better 
comparison, the results of an implementation of spectral subtraction as an initial 
enhancement method, applied before standard MFCC parameter extraction, are also 
included. These are denoted by SS and the algorithm was applied as explained in (Junqua & 
Haton, 1996). As can be seen in Fig. 4, DAS outperforms all other methods in almost all 
noise types and SNRs. The average results on different SNRs, as shown in Table 2, are again 
considerably better for DAS in comparison to the other feature extraction techniques, except 
for the case of car noise, where it is very close to DPS results. As an example, DAS has about 
29% reduction on the average word error rate for babble noise, compared to DPS, which 
performs the best among the others. Similar conclusions can be made from this table for 
factory and white noises. 
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Feature type Recognition Rate (%)

MFCC 96.60 

SS 96.60 

MFCC+CMN 99.20 

DPS+CMN 99.20

RAS+CMN 98.80

DAS+CMN 99.20

Table 1. Comparison of baseline isolated-word recognition rates for various feature types. 

Average Recognition Rate (%) 

Feature type 

Babble Car Factory White 

MFCC (Baseline) 63.60 89.44 57.92 38.68 

SS 51.60 78.88 52.72 43.88 

MFCC+CMN 66.00 91.00 59.24 45.08 

DPS+CMN 77.28 99.24 77.84 71.84 

RAS+CMN 70.00 92.88 68.72 47.24 

DAS+CMN 83.88 99.12 82.80 76.36 

Table 2. Comparison of average isolated-word recognition rates for various feature types 
with babble, car, factory and white noises.  

3.1.3.3. Results on continuous Farsi task 

The feature parameters were extracted similar to the isolated-word recognition case. The 
modeling was carried out using 30 context-independent models for the basic Farsi 
phonemes plus silence and pause models. These, except the pause model, consisted of 3 
states per model, while the pause model included one state only. The number of mixture 
components per state was 6 and no grammar was used during the recognition process to 
enable us better evaluate our acoustic models under noisy conditions. The size of the 
recognition lexicon was around 1200.  
Figures 5 and 6 display the results of our FARSI CSR experiments. These results were 
obtained using a set of parameters similar to the isolated-word experiments parameters.  
According to Fig. 5, DAS outperforms all other front-ends such as RAS, DPS and MFCC in 
almost all cases. While RAS performance is acceptable in low SNRs, it performs inferior to 
other front-ends in SNRs over 10dB. DPS performs slightly better than MFCC except in car 
noise. 
Fig. 6 depicts the results obtained when CMN is applied alongside the above front-ends. 
Here again, the DAS front-end outperforms the others in almost all cases. 
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(a) (b)

    

(b) (d)

Figure 5. Continuous speech recognition accuracies for speech signal contaminated with (a) 
babble, (b) car, (c) factory and (d) F16 noises in different SNRs. The results correspond to 
MFCC, DPS, RAS and DAS front-ends and 6 mixture components per state, without CMN. 

Table 3 summarizes recognition rates for various front-ends with/without CMN and 
contaminated with babble, car, factory and f16 noises with six mixture components per state. 
According to this table, DAS with/without CMN outperforms the other methods in average, 
proving its effectiveness in noisy speech recognition.  

3.1.3.4. Results on Aurora 2 task 

The features in this case were computed using 25 msec. frames with 10 msec. of frame shifts. 
Pre-emphasis coefficient was set to 0.97. For each speech frame, a 23-channel mel-scale filter-
bank was used. The feature vectors were composed of 12 cepstral and log-energy 
parameters, together with their first and second order derivatives (39 coefficients in total). 
MFCC feature extraction and all model creation, training and tests were carried out using 
the HMM toolkit.  
Fig. 7 shows the results obtained using MFCC, DPS, RAS and DAS front-ends with CMN on 
models created using the clean-condition training section of Aurora 2 task. Once again, the 
DAS front-end leads to better recognition rates in comparison to other methods. Also, Fig. 8 
depicts the recognition rates of different methods obtained using the multi-condition 
training set of Aurora 2 task. The multi-condition results of different front-ends show very 
close performances. However, DAS still performs slightly better compared to the others.  
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3.1.3.5. Adjusting the Parameters 

For parameter setting in DAS, the length of the FIR filter (filter type is same as (8)) and the 
order of differentiation was taken into consideration. A set of preliminary experiments were  
carried out to find the most appropriate filtering and differentiation parameters. These 
experiments were performed on the continuous Farsi task as explained in section 3.1.3.1. 
Here, the length of the filter was changed from L=1 (three frames) to L=5 (eleven frames) in 
steps. Also, biased and unbiased estimators were used for calculating the one-sided  
autocorrelation sequence. Table 4 summarize the results by displaying the average 
recognition accuracies on the test set with various noises (babble, car, factory and F16) and 
in various SNRs, with two different autocorrelation estimators. At this step, for computing 
the autocorrelation spectral peaks the differentiation defined in (21) was considered. 
As can be seen in Table 4, the best average recognition results using DAS features were 
obtained using the filter length L=3. Furthermore, the unbiased estimator led to better 
results compared to the biased one.
In order to find the best differentiation methods, the following differentiation formulas were 
used. 

)2()()( +−= kYkYkDiff , (22) 

)2()1()1()2()( +−+−−+−= kYkYkYkYkDiff , (23) 

    

(a)                                                                   (b) 

     

 (c)                                                                    (d) 

Figure 6. Continuous speech recognition accuracies for speech signal contaminated with (a) 
babble, (b) car, (c) factory and (d) f16 noises in different SNRs. The results correspond to 
MFCC, DPS, RAS and DAS front-ends with CMN and 6 mixture components per state. 
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Recognition Rate (%) - 6 mix per state 

Noise Type Babble Car Factory F16 

MFCC (Baseline) 19.23 49.39 18.23 17.64 

MFCC+CMN 25.39 53.69 23.22 23.24 

DPS 19.90 48.06 20.32 18.42 

DPS+CMN 26.43 53.62 23.80 23.54 

RAS 20.32 50.67 20.70 21.84 

RAS+CMN 26.44 54.21 25.05 24.03 

DAS 24.72 52.78 26.22 26.42 

DAS+CMN 31.31 57.09 28.67 28.84 

Table 3. Comparison of average continuous speech recognition accuracies for various 
feature types in babble, car, factory and f16 noises with different SNRs. Recognition was 
carried out using 6 mixture components per state. 

     
                                              (a)                                                                    (b) 

 (c) 

Figure 7. Average recognition accuracies for clean-condition on AURORA2.0 (a) set A, (b) 
set B and (c) set C. The results correspond to MFCC, DPS, RAS and DAS front-ends with 
CMN. 
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 (a)                                                                 (b) 

 (c) 

Figure 8. Average recognition accuracies for AURORA 2 multi-condition training. (a) set A, 
(b) set B and (c) set C. The results correspond to MFCC, DPS, RAS and DAS front-ends with 
CMN.  

Since the filter with length L=3, using unbiased estimator, had led to better results in noisy 
speech recognition, this type of filter and estimator have been tested together with the 
difference equations given in (21), (22) and (23). The results are reported in Table 5. 
According to this table, the one sample difference equation, (21), has led to better overall 
results, compared to (22) and (23).  

                                Biased Estimator Unbiased Estimator 

Filter Lenght Babble Car Factory F16 Babble Car Factory F16 

L=1   3 frames 22.07 49.06 22.59 21.72 24.08 51.80 23.77 23.25 

L=2   5 frames 22.97 50.00 23.24 22.95 24.72 52.78 24.43 24.53 

L=3   7 frames 24.69 51.34 24.41 24.42 26.00 53.24 26.49 25.38 

L=4   9 frames 23.82 50.89 23.76 23.15 25.31 53.06 25.61 23.78 

L=5   11 frames 23.07 49.91 23.35 22.89 25.09 52.59 25.41 23.76 

Table 4. The average continuous speech recognition rates using DAS for various noise and 
SNRs with different filter lengths. Biased and Unbiased estimator was used for one-sided 
autocorrelation sequence calculation and the models featured 6 mixture components per 
state.
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3.2. Spectral Peaks of filtered higher-lag autocorrelation sequence (SPFH) 

In this method, after splitting the speech signal into frames and pre-emphasizing, the 
autocorrelation sequence of the frame signal was obtained using an unbiased estimator 
(equation (4)). The lower lags of the autocorrelation sequence were then removed according 

Noise
 Type 

Recognition Rate (%) 
equation (21) 

Recognition Rate (%) 
equation (22) 

Recognition Rate (%) 
equation (23) 

Babble 26.00 24.83 25.19 

Car 53.24 51.56 52.35 

Factory 26.49 25.17 25.82 

F16 25.38 23.71 24.25 

Table 5. CSR averaged accuracies over various SNRs with different noise types, filter length 
L=3 and unbiased estimator for one-sided autocorrelation sequence obtained using 
equations (21), (22) and (23). 

to the criterion discussed in section 3.2.2. A FIR high-pass filter similar to section 3.1.2 was 
then applied to the signal autocorrelation sequence to further suppress the effect of noise. 
Hamming windowing and short-time Fourier transform were the next stages. In the next 
step, the differential power spectrum of the filtered signal was found using (19). This has an 
effect similar to what discussed in 3.1.2, leading to even further suppression of the effect of 
noise. The steps of this algorithm are shown in Fig. 9. The resultant feature set was called 
spectral peaks of filtered higher-lag autocorrelation sequence (SPFH) (Farahani et al., 2006b). 

Figure 9. Front-end diagram for SPFH feature extraction 

3.2.1. SPFH results on Aurora 2 task 

The discussed approach was implemented on Aurora 2 task. Fig. 10 depicts the results 
obtained using MFCC, RAS, AMFCC, DAS and SPFH front-ends. According to this figure, 
SPFH has led to better recognition rates in comparison to other methods for all test sets. 
Also, in Table 6, average recognition rates obtained for each test set of Aurora 2 are shown. 
As shown in Fig. 10, the recognition rates using MFCC are seriously degraded in lower 
SNRs, while, AMFCC, RAS, DAS and SPFH are more robust to different noises with SPFH 
outperforming all the others. 

3.2.2. Adjusting the parameters

In our experiments we have used a filter length of L=2. Furthermore, the best results for 
spectral differentiation were obtained using a simple difference equation (21). Therefore we 
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(a)                                                                   (b) 

(c)

Figure 10. Average recognition rates on Aurora 2 task. (a) Test set a, (b) Test set b, (c) Test 
set c. The results correspond to MFCC, RAS, AMFCC, DAS and SPFH methods. 

Average Recognition Rate (%) 
Feature type 

Set A Set B Set C 

MFCC 61.13 55.57 66.68 

RAS 66.77 60.94 71.81 

AMFCC 63.41 57.67 69.72 

DAS 70.90 65.57 77.17 

SPFH 73.61 68.98 80.89 

Table 6. Comparison of Average recognition rates for various feature types on Aurora 2 test 
sets. 

used (21) in our experiments. In order to find the most suitable autocorrelation lag for 
discarding, we have tested several different lag values. The results are reported in Fig. 11. 
According to this figure, the best results were obtained when lags of lower than 2.5 ms (20 
samples) were discarded. Hence, this value was used as the discarding threshold in our 
experiments. The same value was also used with AMFCC. 

3.3. Autocorrelation peaks after filtering (ACPAF) and autocorrelation peaks (ACP) 
methods 

In this section, first we explain the extraction of the frequency locations of peaks. Then we 
explain ACPAF and ACP methods and finally report the results of their implementation. 
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Figure 11. Average normalized recognition rates for each of the three test sets of Aurora 2 
and their total average versus autocorrelation lag threshold.  

3.3.1. Peak frequency location 

For peak calculations, we used the peak threading method that is rather accurate in finding 
the location of peak frequencies in spectral domain (Strope & Alwan, 1998). For this, we first 
applied a set of triangular filters to the signal. These filters had bandwidths of 100 Hz for 
centre frequencies below 1 kHz and bandwidths of one tenth the centre frequency for the 
frequencies above 1 kHz. Then, an AGC (Automatic Gain Control) was applied to the filter 
outputs. In our implementation, we used a typical AGC that slowly adapts the output level, 
so that its value is maintained near that of the target level when the levels of input change. 
Therefore, the inputs below 30 dB are amplified linearly by 20dB and inputs above 30 dB are 
amplified increasingly less. After finding the isolated peaks, the peaks were threaded 
together and smoothed. Then three peak frequencies and two peak derivatives were found 
and added to the feature vector. 

3.3.2. Algorithm implementation 

Due to the importance of spectral peaks and also the effectiveness of autocorrelation 
function, the autocorrelation domain has also been used for extracting frequencies of the 
first three peaks and two derivatives of them. Fig. 12 depicts the block diagram of this 
feature extraction approach. Once again, feature extraction starts with frame blocking, pre-
emphasis and unbiased autocorrelation calculation. Then, the first three spectral peak 
locations and their derivatives are calculated using the signal autocorrelation, to be later 
added to the feature vector. Furthermore, the front-end diagram continues with/without 
filtering, as pointed out in (8). Hamming windowing, FFT and the rest of blocks normally 
used in MFCC calculations constitute the remainder of feature extraction procedure. If the 
filter is used after the autocorrelation of the signal, a cleaner signal, compared to the original 
noisy signal, could result.  
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Figure 12. Front-end diagram to extract ACPAF features in autocorrelation domain. 

                                              (a)                                                                   (b) 

                                                (c)                                                                   (d) 
Figure 13. Recognition Rates for different noises on isolated-word Farsi corpus. (a) babble, 
(b) car, (c) factory and (d) white noises in different SNRs. The results correspond to MFCC, 
RAS, TSP, ACP and ACPAF. 

In Fig. 12, the box named “peak calculation and computing differential of peaks” displays 
how the peak threading method can be integrated in this front-end. Since after the 
application of autocorrelation function, the spectral peaks become clearer, we expect the 
resultant feature vectors to be more robust to noise.  
As mentioned in (Strope & Alwan, 1998; Farahani et al., 2006a), the peaks of the speech 
spectrum are important for speech recognition. Hence, we decided to add three peak 
frequencies and two peak derivatives to the feature vector. The spectral peaks obtained 
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using unfiltered signal autocorrelation, as depicted in the front-end diagram, are called ACP 
(autocorrelation peaks) and those obtained using filtered signal autocorrelation, ACPAF 
(autocorrelation peaks after filtering). For comparison purposes, we have also implemented 
a feature extraction procedure similar to (Strope & Alwan, 1998), except that a different 
AGC was used, as explained above. This will be called threaded spectral peaks (TSP). 

3.3.3. Experiments

The speech corpus used in these experiments is the speaker-independent isolated-word 
Farsi (Persian) corpus. Our experiments were carried out using MFCC (for comparison 
purposes), RAS, GDF, TSP and our three new methods, ACP and ACPAF. The feature 
vectors for both proposed methods were composed of 12 cepstral and a log-energy 
parameter, together with their first and second derivatives and five extra components of 
which three are for the first three formants and the other two for the frequency peak 
derivatives. Therefore, our feature vectors were of size 44. For implementation of these 
methods, we have used a filter length of L=2. Also unbiased autocorrelation sequence is 
used for feature extraction.
Fig. 13 depicts the results of the implementations. Also the averages of the results are 
reported in Table 7. Once again, the average values mentioned in this table are calculated 
over the results obtained from 0 dB to 20 dB SNRs, omitting the clean and -5 dB results. As 
is clear, the recognition rates using MFCC features are seriously degraded by different 
noises, while RAS method exhibits more robustness. Adding the frequencies of peaks 
approved the effectiveness of autocorrelation domain for peak tracking. As the results 
indicate, while ACP achieves a noticeable improvement in the baseline performance in 
noise, the combination of ACP with FIR filter works better than ACP alone, outperforming 
other methods in noisy conditions. The results obtained can be listed in brief as: 
1. The ACPAF outperforms other methods.  
2. The improvements for car noise are very slight, as most of the feature extraction 

techniques perform almost similar in that case. 
3. Appending frequency peaks to the feature vector can further improve the results 

obtained using autocorrelation based features. 

3.4. Autocorrelation peaks and phase features (APP) 

In this section, feature extraction in phase domain plus the extraction of extra feature 
parameters in autocorrelation domain will be discussed (Farahani et al., 2006c). Due to the 
effectiveness of autocorrelation function in preserving peaks, we will also report the results 
of using the autocorrelation domain for extracting the first 3 formants of the speech signal 
(Strope & Alwan, 1998; Farahani et al., 2006a).  
In Fig. 14 we have shown the procedure followed to extract feature parameters in 
autocorrelation phase parameters. Most of the diagram is similar to previously discussed 
methods with the exception of the calculation of the phase angle, ),( kmyθ , as mentioned in 

(15). As it is clear from (15), these features are related only to the phase variations, in 
contrast to the features based on the magnitude, such as MFCC, that are related to both 

)(mY  and ),( kmyθ  (Ikbal et al., 2003). 
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Average Recognition Rate (%) 
Feature type 

Babble Car Factory White 

MFCC 63.60 89.44 57.92 38.68 

RAS 67.04 90.56 66.40 44.44 

TSP 76.16 87.20 66.44 64.36 

ACP 77.92 90.76 68.16 66.44 

ACPAF 79.28 92.12 70.76 68.64 

Table 7. Comparison of average recognition rates for various feature types with babble, car, 
factory and white noises. 

Here again, the first three spectral peak locations and their derivatives are also calculated 
using the signal autocorrelation spectrum, as explained in 3.3.1 and later added to the 
feature vector in phase domain. The new coefficients were named Autocorrelation Peaks and 
Phase features (APP). 

Figure 14. Front-end diagram to extract features in phase domain along with autocorrelation 
function.

3.4.1. Experiments 

This method was implemented on Aurora 2 task. The feature vectors were composed of 12 
cepstral and one log-energy parameters, together with their first and second derivatives and 
five extra components of which three were for the first three formants and the other two for 
the frequency peak derivatives. Therefore, the overall feature vector size was 44. In this 
method, we have used a filter length of L=2.
Fig. 15 displays the results obtained using MFCC, PAC (phase autocorrelation) and APP. Also, 
for comparison purposes, we have included the results of adding spectral peaks to feature 
vectors calculated using magnitude spectrum and called it TSP (threaded spectral peaks)
(Strope & Alwan, 1998) and ACP (autocorrelation peaks) (Farahani et al., 2006a). According to 
Fig. 15, APP has led to better recognition rates in comparison to most of the other methods 
and outperformed other methods for all test sets. This result shows that the autocorrelation 
domain is more appropriate for peak isolation in phase domain.  
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(a)                                                                 (b) 

 (c) 

Figure 15. Average recognition rates on Aurora 2 database. (a) Test set a, (b) test set b and (c) 
test set c. The results correspond to MFCC, PAC, TSP, ACP, and APP methods. 

In Table 8, we have summarized the average recognition rates obtained for each test set of 
Aurora 2. As can be seen, average recognition rates for features extracted using the 
autocorrelation domain with phase features (APP) tops all other results obtained.  

Average Recognition Rate (%) 
Feature type 

Set A Set B Set C 

MFCC 61.13 55.57 66.68 

PAC 66.02 62.25 72.60 

TSP 66.31 62.86 72.89 

ACP 68.03 64.86 74.46 

APP 71.83 67.69 76.53 

Table 8. Comparison of Average recognition rates for various feature types on three test sets 
of Aurora 2 task. 

4. Conclusion 

In this chapter, the importance of autocorrelation domain in robust feature extraction for 
speech recognition was discussed. To prove the effectiveness of this domain, some recently 
proposed methods for robust feature extraction against additive noise were discussed. These 
methods resulted in cepstral feature sets derived from the autocorrelation spectral domain. 
The DAS algorithm used the differentiated filtered autocorrelation spectrum of the noisy 
signal to extract cepstral parameters. We noted that similar to RAS and DPS, DAS can better 



Robust Speech Recognition and Understanding 262

preserve speech spectral information for recognition. Experimental results were used to 
verify the improvements obtained using DAS feature set in comparison to MFCC, RAS and 
DPS. Its superior performance in comparison to both RAS and DPS is an indication of the 
rather independent effectiveness of the two steps in reducing the effect of noise. Its 
combination with CMN has also been found effective. The impact of filter length and type of 
differentiation on recognition results were also examined. 
Also, the performance of DAS and RAS have further been improved by SPFH where the 
effect of noise has further been suppressed using an extra step of discarding the lower lags 
of the autocorrelation sequence. The experiments showed the better performance of this new 
approach in comparison to the previous autocorrelation-based robust speech recognition 
front-ends.
Techniques based on the above methods and the use of spectral peaks were also discussed 
in this chapter. The proposed front-end diagrams in autocorrelation domain, ACP and 
ACPAF, were evaluated together with several different robust feature extraction methods. 
The usefulness of these techniques was shown and the results indicated that the spectral 
peaks inherently convey robust information for speech recognition, especially in 
autocorrelation domain. Better parameter optimization for these two methods can be a basis 
for the future work as it is believed to have important influence on the system performance. 
As discussed, the features extracted in magnitude domain are more sensitive to the 
background noise in comparison to the phase domain. Appending the frequencies of 
spectral peaks and their derivatives to feature parameters extracted in phase domain, 
similar to what was done in magnitude domain, led to even better results in comparison to 
the parameters extracted using the magnitude spectrum. Once again, the autocorrelation 
domain was used here for spectral peak extraction.  
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