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1. Introduction 

A robot is said to be fully autonomous if it is able to build a navigation map. The map is a 
representation of a robot surroundings modelled as 2D geometric features extracted from a 
proximity sensor like laser. It provides succinct space description that is convenient for 
environment mapping via data association. In most cases these environments are not known 
prior, hence maps needs to be generated automatically. This makes feature based SLAM 
algorithms attractive and a non trivial problems. These maps play a pivotal role in robotics 
since they support various tasks such as mission planning and localization. For decades, the 
latter has received intense scrutiny from the robotic community. The emergence of 
stochastic map proposed by seminal papers of (Smith et al., 1986; Moutarlier et al., 1989a; 
Moutarlier et al., 1989b & Smith et al., 1985), however, saw the birth of joint posterior 
estimation. This is a complex problem of jointly estimating the robot’s pose and the map of 
the environment consistently (Williams S.B et al., 2000) and efficiently. The emergence of 
new sensors systems which can provide information at high rates such as wheel encoders, 
laser scanners and sometimes cameras made this possible. The problem has been research 
under the name Simultaneous Localization and Mapping (SLAM) (Durrant-Whyte, H et al. 
2006 Part I and II) from its inception. That is, to localize a mobile robot, geometric features/ 
landmarks (2D) are generated from a laser scanner by measuring the depth to these 
obstacles. In office like set up, point (from table legs), line (walls) and corner (corner forming 
walls) features makes up a repeated recognisable pattern formed by a the laser data. These 
landmarks or features can be extracted and used for navigation purposes. A robot’s 
perception of its position relative to these landmarks increases, improving its ability to 
accomplish a task. In SLAM, feature locations, robot pose estimates as well feature to robot 
pose correlations statistics are stochastically maintained inside an Extended Kalman filter 
increasing the complexity of the process (Thorpe & Durrant-Whyte, 2001). It is also 
important to note that, though a SLAM problem has the same attributes as estimation and 
tracking problems, it is not fully observable but detectable. This has a huge implication in 
the solution of SLAM problem. Therefore, it is important to develop robust extraction 
algorithms of geometric features from sensor data to aid a robot navigation system. 

15

www.intechopen.com



Sensor Fusion and Its Applications348

Accurate and reliable maps generated autonomously guarantees improved localization 
especially in GPS denied surroundings like indoor (Hough, P.V.C, 1959). The use of 
odometry is not sufficient for position estimation due unbounded position errors. Therefore, 
since office like environments consists of planar surfaces, a 2D space model is adequate to 
describe the robot surroundings because objects are predominantly straight line segments 
and right angle corners. Coincidentally, line segments and corner representation are the two 
most popular methods for indoor modelling from a laser rangefinder. The focus in this 
paper however is corner extraction methods. A number of line and corner extraction 
techniques first transform scan data into Cartesian space then a linear regression method or 
corner extraction algorithm is applied. Some algorithms employ Hugh transform (Hough, 
P.V.C, 1959). & (Duda, R. O, 1972) a popular tool for line detection from scan data due to its 
robustness to noise and missing data. It works in sensor measurement space. However, the 
computational cost associated to its voting mechanism renders real-time implementation 
impossible. On the other hand, an early work by (Crowley, J, 1989) paved the way to 
subsequent line extraction methods from a range sensor. In their work, a process for 
extracting line segments from adjacent co-linear range measurements was presented. The 
Kalman filter update equations were developed to permit the correspondence of a line 
segment to the model to be applied as a correction to estimated position. The approach was 
recently extended by (Pfister, S.T et al. 2003), first providing an accurate means to fit a line 
segment to a set of uncertain points via maximum likelihood formalism. Then weights were 
derived from sensor noise models such that each point’s influence on the fit is according to 
its uncertainty. Another interesting work is one by (Roumeliotis & Bekey, 2000), where two 
Extended Kalman filters are used to extract lines from the scan data. In the algorithm, one 
Kalman filter is used to track the line segments while the other estimates line parameters. 
The combination of the two filters makes it possible to detect edges and straight line 
segments within the sensor field of view. There are many features types one can extract 
from a laser sensor, and are dependent on the obstacles found in the room. If the room has 
chair and table, one would be tempted to extract point features from their legs. Size, shape 
and texture of objects contribute to the type of feature to extract from the sensor. The use of 
generalised algorithms is not uncommon, i.e. algorithms which extract lines from wall, point 
features from table legs and arcs to categorise circular objects (Mendes, & Nunes, 2004). The 
parameters that distinguish each extracted feature makes up the map or state estimate.  
The key to a successful robot pose estimation lies in its ability to effectively extract useful 
information about its location from observations (Li & Jilkov, 2003). Therefore we proposed 
an improved corner detection method to reduce computational cost and improved 
robustness.  
The paper is structured as follows; section 2 deals with feature extraction, section 3 discuss 
the EKF-SLAM process. Section 4 is result and analysis, while section 5 covers conclusion 
and future work. 

 
2. Feature Extraction 

Feature extraction forms the lower part of the two layered procedure of feature detection. 
The top tier is the data segmentation process, which creates clusters of points deemed to 
originate from the same obstacle. It groups measurements of a scan into several clusters 
according to the distances between consecutive scans. These segments sectors then are fed to 

the feature extraction algorithms, where features like corners or lines are considered. These 
features are well defined entities which are recognisable and can be repeatedly detected. 
In this paper, real laser data from the sensor onboard a robot is processed to extract corner 
like features, common in most indoor environments. A robot used for this experiment is 
called Meer-Cat and was developed in house, depicted by Figure 1 below.  
 

 
 

Fig. 1. Meer-Cat mobile platform equipped with Sick laser scanner. The robot has an upright 
board at the top used for tracking purposes via another laser sensor.  

 
2.1 Corner Extraction 
Most corner detection algorithms utilises a sliding window technique (Spinello, L, 2007) or 
picking out the ends points of a line segment as a corners, e.g. slight-and- Merge (Pfister, S.T 
et al. 2003). This is normally where two line segments meet. Although, an algorithm by 
(Einsele, T, 2001) is a Split and Merge procedure and it determine corners likewise, it has a 
slight variation in data processing. The following subsections discuses methods of corner 
extraction, to be used by an indoor navigation system. 

 
2.1.1 Sliding window corner detector  
The sliding window technique has three main parts; vectors determination from three points 
(Cartesian points), Angle check between the vectors, and the backward check when a 
corners angle is satisfied. Firstly the size of a window is determined by pre-setting a 
midpoint position. That is, a window sector size of 11 sample scans has midpoint at 6th 
sample data, 13 at 7th, and 15 at 8th and so on. The window is broken into two vectors 
( vi and vj ), such that for an 11 sample size window, the first and the eleventh samples are 
terminal points of these vectors. Therefore, the algorithm assumes a corner if the vectors 
forms a triangular shape with the midpoint sample being one of its vertexes. An iterative 
search for a corner angle is carried out by sliding the window step by step over the entire 
scan. If conditions are met a corner is noted at midpoint. That is, an up bound for the angle 
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between the vectors as well as the minimum allowable opposite distance c as shown in 
figure 2b below are set prior. A corner is normally described by angles less than 120 degrees, 
while the separation distance is tightly related to the angular resolution of the laser 
rangefinder. The distance c is set to very small values; computations greater than this value 
are passed as corners. If a corner is detected, an ‘inward’ search is conducted. This is done 
by checking for a corner angle violation/ existence between the 2nd and 10th, 3rd and 9th, and 
so on, for sample sector of 11 data points. This is from the assumption that a linear fit can be 
performed on the vectors. The searching routine of this method already demand high 
computation speed, therefore inward search will undoubtedly increase the complexity.  
 

 
Fig. 2. (a), Sliding window technique. (b) Shows how two vectors centred at the midpoint 
are derived if a corner if found. The terminal points are at the first and the eleventh point 
given that the midpoint of the sector is 6. 
 
The angle is calculated using cosine rule, that is, 
 

 1cos ( . / ( ))vi vj vi vj  .  (1) 

Using the above methods one runs into the problem of mapping outliers as corners. This has 
huge implication in real time implementation because computation complexity of the SLAM 
process is quadratic the number of landmarks mapped. The outliers or ‘ghost’ landmarks 
corrupt the EKF SLAM process. 

  
2.1.2 Split and Merge 
Laser sensor produces range scans which describes a 2D slice of the environment. Each 
range point is specified in polar coordinates system whose origin is the location of the 
sensor on board the robot. Scan data from a laser range finder has almost negligible angular 
uncertainty, and the noise on range measurement is assumed to follow Gaussians 
distribution properties. Data segments originating from the same object can be represented 
by a line. And traditionally, straight lines are represented by the following parameters 
 
 y mx c    (2) 
 
where c and m is the y -intercept and slope of a line respectively. The shortcoming with 
this representation is that vertical lines require infinite m  (gradient).  

 
Fig. 3. As the line become vertical, the slope approaches infinity. 
 
If objects in an environment can be represented by polygonal shapes, then line fitting is a 
suitable choice to approximate objects shapes. During data segmentation, clusters are 
formed, and a cluster can be represented by a set of lines, defined as follows: 
 

 { [ , , , ] : 0 }T
i i fC l P P m b i n      (3) 

 
where iP  and fP are respectively the Cartesian coordinates of the initial and the end of a 

line. While m and b are the parameters of an ith line. A method proposed by [14] is used to 
search for a breaking point of a cluster, which occurs at the maximum perpendicular 
distance to a line. The process starts by connecting the first and last data points of a cluster 
by a straight line ( 0Ax By C   ), where  

f iA y y  ; f iB x x  ; ( )f fC By Ax   . Then for all data points between the 

extreme points, a perpendicular distance d  to the line is calculated. Such that  
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.  (4) 

 
If a tolerance value is violated by the d  then a break point is determined, this is done 
recursively until the point before last. The final step is to determine straight line parameters, 
i.e. an orthogonal regression method (Mathpages 2010-04-23) is applied to determine linear 
fit that minimizes quadratic error. The process is graphically represented by the figure 
below 
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Fig. 4. Recursive line fitting 
 
To mitigate the infinite slope problem, a polar representation or Hessen form is used. In the 
method, each point in the Cartesian coordinate space adds a sinusoid in the (  , ) space. 
This is shown the figure 5 below. 
 

 
Fig. 5. Mapping between the Cartesian space and the polar Space. 
 
The polar form used to represent lines is given as follows 
 
 cos( ) sin( )x y      (5) 

 
where 0  is the perpendicular distance of the line to the origin. The angle   is bounded 

by       and is the angle between the x axis and the normal of the line as shown in 
the figure 6 below.  

 
Fig. 6. Fitting line parameters. d  is the fitting error we wish to minimize. A line is 
expressed in polar coordinates (  and  ). ( x , y ) is the Cartesian coordinates of a point on 
the line. 
 
Using the above representation, the split-and-merge algorithm recursively subdivides scan 
data into sets of collinear points, approximated as lines in total least square sense. The 
algorithm determines corners by two main computations, the line extraction and collection 
of endpoints as corners. Initially, scanned data is clustered into sectors assumed to come 
from the same objects. The number of data points within a certain cluster as well as an 
identification of that cluster is stored. Clusters are then passed to a line fitting algorithm (Lu 
& Milios, 1994). When we perform a regression fit of a straight line to a set of ( x , y ) data 
points we typically minimize the sum of squares of the "vertical" distance between the data 
points and the line (Mathpages 2010-04-23).Therefore, the aim of the linear regression 
method is to minimize the mean squared error of  
 

   22 { cos sin( )}i ii
d x y       (6) 

 
such that ( , )i ix y  are the inputs points in Cartesian coordinates. The solution to the line 
parameters can be found by taking the first derivative of the equation 6 above with respect 
to   and   respectively. We assume that  
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Line parameters can be determined by the following  
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if we assume that the Centroid is on the line then  can be computed using equation 4 as: 
 
 cos( ) sin( )m mx y      (9) 
where  
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are ( mx , my ) are Cartesian coordinates of the Centroid, and N is the number of points in the 
sector scan we wish to fit line parameter to. 
 

 
 

Fig. 7. Fitting lines to a laser scan. A line has more than four sample points. 
 

During the line fitting process, further splitting positions within a cluster are determined by 
computing perpendicular distance of each point to the fitted line. As shown by figure 6. A 
point where the perpendicular distance is greater than the tolerance value is marked as a 
candidate splitting position. The process is iteratively done until the whole cluster scan is 
made up of linear sections as depicted by figure 7 above. The next procedure is collection of 
endpoints, which is joining points of lines closest to each other. This is how corner positions 
are determined from split and merge algorithm. The figure below shows extracted corners 
defined at positions where two line meet. These positions (corners) are marked in pink. 
 

 
Fig. 8. Splitting position taken as corners (pink marks) viewed from successive robot 
positions. The first and second extraction shows 5 corners. Interestingly, in the second 
extraction a corner is noted at a new position, In SLAM, the map has total of 6 landmarks in 
the state vector instead of 5. The association algorithm will not associate the corners; hence a 
new feature is mapped corrupting the map. 
 
The split and merge corner detector brings up many possible corners locations. This has a 
high probability of corrupting the map because some corners are ‘ghosts’. There is also the 
issue of computation burden brought about by the number of landmarks in the map. The 
standard EKF-SLAM requires time quadratic in the number of features in the map (Thrun, S 
et al. 2002).This computational burden restricts EKF-SLAM to medium sized environments 
with no more than a few hundred features.  
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2.1.3 Proposed Method 
We propose an extension to the sliding window technique, to solve the computational cost 
problem and improve the robustness of the algorithm. We start by defining the limiting 
bounds for both angle   and the opposite distance c. The first assumption we make is that a 
corner is determined by angles between 70° to 110°. To determine the corresponding lower 
and upper bound of the opposite distance c we use the minus cosine rule. Following an 
explanation in section 2.1.1, lengths vectors of are determined by taking the modulus of 

vi and vj  such that ia v  and jb v . Using the cosine rule, which is basically an 

extension of the Pythagoras rule as the angle increases/ decreases from the critical angle 
(90), the minus cosine function is derived as: 
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where ( )f  is minus cosine  . The limits of operating bounds for c can be inferred from 

the output of ( )f   at corresponding bound angles. That is,   is directly proportion to 
distance c. Acute angles give negative results because the square of c  is less than the sum of 
squares of a  andb . The figure 9 below shows the angle-to-sides association as well as the 
corresponding ( )f   results as the angle grows from acuteness to obtuseness.   

Fig. 9. The relation of the side lengths of a triangle as the angle increases. Using minus 
cosine function, an indirect relationship is deduced as the angle is increased from acute to 
obtuse.  
 
The ( )f   function indirectly has information about the minimum and maximum 
allowable opposite distance. From experiment this was found to be within [-0.3436 0.3515]. 
That is, any output within this region was considered a corner. For example, at 90 

angle 2 2 2c a b  , outputting zero for ( )f   function. As the angle   increases, 

acuteness ends and obtuseness starts, the relation between 2c  and 2 2a b is reversed. 
 
The main aim of this algorithm is to distinguish between legitimate corners and those that 
are not (outliers). Corner algorithms using sliding window technique are susceptible to 
mapping outlier as corners. This can be shown pictorial by the figure below 
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2.1.3 Proposed Method 
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Fig. 10. Outlier corner mapping 

 
where   is the change in angle as the algorithm checks consecutively for a corner angle 
between points. That is, if there are 15 points in the window and corner conditions are met, 
corner check process will be done. The procedure checks for corner condition violation/ 
acceptance between the 2nd & 14th, 3rd & 13th, and lastly between the 4th & 12th data points as 
portrayed in figure 10 above. If  does not violate the pre-set condition, i.e. (corner angles 
  120) then a corner is noted. c is the opposite distance between checking points. 
Because this parameter is set to very small values, almost all outlier corner angle checks will 
pass the condition. This is because the distances are normally larger than the set tolerance, 
hence meeting the condition. 
The algorithm we propose uses a simple and effect check, it shifts the midpoint and checks 
for the preset conditions. Figure 11 below shows how this is implemented  
 

 
Fig. 11. Shifting the mid-point to a next sample point (e.g. the 7th position for a 11 sample 
size window) within the window  
 
As depicted by figure 11 above,   and   angles are almost equal, because the angular 
resolution of the laser sensor is almost negligible. Hence, shifting the Mid-point will almost 
give the same corner angles, i.e.   will fall with the ( )f   bounds. Likewise, if a Mid-

point coincides with the outlier position, and corner conditions are met, i.e.   and c  
(or ( )f   conditions) are satisfies evoking the check procedure. Shifting a midpoint gives a 
results depicted by figure 12 below.  
 

 
Fig. 12. If a Mid-point is shifted to the next consecutive position, the point will almost 
certainly be in-line with other point forming an obtuse triangle. 
 
Evidently, the corner check procedure depicted above will violate the corner conditions. We 
expect   angle to be close to 180 and the output of ( )f   function to be almost 1, which 
is outside the bounds set. Hence we disregard the corner findings at the Mid-point as ghost, 
i.e. the Mid-point coincide with an outlier point. The figure below shows an EKF SLAM 
process which uses the standard corner method, and mapping an outlier as corner. 
 

 
Fig. 13. Mapping outliers as corners largely due to the limiting bounds set. Most angle and 
opposite distances pass the corner test bounds.  
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Fig. 14. A pseudo code for the proposed corner extractor. 

A pseudo code in the figure is able to distinguish outlier from legitimate corner positions. 
This is has a significant implication in real time implementation especially when one maps 
large environments. EKF-SLAM’s complexity is quadratic the number of landmarks in the 
map. If there are outliers mapped, not only will they distort the map but increase the 
computational complexity. Using the proposed algorithm, outliers are identified and 
discarded as ghost corners. The figure below shows a mapping result when the two 
algorithms are used to map the same area  

 
Fig. 15. Comparison between the two algorithms (mapping the same area) 

 
3. EKF-SLAM 

The algorithm developed in the previous chapter form part of the EKF-SLAM algorithms. In 
this section we discuss the main parts of this process. The EKF-SLAM process consists of a 
recursive, three-stage procedure comprising prediction, observation and update steps. The 
EKF estimates the pose of the robot made up of the position ( , )r rx y  and orientation r , 

together with the estimates of the positions of the N  environmental features ,f ix  

where 1i N  , using observations from a sensor onboard the robot (Williams, S.B et al. 
2001).  
SLAM considers that all landmarks are stationary; hence the state transition model for the 
thi  feature is given by: 

 , , ,( ) ( 1)f i f i f ik k  x x x
  (12) 

 
It is important to note that the evolution model for features does have any uncertainty since 
the features are considered static.  

 
3.1 Process Model 
Implementation of EKF-SLAM requires that the underlying state and measurement models 
to be developed. This section describes the process models necessary for this purpose. 

 
3.1.1 Dead-Reckoned Odometry Measurements 
Sometimes a navigation system will be given a dead reckoned odometry position as input 
without recourse to the control signals that were involved. The dead reckoned positions can 
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be converted into a control input for use in the core navigation system. It would be a bad 
idea to simply use a dead-reckoned odometry estimate as a direct measurement of state in a 
Kalman Filter (Newman, P, 2006).  
 

 
Fig. 16. Odometry alone is not ideal for position estimation because of accumulation of 
errors. The top left figure shows an ever increasing 2  bound around the robot’s position. 
 
Given a sequence 0 0 0 0(1), (2), (3), ( )kx x x x  of dead reckoned positions, we need to 
figure out a way in which these positions could be used to form a control input into a 
navigation system. This is given by: 

 ( ) ( 1) ( )o o ok k k   u x x   (13) 
This is equivalent to going back along 0 ( 1)k x  and forward along 0 ( )kx . This gives a 

small control vector 0 ( )ku  derived from two successive dead reckoned poses. Equation 13 
subtracts out the common dead-reckoned gross error (Newman, P, 2006). The plant model 
for a robot using a dead reckoned position as a control input is thus given by: 
 

 ( ) ( ( 1), ( ))r rk k k X f X u   (14) 

 ( ) ( 1) ( )r r ok k k  X X u   (15) 
 and   are composition transformations which allows us to express robot pose 
described in one coordinate frame, in another alternative coordinate frame. These 

composition transformations are given below:  
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3.2 Measurement Model 
This section describes a sensor model used together with the above process models for the 
implementation of EKF-SLAM. Assume that the robot is equipped with an external sensor 
capable of measuring the range and bearing to static features in the environment. The 
measurement model is thus given by: 
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( , )i ix y  are the coordinates of the thi  feature in the environment. ( )r kX  is the ( , )x y  

position of the robot at time k . ( )h k  is the sensor noise assumed to be temporally 

uncorrelated, zero mean and Gaussian with standard deviation  . ( )ir k  and ( )i k  are 

the range and bearing respectively to the thi  feature in the environment relative to the 
vehicle pose. 
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The strength (covariance) of the observation noise is denoted R . 
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3.3 EKF-SLAM Steps 
This section presents the three-stage recursive EKF-SLAM process comprising prediction, 
observation and update steps. Figure 17 below summarises the EKF - SLAM process 
described here. 
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0|0 0|00; 0 x P   Map initialization 

0 0[ , ]z R GetLaserSensorMeasuremet  

 

If ( 0z ! =0) 

0|0 0|0 0|0 0|0 0 0( ; , , )AugmentMap   x ,P x P z R  

End 
 
For k = 1: NumberSteps (=N) 

, 1R kk k GetOdometryMeasurement   x ,Q  

| 1 | 1 1| 1 1| 1 | 1_ Pr ( ; , )k k k k k k k k Rk kEKF edict         x ,P x P x  

 

[ , ]k kz R GetLaserSensorMeasuremet  

| 1 | 1( , , )k k k k k k kH DoDataAssociation R  x ,P z  

| | | 1 | 1_ ( ; , , , )k k k k k k k k k k kEKF Update R H    x ,P x P z  {If a feature exists in the map} 

| | | 1 | 1( ; , , , )k k k k k k k k k k kAugmentMap R H    x ,P x P z  {If it’s a new feature} 

If ( kz = =0)  

| |k k k k  x ,P  = | 1 | 1k k k k   x ,P  

end 
end 
Fig. 17. EKF- SLAM pseudo code  

 
3.3.1 Map Initialization 
The selection of a base reference B  to initialise the stochastic map at time step 0 is 
important. One way is to select as base reference the robot’s position at step 0. The 
advantage in choosing this base reference is that it permits initialising the map with perfect 
knowledge of the base location (Castellanos, J.A et al. 2006). 
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This avoids future states of the vehicle’s uncertainty reaching values below its initial 
settings, since negative values make no sense. If at any time there is a need to compute the 
vehicle location or the map feature with respect to any other reference, the appropriate 
transformations can be applied. At any time, the map can also be transformed to use a 

feature as base reference, again using the appropriate transformations (Castellanos, J.A et al. 
2006).  

 
3.3.2 Prediction using Dead-Reckoned Odometry Measurement as inputs 
The prediction stage is achieved by a composition transformation of the last estimate with a 
small control vector calculated from two successive dead reckoned poses.  
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The state error covariance of the robot state ( | 1)r k k P  is computed as follows: 
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1( , )r oJ X u  is the Jacobian of equation (16) with respect to the robot pose, rX  and 

2 ( , )r oJ X u  is the Jacobian of equation (16) with respect to the control input, ou . Based on 
equations (12), the above Jacobians are calculated as follows:  
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3.3.3 Observation 
Assume that at a certain time k  an onboard sensor makes measurements (range and 
bearing) to m  features in the environment. This can be represented as: 
 
 1( ) [ . . ]m mk z z z   (31) 
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3.3.3 Observation 
Assume that at a certain time k  an onboard sensor makes measurements (range and 
bearing) to m  features in the environment. This can be represented as: 
 
 1( ) [ . . ]m mk z z z   (31) 
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3.3.4 Update 

The update process is carried out iteratively every thk step of the filter. If at a given time 
step no observations are available then the best estimate at time k  is simply the 
prediction ( | 1)k k X . If an observation is made of an existing feature in the map, the 

state estimate can now be updated using the optimal gain matrix ( )kW . This gain matrix 
provides a weighted sum of the prediction and observation. It is computed using the 
innovation covariance ( )kS , the state error covariance ( | 1)k k P  and the Jacobians of 

the observation model (equation 18), ( )kH . 
 
 1( ) ( | 1) ( ) ( )k k k k k W P H S ,  (32) 

where ( )kS  is given by: 
 ( ) ( ) ( | 1) ( ) ( )Tk k k k k k  S H P H R  (33) 

 
( )kR is the observation covariance.  

This information is then used to compute the state update ( | )k kX  as well as the updated 

state error covariance ( | )k kP .  

 ( | ) ( | 1) ( ) ( )k k k k k k  X X W    (34) 
 
 ( | ) ( | 1) ( ) ( ) ( )Tk k k k k k k  P P W S W   (35) 
 
The innovation, ( )kv  is the discrepancy between the actual observation, ( )kz  and the 

predicted observation, ( | 1)k k z . 
 
 ( ) ( ) ( | 1)k k k k  v z z ,  (36) 
 
where ( | 1)k k z  is given as: 
 

  ( | 1) ( | 1), ,r i ik k k k  z h X x y   (37) 

)1|( kkX r  is the predicted pose of the robot and ),( ii yx  is the position of the observed 
map feature. 

 
3.4 Incorporating new features 
Under SLAM the system detects new features at the beginning of the mission and when 
exploring new areas. Once these features become reliable and stable they are incorporated 
into the map becoming part of the state vector. A feature initialisation function y  is used 

for this purpose. It takes the old state vector, ( | )k kX  and the observation to the new 

feature, ( )kz  as arguments and returns a new, longer state vector with the new feature at 
its end (Newman 2006).  
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Where the coordinates of the new feature are given by the function g : 
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r  and   are the range and bearing to the new feature respectively. ),( rr yx  and r  are the 
estimated position and orientation of the robot at time k . 
The augmented state vector containing both the state of the vehicle and the state of all 
feature locations is denoted: 
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We also need to transform the covariance matrix P  when adding a new feature. The 
gradient for the new feature transformation is used for this purpose: 
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The complete augmented state covariance matrix is then given by:  
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3.3.4 Update 

The update process is carried out iteratively every thk step of the filter. If at a given time 
step no observations are available then the best estimate at time k  is simply the 
prediction ( | 1)k k X . If an observation is made of an existing feature in the map, the 

state estimate can now be updated using the optimal gain matrix ( )kW . This gain matrix 
provides a weighted sum of the prediction and observation. It is computed using the 
innovation covariance ( )kS , the state error covariance ( | 1)k k P  and the Jacobians of 

the observation model (equation 18), ( )kH . 
 
 1( ) ( | 1) ( ) ( )k k k k k W P H S ,  (32) 

where ( )kS  is given by: 
 ( ) ( ) ( | 1) ( ) ( )Tk k k k k k  S H P H R  (33) 

 
( )kR is the observation covariance.  

This information is then used to compute the state update ( | )k kX  as well as the updated 

state error covariance ( | )k kP .  

 ( | ) ( | 1) ( ) ( )k k k k k k  X X W    (34) 
 
 ( | ) ( | 1) ( ) ( ) ( )Tk k k k k k k  P P W S W   (35) 
 
The innovation, ( )kv  is the discrepancy between the actual observation, ( )kz  and the 

predicted observation, ( | 1)k k z . 
 
 ( ) ( ) ( | 1)k k k k  v z z ,  (36) 
 
where ( | 1)k k z  is given as: 
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)1|( kkX r  is the predicted pose of the robot and ),( ii yx  is the position of the observed 
map feature. 

 
3.4 Incorporating new features 
Under SLAM the system detects new features at the beginning of the mission and when 
exploring new areas. Once these features become reliable and stable they are incorporated 
into the map becoming part of the state vector. A feature initialisation function y  is used 

for this purpose. It takes the old state vector, ( | )k kX  and the observation to the new 

feature, ( )kz  as arguments and returns a new, longer state vector with the new feature at 
its end (Newman 2006).  
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Where the coordinates of the new feature are given by the function g : 
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r  and   are the range and bearing to the new feature respectively. ),( rr yx  and r  are the 
estimated position and orientation of the robot at time k . 
The augmented state vector containing both the state of the vehicle and the state of all 
feature locations is denoted: 
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where nstates  and n  are the lengths of the state and robot state vectors respectively.  
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3.5 Data association 
In practice, features have similar properties which make them good landmarks but often 
make them difficult to distinguish one from the other. When this happen the problem of 
data association has to be addressed. Assume that at time k , an onboard sensor obtains a set 
of measurements ( )i kz  of m  environment features ( 1,..., )i i mE . Data Association 
consists of determining the origin of each measurement, in terms of map features 

.,...,1, njF j   The results is a hypothesis: 
 
  1 2 3.....k mj j j jH ,  (49) 

 
matching each measurement ( )i kz  with its corresponding map feature. )0( iji jF  

indicates that the measurement ( )i kz  does not come from any feature in the map. Figure 2 
below summarises the data association process described here. Several techniques have 
been proposed to address this issue and more information on some these techniques can be 
found in (Castellanos, J.A et al. 2006) and (Cooper, A.J, 2005). 
Of interest in this chapter is the simple data association problem of finding the 
correspondence of each measurement to a map feature. Hence the Individual Compatibility 
Nearest Neighbour Method will be described.  

 

3.5.1 Individual Compatibility 
The IC considers individual compatibility between a measurement and map feature. This 
idea is based on a prediction of the measurement that we would expect each map feature to 
generate, and a measure of the discrepancy between a predicted measurement and an actual 
measurement made by the sensor. The predicted measurement is then given by: 
  
 ( | 1) ( ( | 1), , )j r j jk k k k x y  z h X   (50) 

 
The discrepancy between the observation ( )i kz  and the predicted measurement 

( | 1)j k k z  is given by the innovation term ( )ij kv : 
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The covariance of the innovation term is then given as: 
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( )kH  is made up of rH , which  is the Jacobian of the observation model with respect to 

the robot states and FjH , the gradient Jacobian of the observation model with respect to the 

observed map feature.  
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Zeros in equation (53) above represents un-observed map features. 

 
To deduce a correspondence between a measurement and a map feature, Mahalanobis 
distance is used to determine compatibility, and it is given by: 
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The measurement and a map feature can be considered compatible if the Mahalanobis 
distance satisfies:  
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Where )dim( ijvd   and 1  is the desired level of confidence usually taken to be %95 . 
The result of this exercise is a subset of map features that are compatible with a particular 
measurement. This is the basis of a popular data association algorithm termed Individual 
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where nstates  and n  are the lengths of the state and robot state vectors respectively.  
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indicates that the measurement ( )i kz  does not come from any feature in the map. Figure 2 
below summarises the data association process described here. Several techniques have 
been proposed to address this issue and more information on some these techniques can be 
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Of interest in this chapter is the simple data association problem of finding the 
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idea is based on a prediction of the measurement that we would expect each map feature to 
generate, and a measure of the discrepancy between a predicted measurement and an actual 
measurement made by the sensor. The predicted measurement is then given by: 
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Compatibility Nearest Neighbour. Of the map features that satisfy IC, ICNN chooses one 
with the smallest Mahalanobis distance (Castellanos, J.A et al. 2006).  

 
3.6 Consistency of EKF-SLAM 
EKF-SLAM consistency or lack of was discussed in (Castellanos, J.A et al. 2006), (Newman, 
P.M. (1999), (Cooper, A.J, 2005), and (Castellanos, J.A et al. 2006), It is a non-linear problem 
hence it is necessary to check if it is consistent or not. This can be done by analysing the 
errors. The filter is said to be unbiased if the Expectation of the actual state estimation error, 

( )kX  satisfies the following equation: 
 

 [ ] 0E X   (56) 

   ( ) ( ) ( | 1)
T

E k k k k     
 X X P   (57) 

where the actual state estimation error is given by: 
 

 ( ) ( ) ( | 1)k k k k  X X X   (58) 
 

( | 1)k k P  is the state error covariance. Equation (57) means that the actual mean square 
error matches the state covariance. When the ground truth solution for the state variables is 
available, a chi-squared test can be applied on the normalised estimation error squared to 
check for filter consistency. 
 

      1( ) ( | 1) ( )
T

k k k k X P X 2
,1d     (59) 

 

where DOF is equal to the state dimension  )(dim kxd   and 1  is the desired confidence 
level. In most cases ground truth is not available, and consistency of the estimation is 
checked using only measurements that satisfy the innovation test: 
 

 1 2
,1( ) ( )T

ij ij ij dk k 
v S v   (60) 

Since the innovation term depends on the data association hypothesis, this process becomes 
critical in maintaining a consistent estimation of the environment map. 

 
4. Result and Analysis 

Figure 19 below shows offline EKF SLAM results using data logged by a robot. The 
experiment was conducted inside a room of 900 cm x 720cm dimension with a few obstacles. 
Using an EKF-SLAM algorithm which takes data information (corners locations & 
odometry); a map of the room was developed. Corner features were extracted from the laser 
data. To initialize the mapping process, the robot’s starting position was taken reference. In 
figure 19 below, the top left corner is a map drawn using odometry; predictably the map is 
skewed because of accumulation of errors. The top middle picture is an environment drawn 
using EKF SLAM map (corners locations). The corners were extracted using an algorithm 
we proposed, aimed at solving the possibility of mapping false corners. When a corner is re-

observed a Kalman filter update is done. This improves the overall position estimates of the 
robot as well as the landmark. Consequently, this causes the confidence ellipse drawn 
around the map (robot position and corners) to reduce in size (bottom left picture).  
 

 
Fig. 18. In figure 8, two consecutive corner extraction process from the split and merge 
algorithm maps one corner wrongly, while in contrast our corner extraction algorithm picks 
out the same two corners and correctly associates them.  
 

 
Fig. 19. EKF-SLAM simulation results showing map reconstruction (top right) of an office 
space drawn from sensor data logged by the Meer Cat. When a corner is detected, its 
position is mapped and a 2  confidence ellipse is drawn around the feature position. As 
the number of observation of the same feature increase the confidence ellipse collapses (top 
right). The bottom right picture depict x coordinate estimation error (blue) between 2  
bounds (red). Perceptual inference  
 
Expectedly, as the robot revisits its previous position, there is a major decrease in the ellipse, 
indicating robot’s high perceptual inference of its position. The far top right picture shows a 
reduction in ellipses around robot position. The estimation error is with the 2 , indicating 
consistent results, bottom right picture. During the experiment, an extra laser sensor was 
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Compatibility Nearest Neighbour. Of the map features that satisfy IC, ICNN chooses one 
with the smallest Mahalanobis distance (Castellanos, J.A et al. 2006).  

 
3.6 Consistency of EKF-SLAM 
EKF-SLAM consistency or lack of was discussed in (Castellanos, J.A et al. 2006), (Newman, 
P.M. (1999), (Cooper, A.J, 2005), and (Castellanos, J.A et al. 2006), It is a non-linear problem 
hence it is necessary to check if it is consistent or not. This can be done by analysing the 
errors. The filter is said to be unbiased if the Expectation of the actual state estimation error, 

( )kX  satisfies the following equation: 
 

 [ ] 0E X   (56) 

   ( ) ( ) ( | 1)
T

E k k k k     
 X X P   (57) 

where the actual state estimation error is given by: 
 

 ( ) ( ) ( | 1)k k k k  X X X   (58) 
 

( | 1)k k P  is the state error covariance. Equation (57) means that the actual mean square 
error matches the state covariance. When the ground truth solution for the state variables is 
available, a chi-squared test can be applied on the normalised estimation error squared to 
check for filter consistency. 
 

      1( ) ( | 1) ( )
T

k k k k X P X 2
,1d     (59) 

 

where DOF is equal to the state dimension  )(dim kxd   and 1  is the desired confidence 
level. In most cases ground truth is not available, and consistency of the estimation is 
checked using only measurements that satisfy the innovation test: 
 

 1 2
,1( ) ( )T

ij ij ij dk k 
v S v   (60) 
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Figure 19 below shows offline EKF SLAM results using data logged by a robot. The 
experiment was conducted inside a room of 900 cm x 720cm dimension with a few obstacles. 
Using an EKF-SLAM algorithm which takes data information (corners locations & 
odometry); a map of the room was developed. Corner features were extracted from the laser 
data. To initialize the mapping process, the robot’s starting position was taken reference. In 
figure 19 below, the top left corner is a map drawn using odometry; predictably the map is 
skewed because of accumulation of errors. The top middle picture is an environment drawn 
using EKF SLAM map (corners locations). The corners were extracted using an algorithm 
we proposed, aimed at solving the possibility of mapping false corners. When a corner is re-

observed a Kalman filter update is done. This improves the overall position estimates of the 
robot as well as the landmark. Consequently, this causes the confidence ellipse drawn 
around the map (robot position and corners) to reduce in size (bottom left picture).  
 

 
Fig. 18. In figure 8, two consecutive corner extraction process from the split and merge 
algorithm maps one corner wrongly, while in contrast our corner extraction algorithm picks 
out the same two corners and correctly associates them.  
 

 
Fig. 19. EKF-SLAM simulation results showing map reconstruction (top right) of an office 
space drawn from sensor data logged by the Meer Cat. When a corner is detected, its 
position is mapped and a 2  confidence ellipse is drawn around the feature position. As 
the number of observation of the same feature increase the confidence ellipse collapses (top 
right). The bottom right picture depict x coordinate estimation error (blue) between 2  
bounds (red). Perceptual inference  
 
Expectedly, as the robot revisits its previous position, there is a major decrease in the ellipse, 
indicating robot’s high perceptual inference of its position. The far top right picture shows a 
reduction in ellipses around robot position. The estimation error is with the 2 , indicating 
consistent results, bottom right picture. During the experiment, an extra laser sensor was 
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user to track the robot position, this provided absolute robot position. An initial scan of the 
environment (background) was taken prior by the external sensor. A simple matching is 
then carried out to determine the pose of the robot in the background after exploration. 
Figure 7 below shows that as the robot close the loop, the estimated path and the true are 
almost identical, improving the whole map in the process. 
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Fig. 20. The figure depicts that as the robot revisits its previous explored regions; its 
positional perception is high. This means improved localization and mapping, i.e. improved 
SLAM output. 

 
5. Conclusion and future work 

In this paper we discussed the results of an EKF SLAM using real data logged and 
computed offline. One of the most important parts of the SLAM process is to accurately map 
the environment the robot is exploring and localize in it. To achieve this however, is 
depended on the precise acquirement of features extracted from the external sensor. We 
looked at corner detection methods and we proposed an improved version of the method 
discussed in section 2.1.1. It transpired that methods found in the literature suffer from high 
computational cost. Additionally, there are susceptible to mapping ‘ghost corners’ because 
of underlying techniques, which allows many computations to pass as corners. This has a 
major implication on the solution of SLAM; it can lead to corrupted map and increase 
computational cost. This is because EKF-SLAM’s computational complexity is quadratic the 
number of landmarks in the map, this increased computational burden can preclude real-

time operation. The corner detector we developed reduces the chance of mapping dummy 
corners and has improved computation cost. This offline simulation with real data has 
allowed us to test and validate our algorithms. The next step will be to test algorithm 
performance in a real time. For large indoor environments, one would employ a try a 
regression method to fit line to scan data. This is because corridors will have numerous 
possible corners while it will take a few lines to describe the same space.  
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