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1. Introduction 

Sensor and Information fusion is recently a major topic not only in traffic management, 
military, avionics, robotics, image processing, and e.g. medical applications, but becomes 
more and more important in machine diagnosis and conditioning for complex production 
machines and process engineering. Several approaches for multi-sensor systems exist in the 
literature (e.g. Hall, 2001; Bossé, 2007).  
In this chapter an approach for a Fuzzy-Pattern-Classifier Sensor Fusion Model based on a 
general framework (e.g. Bocklisch, 1986; Eichhorn, 2000; Schlegel, 2004; Lohweg, 2004; 
Lohweg, 2006; Hempel, 2008; Herbst 2008; Mönks, 2009; Hempel 2010) is described. An 
application of the fusion method is shown for printing machines. An application on quality 
inspection and machine conditioning in the area of banknote production is highlighted. 
The inspection of banknotes is a high labour intensive process, where traditionally every 
note on every sheet is inspected manually. Machines for the automatic inspection and 
authentication of banknotes have been on the market for the past 10 to 12 years, but recent 
developments in technology have enabled a new generation of detectors and machines to be 
developed. However, as more and more print techniques and new security features are 
established, total quality, security in banknote printing as well as proper machine conditions 
must be assured (Brown, 2004). Therefore, this factor necessitates amplification of a sensorial 
concept in general. Such systems can be used to enhance the stability of inspection and 
condition results for user convenience while improving machine reliability.  
During printed product manufacturing, measures are typically taken to ensure a certain 
level of printing quality. This is particularly true in the field of security printing, where the 
quality standards, which must be reached by the end-products, i.e. banknotes, security 
documents and the like, are very high. Quality inspection of printed products is 
conventionally limited to the optical inspection of the printed product. Such optical 
inspection can be performed as an off-line process, i.e. after the printed product has been 
processed in the printing press, or, more frequently, as an in-line process, i.e. on the printing 
press, where the printing operation is carried out. Usually only the existence or appearance 
of colours and their textures are checked by an optical inspection system.  
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In general, those uni-modal systems have difficulties in detection of low degradation errors 
over time (Ross 2006; Lohweg, 2006). Experienced printing press operators may be capable 
of identifying degradation or deviation in the printing press behaviour, which could lead to 
the occurrence of printing errors, for instance characteristic noise produced by the printing 
press. This ability is however highly dependent on the actual experience, know-how and 
attentiveness of the technical personnel operating the printing press. Furthermore, the 
ability to detect such changes in the printing press behaviour is intrinsically dependent on 
personnel fluctuations, such as staff reorganisation, departure or retirement of key 
personnel, etc. Moreover, as this technical expertise is human-based, there is a high risk that 
this knowledge is lost over time. The only available remedy is to organize secure storage of 
the relevant technical knowledge in one form or another and appropriate training of the 
technical personnel. 
Obviously, there is need for an improved inspection system which is not merely restricted to 
the optical inspection of the printed end-product, but which can take other factors into 
account than optical quality criteria. A general aim is to improve the known inspection 
techniques and propose an inspection methodology that can ensure a comprehensive 
quality control of the printed substrates processed by printing presses, especially printing 
presses which are designed to process substrates used in the course of the production of 
banknotes, security documents and such like.  
Additionally, a second aim is to propose a method, which is suited to be implemented as an 
expert system designed to facilitate operation of the printing press. In this context, it is 
particularly desired to propose a methodology, which is implemented in an expert system 
adapted to predict the occurrence of printing errors and machine condition and provide an 
explanation of the likely cause of errors, should these occur. An adaptive learning model, for 
both, conditioning and inspection methods based on sensor fusion and fuzzy interpretation 
of data measures is presented here.  
 
2. Data Analysis and Knowledge Generation 

In this section some general ideas for sensor and information fusion are presented for 
clarity. The basic concept of fused information relies on the fact that the lack of information 
which is supplied by sensors should be completed by a fusion process. It is assumed that, 
for example, two sensory information sources S1 and S2 with different active physical 
principles (e.g. pressure and temperature) are connected in a certain way. Then symbolically 
the union of information is described as follows (Luo, 1989):  
 

     1 2 1 2( )Perf S S Perf S Perf S . (1) 
 
The performance Perf of a system should be higher than the performance of the two mono-
sensory systems, or at least, it should be ensured that:    
 

     1 2 1 2( ) max ,Perf S S Perf S Perf S . (2) 
 
The fusion process incorporates performance, effectiveness and benefit. With fusion of 
different sources the perceptual capacity and plausibility of a combined result should be 

 

increased. It should be pointed out the above mentioned terms are not strictly defined as 
such. Moreover, they depend on a specific application as pointed out by Wald (Wald, 1999): 
 
“Information fusion expresses the means and the tools for the alliance of data origination from 
different sources; it aims to obtain information of greater quality, the exact definition of greater 
quality will depend on the application.”  
 
The World Model (Luo, 1989) describes the fusion process in terms of a changing 
environment (cf. Fig. 1). The environment reacts on the system which controls (weighting 
factors Ai) a local fusion process based on different sensors Si. On the basis of sensor models 
and the behaviour state of the sensors it is possible to predicate the statistical characteristics 
of the environment. Based on the World Model the environment stands for a general 
(printing) production machine. The fusion process generates in a best-case-scenario 
plausible and confident information which is necessary and sufficient for a stable decision. 
 

 
 

Fig. 1. World Model flow chart for multi-sensor information fusion (Luo, 1989) 

 
2.1 Pitfalls in Sensor Fusion 
In today’s production world we are able to generate a huge amount of data from analogue 
or digital sensors, PLCs, middleware components, control PCs and if necessary from ERP 
systems. However, creating reliable knowledge about a machine process is a challenge 
because it is a known fact that  Data Information Knowledge . 
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the occurrence of printing errors, for instance characteristic noise produced by the printing 
press. This ability is however highly dependent on the actual experience, know-how and 
attentiveness of the technical personnel operating the printing press. Furthermore, the 
ability to detect such changes in the printing press behaviour is intrinsically dependent on 
personnel fluctuations, such as staff reorganisation, departure or retirement of key 
personnel, etc. Moreover, as this technical expertise is human-based, there is a high risk that 
this knowledge is lost over time. The only available remedy is to organize secure storage of 
the relevant technical knowledge in one form or another and appropriate training of the 
technical personnel. 
Obviously, there is need for an improved inspection system which is not merely restricted to 
the optical inspection of the printed end-product, but which can take other factors into 
account than optical quality criteria. A general aim is to improve the known inspection 
techniques and propose an inspection methodology that can ensure a comprehensive 
quality control of the printed substrates processed by printing presses, especially printing 
presses which are designed to process substrates used in the course of the production of 
banknotes, security documents and such like.  
Additionally, a second aim is to propose a method, which is suited to be implemented as an 
expert system designed to facilitate operation of the printing press. In this context, it is 
particularly desired to propose a methodology, which is implemented in an expert system 
adapted to predict the occurrence of printing errors and machine condition and provide an 
explanation of the likely cause of errors, should these occur. An adaptive learning model, for 
both, conditioning and inspection methods based on sensor fusion and fuzzy interpretation 
of data measures is presented here.  
 
2. Data Analysis and Knowledge Generation 

In this section some general ideas for sensor and information fusion are presented for 
clarity. The basic concept of fused information relies on the fact that the lack of information 
which is supplied by sensors should be completed by a fusion process. It is assumed that, 
for example, two sensory information sources S1 and S2 with different active physical 
principles (e.g. pressure and temperature) are connected in a certain way. Then symbolically 
the union of information is described as follows (Luo, 1989):  
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The performance Perf of a system should be higher than the performance of the two mono-
sensory systems, or at least, it should be ensured that:    
 

     1 2 1 2( ) max ,Perf S S Perf S Perf S . (2) 
 
The fusion process incorporates performance, effectiveness and benefit. With fusion of 
different sources the perceptual capacity and plausibility of a combined result should be 

 

increased. It should be pointed out the above mentioned terms are not strictly defined as 
such. Moreover, they depend on a specific application as pointed out by Wald (Wald, 1999): 
 
“Information fusion expresses the means and the tools for the alliance of data origination from 
different sources; it aims to obtain information of greater quality, the exact definition of greater 
quality will depend on the application.”  
 
The World Model (Luo, 1989) describes the fusion process in terms of a changing 
environment (cf. Fig. 1). The environment reacts on the system which controls (weighting 
factors Ai) a local fusion process based on different sensors Si. On the basis of sensor models 
and the behaviour state of the sensors it is possible to predicate the statistical characteristics 
of the environment. Based on the World Model the environment stands for a general 
(printing) production machine. The fusion process generates in a best-case-scenario 
plausible and confident information which is necessary and sufficient for a stable decision. 
 

 
 

Fig. 1. World Model flow chart for multi-sensor information fusion (Luo, 1989) 

 
2.1 Pitfalls in Sensor Fusion 
In today’s production world we are able to generate a huge amount of data from analogue 
or digital sensors, PLCs, middleware components, control PCs and if necessary from ERP 
systems. However, creating reliable knowledge about a machine process is a challenge 
because it is a known fact that  Data Information Knowledge . 
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Insofar, a fusion process must create a low amount of data which creates reliable 
knowledge. Usually the main problems in sensor fusion can be described as follows: Too 
much data, poor models, bad features or too many features, and applications are not 
analysed properly. One major misbelieve is that machine diagnosis can be handled only 
based on the generated data – knowledge about the technical, physical, chemical, or other 
processes are indispensable for modeling a multi-sensor system. 
Over the last decade many researchers and practitioners worked on effective multi-sensor 
fusion systems in many different areas. However, it has to be emphasized that some “Golden 
Rules” were formed which should be considered when a multi-sensor fusion system is 
researched and developed. One of the first who suggested rules (dirty secrets) in military 
applications were Hall and Steinberg (Hall, 2001a). According to their “Dirty Secrets” list, ten 
rules for automation systems should be mentioned here as general statements. 

1. The system designers have to understand the production machine, automation 
system, etc. regarding its specific behaviour. Furthermore, the physical, chemical, 
biological and other effects must be conceived in detail. 

2. Before designing a fusion system, the technical data in a machine must be 
measured to clarify which kind of sensor must be applied. 

3. A human expert who can interpret measurement results is a must.  
4. There is no substitute for an excellent or at least a good sensor. No amount of data 

from a not understood or not reliable data source can substitute a single accurate 
sensor that measures the effect that is to be observed. 

5. Upstream sins still cannot be absolved by downstream processing. Data fusion 
processing cannot correct for errors in the pre-processing (or a wrong applied sensor) 
of individual data. “Soft” sensors are only useful if the data is known as reliable. 

6. Not only may the fused result be worse than the best sensor – but failure to address 
pedigree, information overload, and uncertainty may show a worst result. 

7. There is no such thing as a magic fusion algorithm. Despite claims of the contrary, 
no algorithm is optimal under all conditions. Even with the use of agent systems, 
ontologies, Dempster-Shafer and neuro-fuzzy approaches – just to name a few – 
the perfect algorithm is not invented yet. At the very end the application decides 
which algorithms are necessary.  

8. The data are never perfectly de-correlated. Sources are in most cases statistically 
dependent. 

9. There will never be enough training data available in a production machine. 
Therefore, hybrid methods based on models and training data should be used to 
apply Machine Learning and Pattern Recognition. 

10. Data fusion is not a static process. Fusion algorithms must be designed so that the 
time aspect has to be considered.  

 
2.2 Single-sensor vs. Multi-sensor Systems 
Many detection systems are based on one main sensory apparatus. They rely on the 
evidence of a single source of information (e.g. photo-diode scanners in vending machines, 
greyscale-cameras in inspection systems, etc.). These systems, called unimodal systems, 
have to contend with a variety of general difficulties and have usually high false error rates 
in classification. The problems can be listed as follows; we refer to (Ross, 2006): 

 

1. Raw data noise: Noisy data results from not sufficiently mounted or improperly 
maintained sensors. Also illumination units which are not properly maintained can 
cause trouble. Also, in general, machine drives and motors can couple different 
kinds of noise into the system. 

2. Intraclass variations: These variations are typically caused by changing the sensory 
units in a maintenance process or by ageing of illuminations and sensors over a 
period of time. 

3. Interclass variations: In a system which has to handle a variety of different 
production states over a period of time, there may be interclass similarities in the 
feature space of multiple flaws. 

4. Nonuniversality: A system may not be able to create expedient and stable data or 
features from a subset of produced material.  

Some of the above mentioned limitations can be overcome by including multiple 
information sources. Such systems, known as multimodal systems, are expected to be more 
reliable, due to the presence of multiple, partly signal-decorrelated, sensors. They address 
the problems of nonuniversality, and in combination with meaningful interconnection of 
signals (fusion), the problem of interclass variations. At least, they can inform the user about 
problems with intraclass variations and noise.  
A generic multi-sensor system consists of four important units: a) the sensor unit which 
captures raw data from different measurement modules resp. sensors; b) the feature 
extraction unit which extracts an appropriate feature set as a representation for the machine 
to be checked; c) the classification unit which compares the actual data with their 
corresponding machine data stored in a database; d) the decision unit which uses the 
classification results to determine whether the obtained results represent e.g. a good printed 
or valid banknote. In multimodal systems information fusion can occur in any of the units. 
Generally three fusion types, depending on the abstraction level, are possible. The higher 
the abstraction level, the more efficient is the fusion. However, the high abstraction level 
fusion is not necessarily more effective due to the fact that data reduction methods are used. 
Therefore, information loss will occur (Beyerer, 2006). 

1. Signal level fusion – Sensor Association Principle. At signal level all sensor signals are 
combined. It is necessary that the signals are comparable in a sense of data amount 
resp. sampling rate (adaption), registration, and time synchronisation. 

2. Feature level fusion – Feature Association Principle. At feature level all signal 
descriptors (features) are combined. This is necessary if the signals are not 
comparable or complementary in a sense of data amount resp. sampling rate 
(adaption), registration, and time synchronisation. Usually this is the case if images 
and 1D-sensors are in use. There is no spatio-temporal coherence between the 
sensor signals. 

3. Symbol level fusion – Symbol Association Principle. At symbol level all classification 
results are combined. In this case the reasoning (the decision) is based e.g. on 
probability or fuzzy membership functions (possibility functions). This is necessary 
if the signals are not comparable or complementary in a sense of data amount resp. 
sampling rate (adaption), registration, synchronisation and expert’s know-how has 
to be considered. 

 
Table 1 summarises the above mentioned fusion association principles. 
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rules for automation systems should be mentioned here as general statements. 
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system, etc. regarding its specific behaviour. Furthermore, the physical, chemical, 
biological and other effects must be conceived in detail. 

2. Before designing a fusion system, the technical data in a machine must be 
measured to clarify which kind of sensor must be applied. 

3. A human expert who can interpret measurement results is a must.  
4. There is no substitute for an excellent or at least a good sensor. No amount of data 

from a not understood or not reliable data source can substitute a single accurate 
sensor that measures the effect that is to be observed. 

5. Upstream sins still cannot be absolved by downstream processing. Data fusion 
processing cannot correct for errors in the pre-processing (or a wrong applied sensor) 
of individual data. “Soft” sensors are only useful if the data is known as reliable. 

6. Not only may the fused result be worse than the best sensor – but failure to address 
pedigree, information overload, and uncertainty may show a worst result. 

7. There is no such thing as a magic fusion algorithm. Despite claims of the contrary, 
no algorithm is optimal under all conditions. Even with the use of agent systems, 
ontologies, Dempster-Shafer and neuro-fuzzy approaches – just to name a few – 
the perfect algorithm is not invented yet. At the very end the application decides 
which algorithms are necessary.  

8. The data are never perfectly de-correlated. Sources are in most cases statistically 
dependent. 

9. There will never be enough training data available in a production machine. 
Therefore, hybrid methods based on models and training data should be used to 
apply Machine Learning and Pattern Recognition. 

10. Data fusion is not a static process. Fusion algorithms must be designed so that the 
time aspect has to be considered.  

 
2.2 Single-sensor vs. Multi-sensor Systems 
Many detection systems are based on one main sensory apparatus. They rely on the 
evidence of a single source of information (e.g. photo-diode scanners in vending machines, 
greyscale-cameras in inspection systems, etc.). These systems, called unimodal systems, 
have to contend with a variety of general difficulties and have usually high false error rates 
in classification. The problems can be listed as follows; we refer to (Ross, 2006): 

 

1. Raw data noise: Noisy data results from not sufficiently mounted or improperly 
maintained sensors. Also illumination units which are not properly maintained can 
cause trouble. Also, in general, machine drives and motors can couple different 
kinds of noise into the system. 

2. Intraclass variations: These variations are typically caused by changing the sensory 
units in a maintenance process or by ageing of illuminations and sensors over a 
period of time. 

3. Interclass variations: In a system which has to handle a variety of different 
production states over a period of time, there may be interclass similarities in the 
feature space of multiple flaws. 

4. Nonuniversality: A system may not be able to create expedient and stable data or 
features from a subset of produced material.  

Some of the above mentioned limitations can be overcome by including multiple 
information sources. Such systems, known as multimodal systems, are expected to be more 
reliable, due to the presence of multiple, partly signal-decorrelated, sensors. They address 
the problems of nonuniversality, and in combination with meaningful interconnection of 
signals (fusion), the problem of interclass variations. At least, they can inform the user about 
problems with intraclass variations and noise.  
A generic multi-sensor system consists of four important units: a) the sensor unit which 
captures raw data from different measurement modules resp. sensors; b) the feature 
extraction unit which extracts an appropriate feature set as a representation for the machine 
to be checked; c) the classification unit which compares the actual data with their 
corresponding machine data stored in a database; d) the decision unit which uses the 
classification results to determine whether the obtained results represent e.g. a good printed 
or valid banknote. In multimodal systems information fusion can occur in any of the units. 
Generally three fusion types, depending on the abstraction level, are possible. The higher 
the abstraction level, the more efficient is the fusion. However, the high abstraction level 
fusion is not necessarily more effective due to the fact that data reduction methods are used. 
Therefore, information loss will occur (Beyerer, 2006). 

1. Signal level fusion – Sensor Association Principle. At signal level all sensor signals are 
combined. It is necessary that the signals are comparable in a sense of data amount 
resp. sampling rate (adaption), registration, and time synchronisation. 

2. Feature level fusion – Feature Association Principle. At feature level all signal 
descriptors (features) are combined. This is necessary if the signals are not 
comparable or complementary in a sense of data amount resp. sampling rate 
(adaption), registration, and time synchronisation. Usually this is the case if images 
and 1D-sensors are in use. There is no spatio-temporal coherence between the 
sensor signals. 

3. Symbol level fusion – Symbol Association Principle. At symbol level all classification 
results are combined. In this case the reasoning (the decision) is based e.g. on 
probability or fuzzy membership functions (possibility functions). This is necessary 
if the signals are not comparable or complementary in a sense of data amount resp. 
sampling rate (adaption), registration, synchronisation and expert’s know-how has 
to be considered. 

 
Table 1 summarises the above mentioned fusion association principles. 
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It is stated (Ross, 2006) that generic multimodal sensor systems which integrate information 
by fusion at an early processing stage are usually more efficient than those systems which 
perform fusion at a later stage. Since input signals or features contain more information 
about the physical data than score values at the output of classifiers, fusion at signal or 
feature level is expected to provide better results. In general, fusion at feature level is critical 
under practical considerations, because the dimensionality of different feature sets may not 
be compatible. Therefore, the classifiers have the task to adapt the different dimensionalities 
onto a common feature space. Fusion in the decision unit is considered to be rigid, due to 
the availability of limited information and dimensionality.  
 

Fusion Level Signal Level Feature Level Symbol Level 

Type of Fusion Signals, Measurement 
Data 

Signal Descriptors, 
Numerical Features 

Symbols, Objects, 
Classes, Decisions 

Objectives Signal and Parameter 
Estimation 

Feature Estimation, 
Descriptor Estimation 

Classification,        
Pattern Recognition 

Abstraction Level low middle high 

Applicable Data 
Models 

Random Variables, 
Random Processes 

Feature Vectors, Random 
Variable Vectors 

Probability 
Distributions, 
Membership 

Functions 

Fusion Conditions  
(spatio-temporal) 

Registration / 
Synchronisation 

(Alignment) 

Feature Allocation 
(Association) 

Symbol Allocation 
(Association) 

Complexity high middle low 
Table 1. Fusion levels and their allocation methods (Beyerer, 2006) 
 
3. General Approach for Security Printing Machines 

Under practical considerations, many situations in real applications can occur where 
information is not precise enough. This behaviour can be divided into two parts. The first 
part describes the fact that the information itself is uncertain. In general, the rules and the 
patterns describe a system in a vague way. This is because the system behaviour is too 
complex to construct an exact model, e.g. of a dynamic banknote model. The second part 
describes the fact that in real systems and applications many problems can occur, such as 
signal distortions and optical distortions. The practice shows that decisions are taken even 
on vague information and model imperfectness. Therefore, fuzzy methods are valuable for 
system analysis. 
 
3.1 Detection Principles for Securities 
In the general approach, different methods of machine conditioning and print flaw detection 
are combined, which can be used for vending or sorting machines as well as for printing 
machines.  
 
3.1.1 Visible Light-based Optical Inspection 
Analysis of the behaviour of the printing press is preferably performed by modelling 
characteristic behaviours of the printing press using appropriately located sensors to sense 
operational parameters of the functional components of the printing press which are 
exploited as representative parameters of the characteristic behaviours. These characteristic 
behaviours comprise of: 

 

1. faulty or abnormal behaviour of the printing press, which leads to or is likely to 
lead to the occurrence of printing errors; and/or 

2. defined behaviours (or normal behaviours) of the printing press, which leads to or 
is likely to lead to good printing quality. 

Further, characteristic behaviours of the printing press can be modelled with a view to 
reduce false errors or pseudo-errors, i.e. errors that are falsely detected by the optical 
inspection system as mentioned above, and optimise the so-called alpha and beta errors. 
Alpha error is understood to be the probability to find bad sheets in a pile of good sheets, 
while beta error is understood to be the probability to find good printed sheets in a pile of 
bad printed sheets. According to (Lohweg, 2006), the use of a multi-sensor arrangement (i.e. 
a sensing system with multiple measurement channels) efficiently allows reducing the alpha 
and beta errors. 

 
3.1.2 Detector-based Inspection 
We have not exclusively used optical printing inspection methods, but also acoustical and 
other measurements like temperature and pressure of printing machines. For the latter 
cepstrum methods are implemented (Bogert, 1963). According to (Lohweg, 2006), the 
inherent defects of optical inspection are overcome by performing an in-line analysis of the 
behaviour of the printing press during the processing of the printed sheets. The monitored 
machine is provided with multiple sensors which are mounted on functional components of 
the printing press. As these sensors are intended to monitor the behaviour of the printing 
press during processing of the printed substrates, the sensors must be selected appropriately 
and be mounted on adequate functional machine components. The actual selection of 
sensors and location thereof depend on the configuration of the printing press, for which the 
behaviour is to be monitored. These will not be the same, for instance, for an intaglio 
printing press, an offset printing press, a vending machine or a sorting machine as the 
behaviours of these machines are not identical. It is not, strictly speaking, necessary to 
provide sensors on each and every functional component of the machine. But also the 
sensors must be chosen and located in such a way that sensing of operational parameters of 
selected functional machine components is possible. This permits a sufficient, precise and 
representative description of the various behaviours of the machine. Preferably, the sensors 
should be selected and positioned in such a way as to sense and monitor operational 
parameters which are virtually de-correlated. For instance, monitoring the respective 
rotational speeds of two cylinders which are driven by a common motor is not being very 
useful as the two parameters are directly linked to one another. In contrast, monitoring the 
current, drawn by an electric motor used as a drive and the contact pressure between two 
cylinders of the machine provides a better description of the behaviour of the printing press. 
Furthermore, the selection and location of the sensors should be made in view of the actual 
set of behaviour patterns one desires to monitor and of the classes of printing errors one 
wishes to detect. As a general rule, it is appreciated that sensors might be provided on the 
printing press in order to sense any combination of the following operational parameters: 

1. processing speed of the printing press, i.e. the speed at which the printing press 
processes the printed substrates; 

2. rotational speed of a cylinder or roller of the printing press; 
3. current drawn by an electric motor driving cylinders of the printing unit of the 

printing press; 
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It is stated (Ross, 2006) that generic multimodal sensor systems which integrate information 
by fusion at an early processing stage are usually more efficient than those systems which 
perform fusion at a later stage. Since input signals or features contain more information 
about the physical data than score values at the output of classifiers, fusion at signal or 
feature level is expected to provide better results. In general, fusion at feature level is critical 
under practical considerations, because the dimensionality of different feature sets may not 
be compatible. Therefore, the classifiers have the task to adapt the different dimensionalities 
onto a common feature space. Fusion in the decision unit is considered to be rigid, due to 
the availability of limited information and dimensionality.  
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Signal Descriptors, 
Numerical Features 

Symbols, Objects, 
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Estimation 

Feature Estimation, 
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Classification,        
Pattern Recognition 
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Applicable Data 
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Random Variables, 
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Feature Vectors, Random 
Variable Vectors 

Probability 
Distributions, 
Membership 

Functions 

Fusion Conditions  
(spatio-temporal) 

Registration / 
Synchronisation 

(Alignment) 

Feature Allocation 
(Association) 

Symbol Allocation 
(Association) 

Complexity high middle low 
Table 1. Fusion levels and their allocation methods (Beyerer, 2006) 
 
3. General Approach for Security Printing Machines 

Under practical considerations, many situations in real applications can occur where 
information is not precise enough. This behaviour can be divided into two parts. The first 
part describes the fact that the information itself is uncertain. In general, the rules and the 
patterns describe a system in a vague way. This is because the system behaviour is too 
complex to construct an exact model, e.g. of a dynamic banknote model. The second part 
describes the fact that in real systems and applications many problems can occur, such as 
signal distortions and optical distortions. The practice shows that decisions are taken even 
on vague information and model imperfectness. Therefore, fuzzy methods are valuable for 
system analysis. 
 
3.1 Detection Principles for Securities 
In the general approach, different methods of machine conditioning and print flaw detection 
are combined, which can be used for vending or sorting machines as well as for printing 
machines.  
 
3.1.1 Visible Light-based Optical Inspection 
Analysis of the behaviour of the printing press is preferably performed by modelling 
characteristic behaviours of the printing press using appropriately located sensors to sense 
operational parameters of the functional components of the printing press which are 
exploited as representative parameters of the characteristic behaviours. These characteristic 
behaviours comprise of: 

 

1. faulty or abnormal behaviour of the printing press, which leads to or is likely to 
lead to the occurrence of printing errors; and/or 

2. defined behaviours (or normal behaviours) of the printing press, which leads to or 
is likely to lead to good printing quality. 

Further, characteristic behaviours of the printing press can be modelled with a view to 
reduce false errors or pseudo-errors, i.e. errors that are falsely detected by the optical 
inspection system as mentioned above, and optimise the so-called alpha and beta errors. 
Alpha error is understood to be the probability to find bad sheets in a pile of good sheets, 
while beta error is understood to be the probability to find good printed sheets in a pile of 
bad printed sheets. According to (Lohweg, 2006), the use of a multi-sensor arrangement (i.e. 
a sensing system with multiple measurement channels) efficiently allows reducing the alpha 
and beta errors. 

 
3.1.2 Detector-based Inspection 
We have not exclusively used optical printing inspection methods, but also acoustical and 
other measurements like temperature and pressure of printing machines. For the latter 
cepstrum methods are implemented (Bogert, 1963). According to (Lohweg, 2006), the 
inherent defects of optical inspection are overcome by performing an in-line analysis of the 
behaviour of the printing press during the processing of the printed sheets. The monitored 
machine is provided with multiple sensors which are mounted on functional components of 
the printing press. As these sensors are intended to monitor the behaviour of the printing 
press during processing of the printed substrates, the sensors must be selected appropriately 
and be mounted on adequate functional machine components. The actual selection of 
sensors and location thereof depend on the configuration of the printing press, for which the 
behaviour is to be monitored. These will not be the same, for instance, for an intaglio 
printing press, an offset printing press, a vending machine or a sorting machine as the 
behaviours of these machines are not identical. It is not, strictly speaking, necessary to 
provide sensors on each and every functional component of the machine. But also the 
sensors must be chosen and located in such a way that sensing of operational parameters of 
selected functional machine components is possible. This permits a sufficient, precise and 
representative description of the various behaviours of the machine. Preferably, the sensors 
should be selected and positioned in such a way as to sense and monitor operational 
parameters which are virtually de-correlated. For instance, monitoring the respective 
rotational speeds of two cylinders which are driven by a common motor is not being very 
useful as the two parameters are directly linked to one another. In contrast, monitoring the 
current, drawn by an electric motor used as a drive and the contact pressure between two 
cylinders of the machine provides a better description of the behaviour of the printing press. 
Furthermore, the selection and location of the sensors should be made in view of the actual 
set of behaviour patterns one desires to monitor and of the classes of printing errors one 
wishes to detect. As a general rule, it is appreciated that sensors might be provided on the 
printing press in order to sense any combination of the following operational parameters: 

1. processing speed of the printing press, i.e. the speed at which the printing press 
processes the printed substrates; 

2. rotational speed of a cylinder or roller of the printing press; 
3. current drawn by an electric motor driving cylinders of the printing unit of the 

printing press; 
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4. temperature of a cylinder or roller of the printing press; 
5. pressure between two cylinders or rollers of the printing press; 
6. constraints on bearings of a cylinder or roller of the printing press; 
7. consumption of inks or fluids in the printing press; and/or 
8. position or presence of the processed substrates in the printing press (this latter 

information is particularly useful in the context of printing presses comprising of 
several printing plates and/or printing blankets as the printing behaviour changes 
from one printing plate or blanket to the next). 

Depending on the particular configuration of the printing press, it might be useful to 
monitor other operational parameters. For example, in the case of an intaglio printing press, 
monitoring key components of the so called wiping unit (Lohweg, 2006) has shown to be 
particularly useful in order to derive a representative model of the behaviour of the printing 
press, as many printing problems in intaglio printing presses are due to a faulty or abnormal 
behaviour of the wiping unit. 
In general, multiple sensors are combined and mounted on a production machine. One 
assumption which is made in such applications is that the sensor signals should be de-
correlated at least in a weak sense. Although this strategy is conclusive, the main drawback 
is based on the fact that even experts have only vague information about sensory cross 
correlation effects in machines or production systems. Furthermore, many measurements 
which are taken traditionally result in ineffective data simply because the measurement 
methods are suboptimal.  
Therefore, our concept is based on a prefixed data analysis before classifying data. The 
classifier’s learning is controlled by the data analysis results. The general concept is based 
on the fact that multi-sensory information can be fused with the help of a Fuzzy-Pattern-
Classifier chain, which is described in section 5.  

 
4. Fuzzy Multi-sensor Fusion 

It can hardly be said that information fusion is a brand new concept. As a matter of fact, it 
has already been used by humans and animals intuitively. Techniques required for 
information fusion include various subjects, including artificial intelligence (AI), control 
theory, fuzzy logic, and numerical methods and so on. More areas are expected to join in 
along with consecutive successful applications invented both in defensive and civilian 
fields.  
Multi-sensor fusion is the combination of sensory data or data derived from sensory data 
and from disparate sources such that the resulting information is in some sense better than 
for the case that the sources are used individually, assuming the sensors are combined in a 
good way. The term ‘better’ in that case can mean more accurate, more complete, or more 
reliable. The fusion procedure can be obtained from direct or indirect fusion. Direct fusion is 
the fusion of sensor data from some homogeneous sensors, such as acoustical sensors; 
indirect fusion means the fused knowledge from prior information, which could come from 
human inputs. As pointed out above, multi-sensor fusion serves as a very good tool to 
obtain better and more reliable outputs, which can facilitate industrial applications and 
compensate specialised industrial sub-systems to a large extent.  
The primary objective of multivariate data analysis in fusion is to summarise large amounts 
of data by means of relatively few parameters. The underlying theme behind many 

 

multivariate techniques is reduction of features. One of these techniques is the Principal 
Components Analysis (PCA), which is also known as the Karhunen-Loéve transform (KLT) 
(Jolliffe, 2002).  
Fuzzy-Pattern-Classification in particular is an effective way to describe and classify the 
printing press behaviours into a limited number of classes. It typically partitions the input 
space (in the present instance the variables – or operational parameters – sensed by the 
multiple sensors provided on functional components of the printing press) into categories or 
pattern classes and assigns a given pattern to one of those categories. If a pattern does not fit 
directly within a given category, a so-called “goodness of fit” is reported. By employing 
fuzzy sets as pattern classes, it is possible to describe the degree to which a pattern belongs 
to one class or to another. By viewing each category as a fuzzy set and identifying a set of 
fuzzy “if-then” rules as assignment operators, a direct relationship between the fuzzy set 
and pattern classification is realized. Figure 2 is a schematic sketch of the architecture of a 
fuzzy fusion and classification system for implementing the machine behaviour analysis. 
The operational parameters P1 to Pn sensed by the multi-sensor arrangement are optionally 
preprocessed prior to feeding into the pattern classifier. Such preprocessing may in 
particular include a spectral transformation of some of the signals output by the sensors. 
Such spectral transformation will in particular be envisaged for processing the signal’s 
representative of vibrations or noise produced by the printing press, such as the 
characteristic noise or vibration patterns of intaglio printing presses.  
 

Preprocessing
 (e.g. spectral transforms)Sensors Fuzzy Classifier Decision

Unit

1
P

n
P

Fig. 2. Multi-sensor fusion approach based on Fuzzy-Pattern-Classifier modelling 

 
5. Modelling by Fuzzy-Pattern-Classification 

Fuzzy set theory, introduced first by Zadeh (Zadeh, 1965), is a framework which adds 
uncertainty as an additional feature to aggregation and classification of data. Accepting 
vagueness as a key idea in signal measurement and human information processing, fuzzy 
membership functions are a suitable basis for modelling information fusion and 
classification. An advantage in a fuzzy set approach is that class memberships can be trained 
by measured information while simultaneously expert’s know-how can be taken into 
account (Bocklisch, 1986).   
Fuzzy-Pattern-Classification techniques are used in order to implement the machine 
behaviour analysis. In other words, sets of fuzzy-logic rules are applied to characterize the 
behaviours of the printing press and model the various classes of printing errors which are 
likely to appear on the printing press. Once these fuzzy-logic rules have been defined, they 
can be applied to monitor the behaviour of the printing press and identify a possible 
correspondence with any machine behaviour which leads or is likely to lead to the 

www.intechopen.com



Fuzzy-Pattern-Classiier Based Sensor Fusion for Machine Conditioning 327
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monitor other operational parameters. For example, in the case of an intaglio printing press, 
monitoring key components of the so called wiping unit (Lohweg, 2006) has shown to be 
particularly useful in order to derive a representative model of the behaviour of the printing 
press, as many printing problems in intaglio printing presses are due to a faulty or abnormal 
behaviour of the wiping unit. 
In general, multiple sensors are combined and mounted on a production machine. One 
assumption which is made in such applications is that the sensor signals should be de-
correlated at least in a weak sense. Although this strategy is conclusive, the main drawback 
is based on the fact that even experts have only vague information about sensory cross 
correlation effects in machines or production systems. Furthermore, many measurements 
which are taken traditionally result in ineffective data simply because the measurement 
methods are suboptimal.  
Therefore, our concept is based on a prefixed data analysis before classifying data. The 
classifier’s learning is controlled by the data analysis results. The general concept is based 
on the fact that multi-sensory information can be fused with the help of a Fuzzy-Pattern-
Classifier chain, which is described in section 5.  

 
4. Fuzzy Multi-sensor Fusion 

It can hardly be said that information fusion is a brand new concept. As a matter of fact, it 
has already been used by humans and animals intuitively. Techniques required for 
information fusion include various subjects, including artificial intelligence (AI), control 
theory, fuzzy logic, and numerical methods and so on. More areas are expected to join in 
along with consecutive successful applications invented both in defensive and civilian 
fields.  
Multi-sensor fusion is the combination of sensory data or data derived from sensory data 
and from disparate sources such that the resulting information is in some sense better than 
for the case that the sources are used individually, assuming the sensors are combined in a 
good way. The term ‘better’ in that case can mean more accurate, more complete, or more 
reliable. The fusion procedure can be obtained from direct or indirect fusion. Direct fusion is 
the fusion of sensor data from some homogeneous sensors, such as acoustical sensors; 
indirect fusion means the fused knowledge from prior information, which could come from 
human inputs. As pointed out above, multi-sensor fusion serves as a very good tool to 
obtain better and more reliable outputs, which can facilitate industrial applications and 
compensate specialised industrial sub-systems to a large extent.  
The primary objective of multivariate data analysis in fusion is to summarise large amounts 
of data by means of relatively few parameters. The underlying theme behind many 

 

multivariate techniques is reduction of features. One of these techniques is the Principal 
Components Analysis (PCA), which is also known as the Karhunen-Loéve transform (KLT) 
(Jolliffe, 2002).  
Fuzzy-Pattern-Classification in particular is an effective way to describe and classify the 
printing press behaviours into a limited number of classes. It typically partitions the input 
space (in the present instance the variables – or operational parameters – sensed by the 
multiple sensors provided on functional components of the printing press) into categories or 
pattern classes and assigns a given pattern to one of those categories. If a pattern does not fit 
directly within a given category, a so-called “goodness of fit” is reported. By employing 
fuzzy sets as pattern classes, it is possible to describe the degree to which a pattern belongs 
to one class or to another. By viewing each category as a fuzzy set and identifying a set of 
fuzzy “if-then” rules as assignment operators, a direct relationship between the fuzzy set 
and pattern classification is realized. Figure 2 is a schematic sketch of the architecture of a 
fuzzy fusion and classification system for implementing the machine behaviour analysis. 
The operational parameters P1 to Pn sensed by the multi-sensor arrangement are optionally 
preprocessed prior to feeding into the pattern classifier. Such preprocessing may in 
particular include a spectral transformation of some of the signals output by the sensors. 
Such spectral transformation will in particular be envisaged for processing the signal’s 
representative of vibrations or noise produced by the printing press, such as the 
characteristic noise or vibration patterns of intaglio printing presses.  
 

Preprocessing
 (e.g. spectral transforms)Sensors Fuzzy Classifier Decision

Unit

1
P

n
P

Fig. 2. Multi-sensor fusion approach based on Fuzzy-Pattern-Classifier modelling 

 
5. Modelling by Fuzzy-Pattern-Classification 

Fuzzy set theory, introduced first by Zadeh (Zadeh, 1965), is a framework which adds 
uncertainty as an additional feature to aggregation and classification of data. Accepting 
vagueness as a key idea in signal measurement and human information processing, fuzzy 
membership functions are a suitable basis for modelling information fusion and 
classification. An advantage in a fuzzy set approach is that class memberships can be trained 
by measured information while simultaneously expert’s know-how can be taken into 
account (Bocklisch, 1986).   
Fuzzy-Pattern-Classification techniques are used in order to implement the machine 
behaviour analysis. In other words, sets of fuzzy-logic rules are applied to characterize the 
behaviours of the printing press and model the various classes of printing errors which are 
likely to appear on the printing press. Once these fuzzy-logic rules have been defined, they 
can be applied to monitor the behaviour of the printing press and identify a possible 
correspondence with any machine behaviour which leads or is likely to lead to the 
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occurrence of printing errors. Broadly speaking, Fuzzy-Pattern-Classification is a known 
technique that concerns the description or classification of measurements. The idea behind 
Fuzzy-Pattern-Classification is to define the common features or properties among a set of 
patterns (in this case the various behaviours a printing press can exhibit) and classify them 
into different predetermined classes according to a determined classification model. Classic 
modelling techniques usually try to avoid vague, imprecise or uncertain descriptive rules. 
Fuzzy systems deliberately make use of such descriptive rules. Rather than following a 
binary approach wherein patterns are defined by “right” or “wrong” rules, fuzzy systems 
use relative “if-then” rules of the type “if parameter alpha is equal to (greater than, …less 
than) value beta, then event A always (often, sometimes, never) happens”. Descriptors 
“always”, “often”, “sometimes”, “never” in the above exemplary rule are typically 
designated as “linguistic modifiers” and are used to model the desired pattern in a sense of 
gradual truth (Zadeh, 1965; Bezdek, 2005). This leads to simpler, more suitable models 
which are easier to handle and more familiar to human thinking. In the next sections we will 
highlight some Fuzzy-Pattern-Classification approaches which are suitable for sensor fusion 
applications. 

 
5.1 Modified-Fuzzy-Pattern-Classification 
The Modified-Fuzzy-Pattern-Classifier (MFPC) is a hardware optimized derivate of 
Bocklisch’s Fuzzy-Pattern-Classifier (FPC) (Bocklisch, 1986). It should be worth mentioning 
here that Hempel and Bocklisch (Hempel, 2010) showed that even non-convex classes can be 
modelled within the framework of Fuzzy-Pattern-Classification. The ongoing research on 
FPC for non-convex classes make the framework attractive for Support Vector Machine 
(SVM) advocates.  
Inspired from Eichhorn (Eichhorn, 2000), Lohweg et al. examined both, the FPC and the 
MFPC, in detail (Lohweg, 2004). MFPC’s general concept of simultaneously calculating a 
number of membership values and aggregating these can be valuably utilised in many 
approaches. The author’s intention, which yields to the MFPC in the form of an optimized 
structure, was to create a pattern recognition system on a Field Programmable Gate Array 
(FPGA) which can be applied in high-speed industrial environments (Lohweg, 2009). As 
MFPC is well-suited for industrial implementations, it was already applied in many 
applications (Lohweg, 2006; Lohweg, 2006a; Lohweg, 2009; Mönks, 2009; Niederhöfer, 2009).  
Based on membership functions  ,μ m p , MFPC is employed as a useful approach to 
modelling complex systems and classifying noisy data. The originally proposed unimodal 
MFPC fuzzy membership function  ,μ m p  can be described in a graph as: 
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Fig. 3. Prototype of a unimodal membership function 
 
The prototype of a one-dimensional potential function  ,μ m p can be expressed as follows 
(Eichhorn, 2000; Lohweg, 2004): 
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As for Fig. 3, the potential function ( , )m p  is a function concerning parameters A and the 
parameter vector p containing coefficients 0 ,m ,rB ,fB ,rC ,fC ,rD  and .fD  A is denoted 

as the amplitude of this function, and in hardware design usually set 1.A  The coefficient 
0m  is featured as center of gravity. The parameters rB  and fB determine the value of the 

membership function on the boundaries 0 rm C  and 0 fm C  correspondingly. In addition, 

rising and falling edges of this function are described by 0( , )r rm C B  p  and 

0( , ) .f fm C B  p The distance from the center of gravity is interpreted by rC  and .fC  The 

parameters rD  and fD  depict the decrease in membership with the increase of the distance 

from the center of gravity 0 .m  Suppose there are M features considered, then Eq. 3 can be 
reformulated as: 
 

1

0

1 ( , )

( , ) 2 .
M

i i i
i

d m
M





 


p

m p  (5) 

 
With a special definition ( 1,A  0.5,r fB B  ,r fC C r fD D ) Modified-Fuzzy-Pattern 

Classification (Lohweg, 2004; Lohweg 2006; Lohweg 2006a) can be derived as: 
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“always”, “often”, “sometimes”, “never” in the above exemplary rule are typically 
designated as “linguistic modifiers” and are used to model the desired pattern in a sense of 
gradual truth (Zadeh, 1965; Bezdek, 2005). This leads to simpler, more suitable models 
which are easier to handle and more familiar to human thinking. In the next sections we will 
highlight some Fuzzy-Pattern-Classification approaches which are suitable for sensor fusion 
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MFPC is well-suited for industrial implementations, it was already applied in many 
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Based on membership functions  ,μ m p , MFPC is employed as a useful approach to 
modelling complex systems and classifying noisy data. The originally proposed unimodal 
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The parameters maxm  and minm  are the maximum and minimum values of a feature in the 
training set. The parameter im  is the input feature which is supposed to be classified. 
Admittedly, the same objects should have similar feature values that are close to each other. 
In such a sense, the resulting value of  0,i im m  ought to fall into a small interval, 
representing their similarity. The value CEP  is called elementary fuzziness ranging from 
zero to one and can be tuned by experts’ know-how. The same implies to D = (2, 4, 8, …). 
The aggregation is performed by a fuzzy averaging operation with a subsequent 
normalization procedure. 
As an instance of FPC, MFPC was addressed and successfully hardware-implemented on 
banknote sheet inspection machines. MFPC utilizes the concept of membership functions in 
fuzzy set theory and is capable of classifying different objects (data) according to their 
features, and the outputs of the membership functions behave as evidence for decision 
makers to make judgments. In industrial applications, much attention is paid on the costs 
and some other practical issues, thus MFPC is of great importance, particularly because of 
its capability to model complex systems and hardware implementability on FPGAs. 

 
5.2 Adaptive Learning Model for Modified-Fuzzy-Pattern-Classification 
In this section we present an adaptive learning model for fuzzy classification and sensor 
fusion, which on one hand adapts itself to varying data and on the other hand fuses sensory 
information to one score value. The approach is based on the following facts: 

1. The sensory data are in general correlated or 
2. Tend to correlate due to material changes in a machine. 
3. The measurement data are time-variant, e.g., in a production process many 

parameters are varying imperceptively. 
4. The definition of “good” production is always human-centric. Therefore, a 

committed quality standard is defined at the beginning of a production run. 
5. Even if the machine parameters change in a certain range the quality could be in 

order. 
The underlying scheme is based on membership functions (local classifiers) ( , )i i im p , 
which are tuned by a learning (training) process. Furthermore, each membership function is 
weighted with an attractor value Ai, which is proportional to the eigenvalue of the 
corresponding feature mi. This strategy leads to the fact that the local classifiers are trained 
based on committed quality and weighted by their attraction specified by a Principal 
Component Analysis’ (PCA) (Jolliffe, 2002) eigenvalues. The aggregation is again performed 
by a fuzzy averaging operation with a subsequent normalization procedure. 

 

 

5.2.1 Review on PCA 
The Principal Components Analysis (PCA) is effective, if the amount of data is high while 
the feature quantity is small (< 30 features). PCA is a way of identifying patterns in data, 
and expressing the data in such a way as to highlight their similarities and differences. Since 
patterns in data are hard to find in data of high dimensions, where the graphical 
representation is not available, PCA is a powerful tool for analysing data. The other main 
advantage of PCA is that once patterns in the data are found, it is possible to compress the 
data by reducing the number of dimensions without much loss of information. The main 
task of the PCA is to project input data into a new (sub-)space, wherein the different input 
signals are de-correlated. The PCA is used to find weightings of signal importance in the 
measurement’s data set.  
PCA involves a mathematical procedure which transforms a set of correlated response 
variables into a smaller set of uncorrelated variables called principal components. More 
formally it is a linear transformation which chooses a new coordinate system for the data set 
such that the greatest variance by any projection of the set is on the first axis, which is also 
called the first principal component. The second greatest variance is on the second axis, and 
so on. Those created principal component variables are useful for a variety of things 
including data screening, assumption checking and cluster verification. There are two 
possibilities to perform PCA: first applying PCA to a covariance matrix and second 
applying PCA to a correlation matrix. When variables are not normalised, it is necessary to 
choose the second approach: Applying PCA to raw data will lead to a false estimation, 
because variables with the largest variance will dominate the first principal component. 
Therefore in this work the second method in applying PCA to standardized data 
(correlation matrix) is presented (Jolliffe, 2002). 
In the following the function steps of applying PCA to a correlation matrix is reviewed 
concisely. If there are M  data vectors 1

T T
N MNx ... x  each of length N , the projection of the 

data into a subspace is executed by using the Karhunen-Loéve transform (KLT) and their 
inverse, defined as: 

 TY W X  and  X W Y , (8) 
 
where Y is the output matrix, W is the KLT transform matrix followed by the data (input) 
matrix:  
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Furthermore, the expectation value E(•) (average x ) of the data vectors is necessary:  
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The parameters maxm  and minm  are the maximum and minimum values of a feature in the 
training set. The parameter im  is the input feature which is supposed to be classified. 
Admittedly, the same objects should have similar feature values that are close to each other. 
In such a sense, the resulting value of  0,i im m  ought to fall into a small interval, 
representing their similarity. The value CEP  is called elementary fuzziness ranging from 
zero to one and can be tuned by experts’ know-how. The same implies to D = (2, 4, 8, …). 
The aggregation is performed by a fuzzy averaging operation with a subsequent 
normalization procedure. 
As an instance of FPC, MFPC was addressed and successfully hardware-implemented on 
banknote sheet inspection machines. MFPC utilizes the concept of membership functions in 
fuzzy set theory and is capable of classifying different objects (data) according to their 
features, and the outputs of the membership functions behave as evidence for decision 
makers to make judgments. In industrial applications, much attention is paid on the costs 
and some other practical issues, thus MFPC is of great importance, particularly because of 
its capability to model complex systems and hardware implementability on FPGAs. 

 
5.2 Adaptive Learning Model for Modified-Fuzzy-Pattern-Classification 
In this section we present an adaptive learning model for fuzzy classification and sensor 
fusion, which on one hand adapts itself to varying data and on the other hand fuses sensory 
information to one score value. The approach is based on the following facts: 

1. The sensory data are in general correlated or 
2. Tend to correlate due to material changes in a machine. 
3. The measurement data are time-variant, e.g., in a production process many 

parameters are varying imperceptively. 
4. The definition of “good” production is always human-centric. Therefore, a 

committed quality standard is defined at the beginning of a production run. 
5. Even if the machine parameters change in a certain range the quality could be in 

order. 
The underlying scheme is based on membership functions (local classifiers) ( , )i i im p , 
which are tuned by a learning (training) process. Furthermore, each membership function is 
weighted with an attractor value Ai, which is proportional to the eigenvalue of the 
corresponding feature mi. This strategy leads to the fact that the local classifiers are trained 
based on committed quality and weighted by their attraction specified by a Principal 
Component Analysis’ (PCA) (Jolliffe, 2002) eigenvalues. The aggregation is again performed 
by a fuzzy averaging operation with a subsequent normalization procedure. 

 

 

5.2.1 Review on PCA 
The Principal Components Analysis (PCA) is effective, if the amount of data is high while 
the feature quantity is small (< 30 features). PCA is a way of identifying patterns in data, 
and expressing the data in such a way as to highlight their similarities and differences. Since 
patterns in data are hard to find in data of high dimensions, where the graphical 
representation is not available, PCA is a powerful tool for analysing data. The other main 
advantage of PCA is that once patterns in the data are found, it is possible to compress the 
data by reducing the number of dimensions without much loss of information. The main 
task of the PCA is to project input data into a new (sub-)space, wherein the different input 
signals are de-correlated. The PCA is used to find weightings of signal importance in the 
measurement’s data set.  
PCA involves a mathematical procedure which transforms a set of correlated response 
variables into a smaller set of uncorrelated variables called principal components. More 
formally it is a linear transformation which chooses a new coordinate system for the data set 
such that the greatest variance by any projection of the set is on the first axis, which is also 
called the first principal component. The second greatest variance is on the second axis, and 
so on. Those created principal component variables are useful for a variety of things 
including data screening, assumption checking and cluster verification. There are two 
possibilities to perform PCA: first applying PCA to a covariance matrix and second 
applying PCA to a correlation matrix. When variables are not normalised, it is necessary to 
choose the second approach: Applying PCA to raw data will lead to a false estimation, 
because variables with the largest variance will dominate the first principal component. 
Therefore in this work the second method in applying PCA to standardized data 
(correlation matrix) is presented (Jolliffe, 2002). 
In the following the function steps of applying PCA to a correlation matrix is reviewed 
concisely. If there are M  data vectors 1

T T
N MNx ... x  each of length N , the projection of the 

data into a subspace is executed by using the Karhunen-Loéve transform (KLT) and their 
inverse, defined as: 

 TY W X  and  X W Y , (8) 
 
where Y is the output matrix, W is the KLT transform matrix followed by the data (input) 
matrix:  
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Furthermore, the expectation value E(•) (average x ) of the data vectors is necessary:  
 

   
   
        
     

  



11

22

( )
( )

( )

( ) MM

xE x
xE x

E X

xE x

x , where 


 
1

1 N

i i
i

x x
N

. (10) 

www.intechopen.com



Sensor Fusion and Its Applications332

 

With the help of the data covariance matrix 
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the correlation matrix R is calculated by: 
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The variables iic  are called variances; the variables ijc  are called covariances of a data set. 

The correlation coefficients are described as ij . Correlation is a measure of the relation 

between two or more variables. Correlation coefficients can range from -1 to +1. The value 
of -1 represents a perfect negative correlation while a value of +1 represents a perfect 
positive correlation. A value of 0 represents no correlation. In the next step the eigenvalues 
i  and the eigenvectors V  of the correlation matrix are computed by Eq. 13, where 
diag( ) is the diagonal matrix of eigenvalues of C:  
 

  1diag( ) V R V . (13) 
 
The eigenvectors generate the KLT matrix and the eigenvalues represent the distribution of 
the source data's energy among each of the eigenvectors. The cumulative energy content for 
the pth eigenvector is the sum of the energy content across all of the eigenvectors from 1 
through p. The eigenvalues have to be sorted in decreasing order: 
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The corresponding vectors iv  of the matrix V  have also to be sorted in decreasing order 
like the eigenvalues, where 1v  is the first column of matrix V , 2v  the second and Mv  is the 
last column of matrix V . The eigenvector 1v  corresponds to eigenvalue 1 , eigenvector 2v  
to eigenvalue 2  and so forth. The matrix W represents a subset of the column eigenvectors 
as basis vectors. The subset is preferably as small as possible (two eigenvectors). The energy 
distribution is a good indicator for choosing the number of eigenvectors. The cumulated 
energy should map approx. 90 % on a low number of eigenvectors. The matrix Y  (cf. Eq. 8) 
then represents the Karhunen-Loéve transformed data (KLT) of matrix X  (Lohweg, 2006a).  

 

 

5.2.2 Modified Adaptive-Fuzzy-Pattern-Classifier 
The adaptive Fuzzy-Pattern-Classifier core based on the world model (Luo, 1989) consists of 
M local classifiers (MFPC), one for each feature. It can be defined as 
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The adaptive fuzzy inference system (AFIS), is then described with a length M unit vector 

 1, , 1 T
u   and the attractor vector  1 2, , , T

MA A AA  as 
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which can be written as 
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The adaptive Fuzzy-Pattern-Classifier model output AFIS can be interpreted as a score value 
in the range of  0 1 . If 1AFIS  , a perfect match is reached, which can be assumed as a 
measure for a “good” system state, based on an amount of sensor signals. The score value 

 0AFIS  represents the overall “bad” measure decision for a certain trained model. As it 
will be explained in section 6 the weight values of each parameter are taken as the weighted 
components of eigenvector one (PC1) times the square roots of the corresponding 
eigenvalues:  

 1 1i iA v . (18) 
 
With Eq. 17 the Modified-Adaptive-Fuzzy-Pattern-Classifier (MAFPC) results then in 
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In section 6.1 an application with MAFPC will be highlighted. 

 
5.3 Probabilistic Modified-Fuzzy-Pattern-Classifier 
In many knowledge-based industrial applications there is a necessity to train using a small 
data set. It is typical that there are less than ten up to some tens of training examples. 
Having only such a small data set, the description of the underlying universal set, from 
which these examples are taken, is very vague and connected to a high degree of 
uncertainty. The heuristic parameterisation methods for the MFPC presented in section 5.1 
leave a high degree of freedom to the user which makes it hard to find optimal parameter 
values. In this section we suggest an automatic method of learning the fuzzy membership 
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The variables iic  are called variances; the variables ijc  are called covariances of a data set. 

The correlation coefficients are described as ij . Correlation is a measure of the relation 

between two or more variables. Correlation coefficients can range from -1 to +1. The value 
of -1 represents a perfect negative correlation while a value of +1 represents a perfect 
positive correlation. A value of 0 represents no correlation. In the next step the eigenvalues 
i  and the eigenvectors V  of the correlation matrix are computed by Eq. 13, where 
diag( ) is the diagonal matrix of eigenvalues of C:  
 

  1diag( ) V R V . (13) 
 
The eigenvectors generate the KLT matrix and the eigenvalues represent the distribution of 
the source data's energy among each of the eigenvectors. The cumulative energy content for 
the pth eigenvector is the sum of the energy content across all of the eigenvectors from 1 
through p. The eigenvalues have to be sorted in decreasing order: 
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The corresponding vectors iv  of the matrix V  have also to be sorted in decreasing order 
like the eigenvalues, where 1v  is the first column of matrix V , 2v  the second and Mv  is the 
last column of matrix V . The eigenvector 1v  corresponds to eigenvalue 1 , eigenvector 2v  
to eigenvalue 2  and so forth. The matrix W represents a subset of the column eigenvectors 
as basis vectors. The subset is preferably as small as possible (two eigenvectors). The energy 
distribution is a good indicator for choosing the number of eigenvectors. The cumulated 
energy should map approx. 90 % on a low number of eigenvectors. The matrix Y  (cf. Eq. 8) 
then represents the Karhunen-Loéve transformed data (KLT) of matrix X  (Lohweg, 2006a).  

 

 

5.2.2 Modified Adaptive-Fuzzy-Pattern-Classifier 
The adaptive Fuzzy-Pattern-Classifier core based on the world model (Luo, 1989) consists of 
M local classifiers (MFPC), one for each feature. It can be defined as 
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The adaptive fuzzy inference system (AFIS), is then described with a length M unit vector 
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The adaptive Fuzzy-Pattern-Classifier model output AFIS can be interpreted as a score value 
in the range of  0 1 . If 1AFIS  , a perfect match is reached, which can be assumed as a 
measure for a “good” system state, based on an amount of sensor signals. The score value 

 0AFIS  represents the overall “bad” measure decision for a certain trained model. As it 
will be explained in section 6 the weight values of each parameter are taken as the weighted 
components of eigenvector one (PC1) times the square roots of the corresponding 
eigenvalues:  

 1 1i iA v . (18) 
 
With Eq. 17 the Modified-Adaptive-Fuzzy-Pattern-Classifier (MAFPC) results then in 
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In section 6.1 an application with MAFPC will be highlighted. 

 
5.3 Probabilistic Modified-Fuzzy-Pattern-Classifier 
In many knowledge-based industrial applications there is a necessity to train using a small 
data set. It is typical that there are less than ten up to some tens of training examples. 
Having only such a small data set, the description of the underlying universal set, from 
which these examples are taken, is very vague and connected to a high degree of 
uncertainty. The heuristic parameterisation methods for the MFPC presented in section 5.1 
leave a high degree of freedom to the user which makes it hard to find optimal parameter 
values. In this section we suggest an automatic method of learning the fuzzy membership 
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functions by estimating the data set's probability distribution and deriving the function's 
parameters automatically from it. The resulting Probabilistic MFPC (PMFPC) membership 
function is based on the MFPC approach, but leaves only one degree of freedom leading to a 
shorter learning time for obtaining stable and robust classification results (Mönks, 2010). 
Before obtaining the different PMFPC formulation, it is reminded that the membership 
functions are aggregated using a fuzzy averaging operator in the MFPC approach. 
Consequently, on the one hand the PMFPC membership functions can substitute the MFPC 
membership function. On the other hand the fuzzy averaging operator used in the MFPC 
can be substituted by any other operator. Actually, it is also possible to substitute both parts 
of the MFPC at the same time (Mönks, 2010), and in all cases the application around the 
classifier remains unchanged. To achieve the possibility of exchanging the MFPC’s core 
parts, its formulation of Eq. 6 is rewritten to 
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revealing that the MFPC incorporates the geometric mean as its fuzzy averaging operator. 
Also, the unimodal membership function, as introduced in Eq. 3 with  1A , is isolated 
clearly, which shall be replaced by the PMFPC membership function described in the 
following section. 

 
5.3.1 Probabilistic MFPC Membership Function 
The PMFPC approach is based on a slightly modified MFPC membership function 
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D and B are automatically parameterised in the PMFPC approach. CEP  is yet not automated 
to preserve the possibility of adjusting the membership function slightly without needing to 
learn the membership functions from scratch. The algorithms presented here for 
automatically parameterising parameters D and B are inspired by former approaches: 
Bocklisch as well as Eichhorn developed algorithms which allow obtaining a value for the 
(MFPC) potential function's parameter D automatically, based on the used training data set. 
Bocklisch also proposed an algorithm for the determination of B. For details we refer to 
(Bocklisch, 1987) and (Eichhorn, 2000). However, these algorithms yield parameters that do 
not fulfil the constraints connected with them in all practical cases (cf. (Mönks, 2010)). 
Hence, we propose a probability theory-based alternative described in the following. 
Bocklisch's and Eichhorn's algorithms adjust D after comparing the actual distribution of 
objects to a perfect uniform distribution. However, the algorithms tend to change D for 
every (small) difference between the actual distribution and a perfect uniform distribution. 
This explains why both algorithms do not fulfil the constraints when applied to random 
uniform distributions. 
We actually stick to the idea of adjusting D with respect to the similarity of the actual 
distribution compared to an artificial, ideal uniform distribution, but we use probability 
theoretical concepts. Our algorithm basically works as follows: At first, the empirical 

 

cumulative distribution function (ECDF) of the data set under investigation is determined. 
Then, the ECDF of an artificial perfect uniform distribution in the range of the actual 
distribution is determined, too. The similarity between both ECDFs is expressed by its 
correlation factor which is subsequently mapped to D by a parameterisable function. 

 
5.3.1.1 Determining the Distributions’ Similarity 

Consider a sorted vector of n feature values   1 2, , , nm m mm  with   1 2 nm m m , thus 
min 1m m  and max nm m . The corresponding empirical cumulative distribution function 

( )mP x  is determined by ( )m nP x  m  with  i i nm m x i   m  , where x  denotes the 

number of elements in vector x and  1,2, ,n n  . The artificial uniform distribution is 
created by equidistantly distributing n values iu , hence  1 2, , , nu u uu  , with 

  1
1 11 m mn

i nu m i 

    . Its ECDF ( )uP x  is determined analogously by substituting m with u. 
In the next step, the similarity between both distribution functions is computed by 
calculating the correlation factor (Polyanin, 2007) 
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where aP  is the mean value of  aP x , computed as  1

1

k
a a ik i

P P x


  . The correlation factor 
must now be mapped to D while fulfilling Bocklisch’s constraints on D (Bocklisch, 1987). 
Therefore, the average influence  D  of the parameter D on the MFPC membership 
function, which is the base for PMFPC membership function, is investigated to derive a 
mapping based on it. First  D x  is determined by taking  ( , )D x D

  with 0 ,m m
Cx   0x  :  
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The locations x represent the distance to the membership function’s mean value 0m , hence 

0x   is the mean value itself, 1x   is the class boundary 0m C , 2x   twice the class 
boundary and so on. The average influence of D on the membership function 
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Dx x x
D x dx    is evaluated for 1 1x   : This interval bears the most valuable 

information since all feature values of the objects in the training data set are included in this 
interval, and additionally those of the class members are expected here during the 
classification process, except from only a typically neglectable number of outliers. The 
mapping of  : 2,20D c  , which is derived in the following, must take D’s average 
influence into consideration, which turns out to be exponentially decreasing (Mönks, 2010). 
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functions by estimating the data set's probability distribution and deriving the function's 
parameters automatically from it. The resulting Probabilistic MFPC (PMFPC) membership 
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parts, its formulation of Eq. 6 is rewritten to 












  
   

 


1

0

11 ( , )
( , )

1
( , ) 2 2

M

i i i
i i ii

Md m MM d m
MFPC

i

p
pm p , (20) 

revealing that the MFPC incorporates the geometric mean as its fuzzy averaging operator. 
Also, the unimodal membership function, as introduced in Eq. 3 with  1A , is isolated 
clearly, which shall be replaced by the PMFPC membership function described in the 
following section. 

 
5.3.1 Probabilistic MFPC Membership Function 
The PMFPC approach is based on a slightly modified MFPC membership function 
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D and B are automatically parameterised in the PMFPC approach. CEP  is yet not automated 
to preserve the possibility of adjusting the membership function slightly without needing to 
learn the membership functions from scratch. The algorithms presented here for 
automatically parameterising parameters D and B are inspired by former approaches: 
Bocklisch as well as Eichhorn developed algorithms which allow obtaining a value for the 
(MFPC) potential function's parameter D automatically, based on the used training data set. 
Bocklisch also proposed an algorithm for the determination of B. For details we refer to 
(Bocklisch, 1987) and (Eichhorn, 2000). However, these algorithms yield parameters that do 
not fulfil the constraints connected with them in all practical cases (cf. (Mönks, 2010)). 
Hence, we propose a probability theory-based alternative described in the following. 
Bocklisch's and Eichhorn's algorithms adjust D after comparing the actual distribution of 
objects to a perfect uniform distribution. However, the algorithms tend to change D for 
every (small) difference between the actual distribution and a perfect uniform distribution. 
This explains why both algorithms do not fulfil the constraints when applied to random 
uniform distributions. 
We actually stick to the idea of adjusting D with respect to the similarity of the actual 
distribution compared to an artificial, ideal uniform distribution, but we use probability 
theoretical concepts. Our algorithm basically works as follows: At first, the empirical 

 

cumulative distribution function (ECDF) of the data set under investigation is determined. 
Then, the ECDF of an artificial perfect uniform distribution in the range of the actual 
distribution is determined, too. The similarity between both ECDFs is expressed by its 
correlation factor which is subsequently mapped to D by a parameterisable function. 

 
5.3.1.1 Determining the Distributions’ Similarity 
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( )mP x  is determined by ( )m nP x  m  with  i i nm m x i   m  , where x  denotes the 
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    . Its ECDF ( )uP x  is determined analogously by substituting m with u. 
In the next step, the similarity between both distribution functions is computed by 
calculating the correlation factor (Polyanin, 2007) 
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where aP  is the mean value of  aP x , computed as  1
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must now be mapped to D while fulfilling Bocklisch’s constraints on D (Bocklisch, 1987). 
Therefore, the average influence  D  of the parameter D on the MFPC membership 
function, which is the base for PMFPC membership function, is investigated to derive a 
mapping based on it. First  D x  is determined by taking  ( , )D x D
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Cx   0x  :  
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boundary and so on. The average influence of D on the membership function 

1( ) ( )r

r l l

x

Dx x x
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information since all feature values of the objects in the training data set are included in this 
interval, and additionally those of the class members are expected here during the 
classification process, except from only a typically neglectable number of outliers. The 
mapping of  : 2,20D c  , which is derived in the following, must take D’s average 
influence into consideration, which turns out to be exponentially decreasing (Mönks, 2010). 
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5.3.1.2 Mapping the Distributions’ Similarity to the Edge’s Steepness 
In the general case, the correlation factor c can take values from the interval  1,1 , but 
when evaluating distribution functions, the range of values is restricted to  0,1c , which is 
because probability distribution functions are monotonically increasing. This holds for both 
distributions, ( )mP x  as well as ( )uP x . It follows 0c  . The interpretation of the correlation 
factor is straight forward. A high value of c means that the distribution ( )mP x  is close to a 
uniform distribution. If ( )mP x  actually was a uniform distribution, 1c   since ( ) ( )m uP x P x . 
According to Bocklisch, D should take a high value here. The more ( )mP x  differs from a 
uniform distribution, the more 0c  , the more 2D  . Hence, the mapping function ( )D c  
must necessarily be an increasing function with taking the exponentially decreasing average 
influence of D on the membership function  D  into consideration (cf. (Mönks, 2010)). An 
appropriate mapping  : 2,20D c   is an exponentially increasing function which 
compensates the changes of the MFPC membership function with respect to changes of c. 
We suggest the following heuristically determined exponential function, which achieved 
promising results during experiments: 

 2

( ) 19 1 ( ) 2,20
qcD c D c    , (24) 

where q is an adjustment parameter. This formulation guarantees that  2,20D  c  since 

 0,1c . Using the adjustment parameter q, D is adjusted with respect to the aggregation 
operator used to fuse all n membership functions representing each of the n features. Each 
fuzzy aggregation operator behaves differently. For a fuzzy averaging operator ( )h a , 
Dujmović introduced the objective measure of global andness g  (for details cf. (Dujmović, 
2007), (Mönks, 2009)). Assuming 1q   in the following cases, it can be observed that, when 
using aggregation operators with a global andness ( ) 0h

g a , the aggregated single, n-
dimensional membership function is more fuzzy than that one obtained when using an 
aggregation operator with ( ) 1h

g a , where the resulting function is sharp. This behaviour 
should be compensated by adjusting D in such a way, that the aggregated membership 
functions have comparable shapes: at some given correlation factor c, D must be increased if 

g  is high and vice versa. This is achieved by mapping the aggregation operator’s global 
andness to q, hence : gq    . Our suggested solution is a direct mapping of the global 

andness to the adjustment parameter q, hence  ( ) 0,1g gq q    . The mapping in Eq. 24 
is now completely defined and consistent with Bocklisch’s constraints and the observations 
regarding the aggregation operator’s andness. 

 
5.3.1.3 Determining the Class Boundary Membership Parameter 
In addition to the determination of D, we present an algorithm to automatically 
parameterise the class boundary membership B. This parameter is a measure for the 
membership ( , )m p  at the locations  0 0,m m C m C   . The algorithm for determining B 
is based on the algorithm Bocklisch developed, but was not adopted as it stands since it has 

 

some disadvantages if this algorithm is applied to distributions with a high density 
especially on the class boundaries. For details cf. (Bocklisch, 1987). 
When looking at the MFPC membership functions, the following two constraints on B can 
be derived: (i) The probability of occurrence is the same for every object in uniform 
distributions, also on the class boundary. Here, B should have a high value. (ii) For 
distributions where the density of objects decreases when going towards the class 
boundaries B should be assigned a small value, since the probability that an object occurs at 
the boundary is smaller than in the centre. 
Hence, for sharp membership functions ( 20D  ) a high value for B should be assigned, 
while for fuzzy membership functions ( 2D  ) the value of B should be low. ( )B f D  must 
have similar properties like  D , meaning B changes quickly where  D  changes 
quickly and vice versa. We adopted Bocklisch’s suitable equation for computing the class 
boundary membership (Bocklisch, 1987):  
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(25) 

where max (0,1)B   stands for the maximum possible value of B with a proposed value of 0.9, 

max 20D   is the maximum possible value of D and q is identical in its meaning and value to 
q as used in Eq. 24. 

 
5.3.1.4 An Asymmetric PMFPC Membership Function Formulation 
A data set may be represented better if the membership function was formulated 
asymmetrically instead of symmetrically as is the case with Eq. 21. This means  
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where 1
0 1

M
iM i

m m


  , im m  is the arithmetic mean of all feature values. If 0m  was 

computed as introduced in Eq. 7, the resulting membership function would not describe the 
underlying feature vector m appropriately for asymmetrical feature distributions. A new 
computation method must therefore also be applied to 0 min max min( )r CEC m m P m m      
and max 0 max min( )f CEC m m P m m      due to the change to the asymmetrical formulation. 

To compute the remaining parameters, the feature vector must be split into the left side 
feature vector 0( )r i im m m m  and the one for the right side 0( )f i im m m m  for all 

im m . They are determined following the algorithms presented in the preceding sections 
5.3.1.2 and 5.3.1.3, but using only the feature vector for one side to compute this side’s 
respective parameter. 
Using Eq. 26 as membership function, the Probabilistic Modified-Fuzzy-Pattern-Classifier is 
defined as 
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some disadvantages if this algorithm is applied to distributions with a high density 
especially on the class boundaries. For details cf. (Bocklisch, 1987). 
When looking at the MFPC membership functions, the following two constraints on B can 
be derived: (i) The probability of occurrence is the same for every object in uniform 
distributions, also on the class boundary. Here, B should have a high value. (ii) For 
distributions where the density of objects decreases when going towards the class 
boundaries B should be assigned a small value, since the probability that an object occurs at 
the boundary is smaller than in the centre. 
Hence, for sharp membership functions ( 20D  ) a high value for B should be assigned, 
while for fuzzy membership functions ( 2D  ) the value of B should be low. ( )B f D  must 
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where max (0,1)B   stands for the maximum possible value of B with a proposed value of 0.9, 

max 20D   is the maximum possible value of D and q is identical in its meaning and value to 
q as used in Eq. 24. 
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computed as introduced in Eq. 7, the resulting membership function would not describe the 
underlying feature vector m appropriately for asymmetrical feature distributions. A new 
computation method must therefore also be applied to 0 min max min( )r CEC m m P m m      
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having in mind, that the geometric mean operator can be substituted by any other fuzzy 
averaging operator. An application is presented in section 6.2. 

 
6. Applications 

6.1 Machine Condition Monitoring 
The approach presented in section 4 and 5.1 was tested in particular with an intaglio 
printing machine in a production process. As an interesting fact print flaws were detected at 
an early stage by using multi-sensory measurements. It has to be noted that one of the most 
common type of print flaws (Lohweg, 2006) caused by the wiping unit was detected at a 
very early stage.  
 
The following data are used for the model: machine speed - motor current - printing 
pressure side 1 (PPS1) - printing pressure side 2 (PPS2) - hydraulic pressure (drying blade) - 
wiping solution flow - drying blade side 1 (DBS1) - drying blade side 2 (DBS2) - acoustic 
signal (vertical side 1) - acoustic signal (horizontal side 1) - acoustic signal (vertical side 2) - 
acoustic signal (horizontal side 1). 
It has been mentioned that it might be desirable to preprocess some of the signals output by 
the sensors which are used to monitor the behaviour of the machine. This is particularly true 
in connection with the sensing of noises and/or vibrations produced by the printing press, 
which signals a great number of frequency components. The classical approach to 
processing such signals is to perform a spectral transformation of the signals. The usual 
spectral transformation is the well-known Fourier transform (and derivatives thereof) which 
converts the signals from the time-domain into the frequency-domain. The processing of the 
signals is made simpler by working in the thus obtained spectrum as periodic signal 
components are readily identifiable in the frequency-domain as peaks in the spectrum. The 
drawbacks of the Fourier transform, however, reside in its inability to efficiently identify 
and isolate phase movements, shifts, drifts, echoes, noise, etc., in the signals. A more 
adequate “spectral” analysis is the so-called “cepstrum” analysis. “Cepstrum” is an 
anagram of “spectrum” and is the accepted terminology for the inverse Fourier transform of 
the logarithm of the spectrum of a signal. Cepstrum analysis is in particular used for 
analysing “sounds” instead of analysing frequencies (Bogert, 1963).  
A test was performed by measuring twelve different parameters of the printing machine’s 
condition while the machine was running (data collection) (Dyck, 2006). During this test the 
wiping pressure was decreased little by little, as long as the machine was printing only error 
sheets. The test was performed at a speed of 6500 sheets per hour and a sample frequency of 

 

7 kHz. During this test 797 sheets were printed, that means, the set of data contained more 
than three million values per signal. In the first step before calculating the KLT of the raw 
data, the mean value per sheet was calculated to reduce the amount of data to 797 values 
per signal. As already mentioned, 12 signals were measured; therefore the four acoustical 
signals were divided by cepstrum analysis in six new parameters, so that all in all 14 
parameters built up the new input vectors of matrix X . As described above, at first the 
correlation matrix of the input data was calculated. Some parameters are highly correlated, 
e.g. PPS1 and PPS2 with a correlation factor 0.9183, DBS1 and DBS2 with a correlation factor 
0.9421, and so forth. This fact already leads to the assumption that implementing the KLT 
seems to be effective in reducing the dimensions of the input data. The classifier model is 
shown in Fig. 4. 
The KLT matrix is given by calculating the eigenvectors and eigenvalues of the correlation 
matrix, because the eigenvectors build up the transformation matrix. In Fig. 5 the calculated 
eigenvalues are presented. On the ordinate the variance contribution of several eigenvalues 
in percentage are plotted versus the number of eigenvalues on the abscissa axis. The first 
principal component has already a contribution of almost 60 % of the total variance. Looking 
at the first seven principal components, which cover nearly 95 % of the total variance, shows 
that this transformation allows a reduction of important parameters for further use in 
classification without relevant loss of information. The following implementations focussed 
only on the first principal component, which represents the machine condition state best. 
 

 
Fig. 4. The adaptive Fuzzy-Pattern-Classifier Model. The FPC is trained with 14 features, 
while the fuzzy inference system is adapted by the PCA output. Mainly the first principal 
component is applied. 
 
PCA is not only a dimension-reducing technique, but also a technique for graphical 
representations of high-dimension data. Graphical representation of variables in a two-
dimensional way shows which parameters are correlated. The coordinates of the parameter 
are calculated by weighting the components of the eigenvectors with the square root of the 
eigenvalues: the ith parameter is represented as the point ( 1 1 2 2, i iv v ). This weighting 

is executed for normalisation. 
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having in mind, that the geometric mean operator can be substituted by any other fuzzy 
averaging operator. An application is presented in section 6.2. 

 
6. Applications 

6.1 Machine Condition Monitoring 
The approach presented in section 4 and 5.1 was tested in particular with an intaglio 
printing machine in a production process. As an interesting fact print flaws were detected at 
an early stage by using multi-sensory measurements. It has to be noted that one of the most 
common type of print flaws (Lohweg, 2006) caused by the wiping unit was detected at a 
very early stage.  
 
The following data are used for the model: machine speed - motor current - printing 
pressure side 1 (PPS1) - printing pressure side 2 (PPS2) - hydraulic pressure (drying blade) - 
wiping solution flow - drying blade side 1 (DBS1) - drying blade side 2 (DBS2) - acoustic 
signal (vertical side 1) - acoustic signal (horizontal side 1) - acoustic signal (vertical side 2) - 
acoustic signal (horizontal side 1). 
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components are readily identifiable in the frequency-domain as peaks in the spectrum. The 
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adequate “spectral” analysis is the so-called “cepstrum” analysis. “Cepstrum” is an 
anagram of “spectrum” and is the accepted terminology for the inverse Fourier transform of 
the logarithm of the spectrum of a signal. Cepstrum analysis is in particular used for 
analysing “sounds” instead of analysing frequencies (Bogert, 1963).  
A test was performed by measuring twelve different parameters of the printing machine’s 
condition while the machine was running (data collection) (Dyck, 2006). During this test the 
wiping pressure was decreased little by little, as long as the machine was printing only error 
sheets. The test was performed at a speed of 6500 sheets per hour and a sample frequency of 

 

7 kHz. During this test 797 sheets were printed, that means, the set of data contained more 
than three million values per signal. In the first step before calculating the KLT of the raw 
data, the mean value per sheet was calculated to reduce the amount of data to 797 values 
per signal. As already mentioned, 12 signals were measured; therefore the four acoustical 
signals were divided by cepstrum analysis in six new parameters, so that all in all 14 
parameters built up the new input vectors of matrix X . As described above, at first the 
correlation matrix of the input data was calculated. Some parameters are highly correlated, 
e.g. PPS1 and PPS2 with a correlation factor 0.9183, DBS1 and DBS2 with a correlation factor 
0.9421, and so forth. This fact already leads to the assumption that implementing the KLT 
seems to be effective in reducing the dimensions of the input data. The classifier model is 
shown in Fig. 4. 
The KLT matrix is given by calculating the eigenvectors and eigenvalues of the correlation 
matrix, because the eigenvectors build up the transformation matrix. In Fig. 5 the calculated 
eigenvalues are presented. On the ordinate the variance contribution of several eigenvalues 
in percentage are plotted versus the number of eigenvalues on the abscissa axis. The first 
principal component has already a contribution of almost 60 % of the total variance. Looking 
at the first seven principal components, which cover nearly 95 % of the total variance, shows 
that this transformation allows a reduction of important parameters for further use in 
classification without relevant loss of information. The following implementations focussed 
only on the first principal component, which represents the machine condition state best. 
 

 
Fig. 4. The adaptive Fuzzy-Pattern-Classifier Model. The FPC is trained with 14 features, 
while the fuzzy inference system is adapted by the PCA output. Mainly the first principal 
component is applied. 
 
PCA is not only a dimension-reducing technique, but also a technique for graphical 
representations of high-dimension data. Graphical representation of variables in a two-
dimensional way shows which parameters are correlated. The coordinates of the parameter 
are calculated by weighting the components of the eigenvectors with the square root of the 
eigenvalues: the ith parameter is represented as the point ( 1 1 2 2, i iv v ). This weighting 

is executed for normalisation. 
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Fig. 5. Eigenvalues (blue) and cumulated eigenvalues (red). The first principal component 
has already a contribution of almost 60 % of the total normalized variance.  
 
For the parameter “speed” of test B the coordinates are calculated as:  

1. 1,1 1 2 ,1 2( , ) (0.24 7.8 , 0.14 1.6 ) (0.67, 0.18)v v    , where 

1 ( 0.24, 0.34, 0.19, 0.14, 0.02, 0.18, 0.34,...)T      v , and  

2. 2 (0.14, 0.03, 0.65, 0.70, 0.10, 0.05,...)T  v and  

diag(7.8, 1.6, 1.1, 0.96, 0.73, 0.57,...)i λ . 
All parameters calculated by this method are shown in Fig. 6. The figure shows different 
aspects of the input parameters. Parameters which are close to each other have high 
correlation coefficients. Parameters which build a right angle in dependence to the zero 
point have no correlation.  

 
Fig. 6. Correlation dependency graph for PC1 and PC2. 
 
The x-axis represents the first principal component (PC1) and the y-axis represents the second 
principal component (PC2). The values are always between zero and one. Zero means that the 
parameters’ effect on the machine condition state is close to zero. On the other hand a value 
near one shows that the parameters have strong effects on the machine condition state. 
Therefore, a good choice for adaptation is the usage of normalized PC1 components. 

 

The acoustical operational parameters sensed by the multiple-sensor arrangement are first 
analysed with the cepstrum analysis prior to doing the principal component analysis (PCA). 
The cepstrum analysis supplies the signal’s representative of vibrations or noises produced 
by the printing press, such as the characteristic noises or vibrations patterns of intaglio 
printing presses. Thereafter the new acoustical parameters and the remaining operational 
parameters have to be fed into the PCA block to calculate corresponding eigenvalues and 
eigenvectors. As explained above, the weight-values of each parameter are taken as the 
weighted components of eigenvector one (PC1) times the square roots of the corresponding 
eigenvalues. Each weight-value is used for weighting the output of a rule in the fuzzy 
inference system (Fig. 4). E.g., the parameter “hydraulic pressure” receives the weight 0.05, 
the parameter “PPS2” receives the weight 0.39, the parameter “Current” receives the weight 
0.94 and so forth (Fig. 6). The sum of all weights in this test is 9.87. All 14 weights are fed 
into the fuzzy inference system block (FIS). 
Figure 7 shows the score value of test B. The threshold is set to 0.5, i.e. if the score value is 
equal to or larger than 0.5 the machine condition state is “good”, otherwise the condition 
state of the machine is “bad” and it is predictable that error sheets will be printed. Figure 7 
shows also that the score value passes the threshold earlier than the image signals. That 
means the machine runs in bad condition state before error sheets are printed.  
 

 

 
Fig. 7. Score value representation for 797 printed sheets. The green curve represents the 
classifier score value for wiping error detection, whilst the blue curve shows the results of 
an optical inspection system. The score value 0.5 defines the threshold between “good” and 
“bad” print. 

 
6.2 Print Quality Check 
As a second application example, an optical character recognition application is presented 
here. In an industrial production line, the correctness of dot-matrix printed digits are 
checked in real-time. This is done by recognizing the currently printed digit as a specific 
number and comparing it with what actually was to be printed. Therefore, an image is 
acquired from each digit, and 17 different features are extracted. Here, each feature can be 
interpreted as a single sensor, reacting on different characteristics (e. g., brightness, 
frequency content, etc.) of the signal (i. e. the image). Examples of the printed digits can be 
seen in Fig. 8. Actually, there exist also a slightly modified “4” and “7” in the application, 
thus twelve classes of digits must be distinguished. 
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checked in real-time. This is done by recognizing the currently printed digit as a specific 
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Fig. 8. Examples of dot-matrix printed digits. 
 
The incorporated classifier uses both the MFPC and PMFPC membership functions as 
introduced in section 5.3. Each membership function represents one of the 17 features 
obtained from the images. All membership functions are learned based on the dedicated 
training set consisting of 17 images per class. Their outputs, based on the respective feature 
values of each of the 746 objects which were investigated, are subsequently fused through 
aggregation using different averaging operators by using the classifier framework presented 
in (Mönks, 2009). Here, the incorporated aggregation operators are Yager’s family of Ordered 
Weighted Averaging (OWA) (Yager, 1988) and Larsen’s family of Andness-directed Importance 
Weighting Averaging (AIWA) (Larsen, 2003) operators (applied unweighted here)—which 
both can be adjusted in their andness degree—and additionally MFPC’s original geometric 
mean (GM). We refer to (Yager, 1988) and (Larsen, 2003) for the definition of OWA and 
AIWA operators. As a reference, the data set is also classified using a Support Vector Machine 
(SVM) with a Gaussian radial basis function (RBF). Since SVMs are capable of 
distinguishing between only two classes, the classification procedure is adjusted to pairwise 
(or one-against-one) classification according to (Schölkopf, 2001). Our benchmarking 
measure is the classification rate n

Nr 
  , where n  is the number of correctly classified 

objects and N the total number of objects that were evaluated. The best classification rates at 
a given aggregation operator’s andness g  are summarised in the following Table 2, where 
the best classification rate per group is printed bold. 
 
 Aggregation PMFPC MFPC 
 Operator  2D   4D   8D   16D   

g   
CEP  r  CEP  r  CEP  r  CEP  r  CEP  r  

0.5000 AIWA 0.255 93.70 % 0.370 84.58 % 0.355 87.67 % 0.310 92.36 % 0.290 92.90 % 
 OWA 0.255 93.70 % 0.370 84.58 % 0.355 87.67 % 0.310 92.36 % 0.290 92.90 % 
0.6000 AIWA 0.255 93.16 % 0.175 87.13 % 0.205 91.02 % 0.225 92.36 % 0.255 92.23 % 
 OWA 0.255 93.57 % 0.355 84.58 % 0.365 88.47 % 0.320 92.63 % 0.275 92.76 % 
0.6368 GM 0.950 84.45 % 0.155 81.77 % 0.445 82.17 % 0.755 82.44 % 1.000 82.44 % 
 AIWA 0.245 91.42 % 0.135 85.52 % 0.185 90.08 % 0.270 89.81 % 0.315 89.95 % 
 OWA 0.255 93.57 % 0.355 84.72 % 0.355 88.74 % 0.305 92.63 % 0.275 92.76 % 
0.7000 AIWA 1.000 83.65 % 0.420 82.71 % 0.790 82.57 % 0.990 82.31 % 1.000 79.22 % 
 OWA 0.280 93.57 % 0.280 84.85 % 0.310 89.01 % 0.315 92.76 % 0.275 92.63 % 

Table 2. “OCR” classification rates r  for each aggregation operator at andness degrees g  

with regard to membership function parameters D and CEP . 
 
The best classification rates for the “OCR” data set are achieved when the PMFPC 
membership function is incorporated, which are more than 11 % better than the best using 
the original MFPC. The Support Vector Machine achieved a best classification rate of 

95.04%r   by parameterising its RBF kernel with 5.640  , which is 1.34 % or 10 objects 
better than the best PMFPC approach.  

  

 

7. Conclusion and Outlook 

In this chapter we have reviewed fuzzy set theory based multi-sensor fusion built on Fuzzy-
Pattern-Classification. In particular we emphasized the fact that many traps can occur in 
multi-sensor fusion. Furthermore, a new inspection and conditioning approach for securities 
and banknote printing was presented, based on modified versions of the FPC, which results 
in a robust and reliable detection of flaws. In particular, it was shown that this approach 
leads to reliable fusion results. The system model “observes” the various machine 
parameters and decides, using a classifier model with manually tuned or learned 
parameters, whether the information is as expected or not. A machine condition monitoring 
system based on an adaptive learning was presented, where the PCA is used for estimating 
significance weights for each sensor signal. An advantage of the concept is that not only 
data sets can be classified, but also the influence of input signals can be traced back. This 
classification model was applied to different tests and some results were presented. In the 
future we will mainly focus on classifier training with a low amount of samples, which is 
essential for many industrial applications. Furthermore, the classification results should be 
improved by the application of classifier nets. 
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