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1. Introduction 

For many applications, the information provided by individual sensors is often incomplete, 
inconsistent, or imprecise. For problems involving detection, recognition and reconstruction 
tasks in complex environments, it is well known that no single source of information can 
provide the absolute solution, besides the computational complexity. The merging of 
multisource data can create a more consistent interpretation of the system of interest, in 
which the associated uncertainty is decreased.  
Multi-sensor data fusion also known simply as sensor data fusion is a process of combining 
evidence from different information sources in order to make a better judgment (Llinas & 
Waltz, 1990; Hall, 1992; Klein, 1993). Although, the notion of data fusion has always been 
around, most multisensory data fusion applications have been developed very recently, 
converting it in an area of intense research in which new applications are being explored 
constantly. On the surface, the concept of fusion may look to be straightforward but the 
design and implementation of fusion systems is an extremely complex task. Modeling, 
processing, and integrating of different sensor data for knowledge interpretation and 
inference are challenging problems. These problems become even more difficult when the 
available data is incomplete, inconsistent or imprecise. 
 
In robotics and computer vision, the rapid advance of science and technology combined 
with the reduction in the costs of sensor devices, has caused that these areas together, and 
before considered as independent, strength the diverse needs of each. A central topic of 
investigation in both areas is the recovery of the tridimensional structure of large-scale 
environments. In a large-scale environment the complete scene cannot be captured from a 
single referential frame or given position, thus an active way of capturing the information is 
needed.   In particular, having a mobile robot able to build a 3D map of the environment is 
very appealing since it can be applied to many important applications. For example, virtual 
exploration of remote places, either for security or efficiency reasons.  These applications 
depend not only on the correct transmission of visual and geometric information but also on 
the quality of the information captured. The latter is closely related to the notion of active 
perception as well as the uncertainty associated to each sensor. In particular, the behavior 
any artificial or biological system should follow to accomplish certain tasks (e.g., extraction, 
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simplification and filtering), is strongly influenced by the data supplied by its sensors. This 
data is in turn dependent on the perception criteria associated with each sensorial input 
(Conde & Thalmann, 2004).  
 
A vast body of research on 3D modeling and virtual reality applications has been focused on 
the fusion of intensity and range data with promising results (Pulli et al., 1997; Stamos & 
Allen, 2000) and recently (Guidi et al., 2009). Most of these works consider the complete 
acquisition of 3D points from the object or scene to be modeled, focusing mainly on the 
registration and integration problems.  
 
In the area of computer vision, the idea of extracting the shape or structure from an image 
has been studied since the end of the 70’s. Scientists in computer vision were mainly 
interested in methods that reflect the way the human eye works. These methods, known as 
“shape-from-X”, extract depth information by using visual patterns of the images, such as 
shading, texture, binocular vision, motion, among others. Because of the type of sensors 
used in these methods, they are categorized as passive sensing techniques, i.e., data is 
obtained without emitting energy and involve typically mathematical models of the image 
formation and how to invert them. Traditionally, these models are based on physical 
principles of the light interaction. However, due to the difficulties to invert them, is 
necessary to assume several aspects about the physical properties of the objects in the scene, 
such as the type of surface (Lambertian, matte) and albedo, which cannot be suitable to real 
complex scenes. 
 
In the robotics community, it is common to combine information from different sensors, 
even using the same sensors repeatedly over time, with the goal of building a model of the 
environment. Depth inference is frequently achieved by using sophisticated, but costly, 
hardware solutions. Range sensors, in particular laser rangefinders, are commonly used in 
several applications due to its simplicity and reliability (but not its elegance, cost and 
physical robustness). Besides of capturing 3D points in a direct and precise manner, range 
measurements are independent of external lighting conditions. These techniques are known 
as active sensing techniques. Although these techniques are particularly needed in non-
structured environments (e.g., natural outdoors, aquatic environments), they are not 
suitable for capturing complete 2.5D maps with a resolution similar to that of a camera. The 
reason for this is that these sensors are extremely expensive or, in other way, impractical, 
since the data acquisition process may be slow and normally the spatial resolution of the 
data is limited. On the other hand, intensity images have a high resolution which allows 
precise results in well-defined objectives. These images are easy to acquire and give texture 
maps in real color images.  
 
However, although many elegant algorithms based on traditional approaches for depth 
recovery have been developed, the fundamental problem of obtaining precise data is still a 
difficult task. In particular, achieving geometric correctness and realism may require data 
collection from different sensors as well as the correct fusion of all these observations.  
Good examples are the stereo cameras that can produce volumetric scans that are 
economical.  However, these cameras require calibration or produce range maps that are 
incomplete or of limited resolution. In general, using only 2D intensity images will provide 

 

sparse measurements of the geometry which are non-reliable unless some simple geometry 
about the scene to model is assumed. By fusing 2D intensity images with range finding 
sensors, as first demonstrated in (Jarvis, 1992), a solution to 3D vision is realized -
circumventing the problem of inferring 3D from 2D. 
 
One aspect of great importance in the 3D modeling reconstruction is to have a fast, efficient 
and simple data acquisition process from the sensors and yet, have a good and robust 
reconstruction. This is crucial when dealing with dynamic environments (e.g., people 
walking around, illumination variation, etc.) and systems with limited battery-life. We can 
simplify the way the data is acquired by capturing only partial but reliable range 
information of regions of interest. In previous research work, the problem of tridimensional 
scene recovery using incomplete sensorial data was tackled for the first time, specifically, by 
using intensity images and a limited number of range data (Torres-Méndez & Dudek, 2003; 
Torres-Méndez & Dudek, 2008). The main idea is based on the fact that the underlying 
geometry of a scene can be characterized by the visual information and its interaction with 
the environment together with its inter-relationships with the available range data. Figure 1 
shows an example of how a complete and dense range map is estimated from an intensity 
image and the associated partial depth map. These statistical relationships between the 
visual and range data were analyzed in terms of small patches or neighborhoods of pixels, 
showing that the contextual information of these relationships can provide information to 
infer complete and dense range maps. The dense depth maps with their corresponding 
intensity images are then used to build 3D models of large-scale man-made indoor 
environments (offices, museums, houses, etc.) 
 

 
Fig. 1. An example of the range synthesis process. The data fusion of intensity and 
incomplete range is carried on to reconstruct a 3D model of the indoor scene. Image taken 
from (Torres-Méndez, 2008). 
 
In that research work, the sampling strategies for measuring the range data was determined 
beforehand and remain fixed (vertical and horizontal lines through the scene) during the 
data acquisition process. These sampling strategies sometimes carried on critical limitations 
to get an ideal reconstruction as the quality of the input range data, in terms of the 
geometric characteristics it represent, did not capture the underlying geometry of the scene 
to be modeled. As a result, the synthesis process of the missing range data was very poor.  
In the work presented in this chapter, we solve the above mentioned problem by selecting in 
an optimal way the regions where the initial (minimal) range data must be captured. Here, 
the term optimal refers in particular, to the fact that the range data to be measured must truly 
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simplification and filtering), is strongly influenced by the data supplied by its sensors. This 
data is in turn dependent on the perception criteria associated with each sensorial input 
(Conde & Thalmann, 2004).  
 
A vast body of research on 3D modeling and virtual reality applications has been focused on 
the fusion of intensity and range data with promising results (Pulli et al., 1997; Stamos & 
Allen, 2000) and recently (Guidi et al., 2009). Most of these works consider the complete 
acquisition of 3D points from the object or scene to be modeled, focusing mainly on the 
registration and integration problems.  
 
In the area of computer vision, the idea of extracting the shape or structure from an image 
has been studied since the end of the 70’s. Scientists in computer vision were mainly 
interested in methods that reflect the way the human eye works. These methods, known as 
“shape-from-X”, extract depth information by using visual patterns of the images, such as 
shading, texture, binocular vision, motion, among others. Because of the type of sensors 
used in these methods, they are categorized as passive sensing techniques, i.e., data is 
obtained without emitting energy and involve typically mathematical models of the image 
formation and how to invert them. Traditionally, these models are based on physical 
principles of the light interaction. However, due to the difficulties to invert them, is 
necessary to assume several aspects about the physical properties of the objects in the scene, 
such as the type of surface (Lambertian, matte) and albedo, which cannot be suitable to real 
complex scenes. 
 
In the robotics community, it is common to combine information from different sensors, 
even using the same sensors repeatedly over time, with the goal of building a model of the 
environment. Depth inference is frequently achieved by using sophisticated, but costly, 
hardware solutions. Range sensors, in particular laser rangefinders, are commonly used in 
several applications due to its simplicity and reliability (but not its elegance, cost and 
physical robustness). Besides of capturing 3D points in a direct and precise manner, range 
measurements are independent of external lighting conditions. These techniques are known 
as active sensing techniques. Although these techniques are particularly needed in non-
structured environments (e.g., natural outdoors, aquatic environments), they are not 
suitable for capturing complete 2.5D maps with a resolution similar to that of a camera. The 
reason for this is that these sensors are extremely expensive or, in other way, impractical, 
since the data acquisition process may be slow and normally the spatial resolution of the 
data is limited. On the other hand, intensity images have a high resolution which allows 
precise results in well-defined objectives. These images are easy to acquire and give texture 
maps in real color images.  
 
However, although many elegant algorithms based on traditional approaches for depth 
recovery have been developed, the fundamental problem of obtaining precise data is still a 
difficult task. In particular, achieving geometric correctness and realism may require data 
collection from different sensors as well as the correct fusion of all these observations.  
Good examples are the stereo cameras that can produce volumetric scans that are 
economical.  However, these cameras require calibration or produce range maps that are 
incomplete or of limited resolution. In general, using only 2D intensity images will provide 

 

sparse measurements of the geometry which are non-reliable unless some simple geometry 
about the scene to model is assumed. By fusing 2D intensity images with range finding 
sensors, as first demonstrated in (Jarvis, 1992), a solution to 3D vision is realized -
circumventing the problem of inferring 3D from 2D. 
 
One aspect of great importance in the 3D modeling reconstruction is to have a fast, efficient 
and simple data acquisition process from the sensors and yet, have a good and robust 
reconstruction. This is crucial when dealing with dynamic environments (e.g., people 
walking around, illumination variation, etc.) and systems with limited battery-life. We can 
simplify the way the data is acquired by capturing only partial but reliable range 
information of regions of interest. In previous research work, the problem of tridimensional 
scene recovery using incomplete sensorial data was tackled for the first time, specifically, by 
using intensity images and a limited number of range data (Torres-Méndez & Dudek, 2003; 
Torres-Méndez & Dudek, 2008). The main idea is based on the fact that the underlying 
geometry of a scene can be characterized by the visual information and its interaction with 
the environment together with its inter-relationships with the available range data. Figure 1 
shows an example of how a complete and dense range map is estimated from an intensity 
image and the associated partial depth map. These statistical relationships between the 
visual and range data were analyzed in terms of small patches or neighborhoods of pixels, 
showing that the contextual information of these relationships can provide information to 
infer complete and dense range maps. The dense depth maps with their corresponding 
intensity images are then used to build 3D models of large-scale man-made indoor 
environments (offices, museums, houses, etc.) 
 

 
Fig. 1. An example of the range synthesis process. The data fusion of intensity and 
incomplete range is carried on to reconstruct a 3D model of the indoor scene. Image taken 
from (Torres-Méndez, 2008). 
 
In that research work, the sampling strategies for measuring the range data was determined 
beforehand and remain fixed (vertical and horizontal lines through the scene) during the 
data acquisition process. These sampling strategies sometimes carried on critical limitations 
to get an ideal reconstruction as the quality of the input range data, in terms of the 
geometric characteristics it represent, did not capture the underlying geometry of the scene 
to be modeled. As a result, the synthesis process of the missing range data was very poor.  
In the work presented in this chapter, we solve the above mentioned problem by selecting in 
an optimal way the regions where the initial (minimal) range data must be captured. Here, 
the term optimal refers in particular, to the fact that the range data to be measured must truly 
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represent relevant information about the geometric structure. Thus, the input range data, in 
this case, must be good enough to estimate, together with the visual information, the rest of 
the missing range data.  
 
Both sensors (camera and laser) must be fused (i.e., registered and then integrated) in a 
common reference frame. The fusion of visual and range data involves a number of aspects 
to be considered as the data is not of the same nature with respect to their resolution, type 
and scale. The images of real scene, i.e., those that represent a meaningful concept in their 
content, depend on the regularities of the environment in which they are captured (Van Der 
Schaaf, 1998). These regularities can be, for example, the natural geometry of objects and 
their distribution in space; the natural distributions of light; and the regularities that depend 
on the viewer’s position. This is particularly difficult considering the fact that at each given 
position the mobile robot must capture a number of images and then analyze the optimal 
regions where the range data should be measured. This means that the laser should be 
directed to those regions with accuracy and then the incomplete range data must be 
registered with the intensity images before applying the statistical learning method to 
estimate complete and dense depth maps.  
The statistical studies of these images can help to understand these regularities, which are 
not easily acquired from physical or mathematical models. Recently, there has been some 
success when using statistical methods to computer vision problems (Freeman & Torralba, 
2002; Srivastava et al., 2003; Torralba & Oliva, 2002). However, more studies are needed in 
the analysis of the statistical relationships between intensity and range data. Having 
meaningful statistical tendencies could be of great utility in the design of new algorithms to 
infer the geometric structure of objects in a scene.  
 
The outline of the chapter is as follows. In Section 2 we present related work to the problem 
of 3D environment modeling focusing on approaches that fuse intensity and range images. 
Section 3 presents our multi-sensorial active perception framework which statistically 
analyzes natural and indoor images to capture the initial range data. This range data 
together with the available intensity will be used to efficiently estimate dense range maps. 
Experimental results under different scenarios are shown in Section 4 together with an 
evaluation of the performance of the method.  

 
2. Related Work   

For the fundamental problem in computer vision of recovering the geometric structure of 
objects from 2D images, different monocular visual cues have been used, such as shading, 
defocus, texture, edges, etc. With respect to binocular visual cues, the most common are the 
obtained from stereo cameras, from which we can compute a depth map in a fast and 
economical way. For example, the method proposed in (Wan & Zhou, 2009), uses stereo 
vision as a basis to estimate dense depth maps of large-scale scenes. They generate depth 
map mosaics, with different angles and resolutions which are combined later in a single 
large depth map. The method presented in (Malik and Choi, 2008) is based in the shape 
from focus approach and use a defocus measure based in an optic transfer function 
implemented in the Fourier domain. In (Miled & Pesquet, 2009), the authors present a novel 
method based on stereo that help to estimate depth maps of scene that are subject to changes 

 

in illumination. Other works propose to combine different methods to obtain the range 
maps. For example, in (Scharstein & Szeliski, 2003) a stereo vision algorithm and structured 
light are used to reconstruct scenes in 3D. However, the main disadvantage of above 
techniques is that the obtained range maps are usually incomplete or of limited resolution 
and in most of the cases a calibration is required.  
 
Another way of obtaining a dense depth map is by using range sensors (e.g., laser scanners), 
which obtain geometric information in a direct and reliable way. A large number of possible 
3D scanners are available on the market. However, cost is still the major concern and the 
more economical tend to be slow.  An overview of different systems available to 3D shape of 
objects is presented in (Blais, 2004), highlighting some of the advantages and disadvantages 
of the different methods. Laser Range Finders directly map the acquired data into a 3D 
volumetric model thus having the ability to partly avoid the correspondence problem 
associated with visual passive techniques. Indeed, scenes with no textural details can be 
easily modeled. Moreover, laser range measurements do not depend on scene illumination. 
 
More recently, techniques based on learning statistics have been used to recover the 
geometric structure from 2D images. For humans, to interpret the geometric information of 
a scene by looking to one image is not a difficult task. However, for a computational 
algorithm this is difficult as some a priori knowledge about the scene is needed.  
For example, in (Torres-Méndez & Dudek, 2003) it was presented for the first time a method 
to estimate dense range map based on the statistical correlation between intensity and 
available range as well as edge information. Other studies developed more recently as in 
(Saxena & Chung, 2008), show that it is possible to recover the missing range data in the 
sparse depth maps using statistical learning approaches together with the appropriate 
characteristics of objects in the scene (e.g., edges or cues indicating changes in depth). Other 
works combine different types of visual cues to facilitate the recovery of depth information 
or the geometry of objects of interest.  
In general, no matter what approach is used, the quality of the results will strongly depend 
on the type of visual cues used and the preprocessing algorithms applied to the input data.  

 
3. The Multi-sensorial Active Perception Framework 

This research work focuses on recovering the geometric (depth) information of a man-made 
indoor scene (e.g., an office, a room) by fusing photometric and partial geometric 
information in order to build a 3D model of the environment.  
Our data fusion framework is based on an active perception technique that captures the 
limited range data in regions statistically detected from the intensity images of the same 
scene. In order to do that, a perfect registration between the intensity and range data is 
required. The registration process we use is briefly described in Section 3.2.  After 
registering the partial range with the intensity data we apply a statistical learning method to 
estimate the unknown range and obtain a dense range map. As the mobile robot moves at 
different locations to capture information from the scene, the final step is to integrate all the 
dense range maps (together with intensity) and build a 3D map of the environment.  
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represent relevant information about the geometric structure. Thus, the input range data, in 
this case, must be good enough to estimate, together with the visual information, the rest of 
the missing range data.  
 
Both sensors (camera and laser) must be fused (i.e., registered and then integrated) in a 
common reference frame. The fusion of visual and range data involves a number of aspects 
to be considered as the data is not of the same nature with respect to their resolution, type 
and scale. The images of real scene, i.e., those that represent a meaningful concept in their 
content, depend on the regularities of the environment in which they are captured (Van Der 
Schaaf, 1998). These regularities can be, for example, the natural geometry of objects and 
their distribution in space; the natural distributions of light; and the regularities that depend 
on the viewer’s position. This is particularly difficult considering the fact that at each given 
position the mobile robot must capture a number of images and then analyze the optimal 
regions where the range data should be measured. This means that the laser should be 
directed to those regions with accuracy and then the incomplete range data must be 
registered with the intensity images before applying the statistical learning method to 
estimate complete and dense depth maps.  
The statistical studies of these images can help to understand these regularities, which are 
not easily acquired from physical or mathematical models. Recently, there has been some 
success when using statistical methods to computer vision problems (Freeman & Torralba, 
2002; Srivastava et al., 2003; Torralba & Oliva, 2002). However, more studies are needed in 
the analysis of the statistical relationships between intensity and range data. Having 
meaningful statistical tendencies could be of great utility in the design of new algorithms to 
infer the geometric structure of objects in a scene.  
 
The outline of the chapter is as follows. In Section 2 we present related work to the problem 
of 3D environment modeling focusing on approaches that fuse intensity and range images. 
Section 3 presents our multi-sensorial active perception framework which statistically 
analyzes natural and indoor images to capture the initial range data. This range data 
together with the available intensity will be used to efficiently estimate dense range maps. 
Experimental results under different scenarios are shown in Section 4 together with an 
evaluation of the performance of the method.  

 
2. Related Work   

For the fundamental problem in computer vision of recovering the geometric structure of 
objects from 2D images, different monocular visual cues have been used, such as shading, 
defocus, texture, edges, etc. With respect to binocular visual cues, the most common are the 
obtained from stereo cameras, from which we can compute a depth map in a fast and 
economical way. For example, the method proposed in (Wan & Zhou, 2009), uses stereo 
vision as a basis to estimate dense depth maps of large-scale scenes. They generate depth 
map mosaics, with different angles and resolutions which are combined later in a single 
large depth map. The method presented in (Malik and Choi, 2008) is based in the shape 
from focus approach and use a defocus measure based in an optic transfer function 
implemented in the Fourier domain. In (Miled & Pesquet, 2009), the authors present a novel 
method based on stereo that help to estimate depth maps of scene that are subject to changes 

 

in illumination. Other works propose to combine different methods to obtain the range 
maps. For example, in (Scharstein & Szeliski, 2003) a stereo vision algorithm and structured 
light are used to reconstruct scenes in 3D. However, the main disadvantage of above 
techniques is that the obtained range maps are usually incomplete or of limited resolution 
and in most of the cases a calibration is required.  
 
Another way of obtaining a dense depth map is by using range sensors (e.g., laser scanners), 
which obtain geometric information in a direct and reliable way. A large number of possible 
3D scanners are available on the market. However, cost is still the major concern and the 
more economical tend to be slow.  An overview of different systems available to 3D shape of 
objects is presented in (Blais, 2004), highlighting some of the advantages and disadvantages 
of the different methods. Laser Range Finders directly map the acquired data into a 3D 
volumetric model thus having the ability to partly avoid the correspondence problem 
associated with visual passive techniques. Indeed, scenes with no textural details can be 
easily modeled. Moreover, laser range measurements do not depend on scene illumination. 
 
More recently, techniques based on learning statistics have been used to recover the 
geometric structure from 2D images. For humans, to interpret the geometric information of 
a scene by looking to one image is not a difficult task. However, for a computational 
algorithm this is difficult as some a priori knowledge about the scene is needed.  
For example, in (Torres-Méndez & Dudek, 2003) it was presented for the first time a method 
to estimate dense range map based on the statistical correlation between intensity and 
available range as well as edge information. Other studies developed more recently as in 
(Saxena & Chung, 2008), show that it is possible to recover the missing range data in the 
sparse depth maps using statistical learning approaches together with the appropriate 
characteristics of objects in the scene (e.g., edges or cues indicating changes in depth). Other 
works combine different types of visual cues to facilitate the recovery of depth information 
or the geometry of objects of interest.  
In general, no matter what approach is used, the quality of the results will strongly depend 
on the type of visual cues used and the preprocessing algorithms applied to the input data.  

 
3. The Multi-sensorial Active Perception Framework 

This research work focuses on recovering the geometric (depth) information of a man-made 
indoor scene (e.g., an office, a room) by fusing photometric and partial geometric 
information in order to build a 3D model of the environment.  
Our data fusion framework is based on an active perception technique that captures the 
limited range data in regions statistically detected from the intensity images of the same 
scene. In order to do that, a perfect registration between the intensity and range data is 
required. The registration process we use is briefly described in Section 3.2.  After 
registering the partial range with the intensity data we apply a statistical learning method to 
estimate the unknown range and obtain a dense range map. As the mobile robot moves at 
different locations to capture information from the scene, the final step is to integrate all the 
dense range maps (together with intensity) and build a 3D map of the environment.  
 

www.intechopen.com



Sensor Fusion and Its Applications212

 

The key role of our active perception process concentrates on capturing range data from 
places where the visual cues of the images show depth discontinuities. Man-made indoor 
environments have inherent geometric and photometric characteristics that can be exploited 
to help in the detection of this type of visual cues.  
 
First, we apply a statistical analysis on an image database to detect regions of interest on 
which range data should be acquired. With the internal representation, we can assign 
confidence values according to the ternary values obtained. These values will indicate the 
filling order of the missing range values. And finally, we use a non-parametric range 
synthesis method in (Torres-Méndez & Dudek, 2003) to estimate the missing range values 
and obtain a dense depth map. In the following sections, all these stages are explained in 
more detail. 

 
3.1 Detecting regions of interest from intensity images 
We wish to capture limited range data in order to simplify the data acquisition process. 
However, in order to have a good estimation of the unknown range, the quality of this 
initial range data is crucial. That is, it should represent the depth discontinuities existing in 
the scene.  Since we have only information from images, we can apply a statistical analysis 
on the images and extract changes in depth. 
 
Given that our method is based on a statistical analysis, the type of images to analyze in the 
database must contain characteristics and properties similar to the scenes of interest, as we 
focus on man-made scenes, we should have images containing those types of images. 
However, we start our experiments using a public available image database, the van 
Hateren database, which contains scenes of natural images. As this database contains 
important changes in depth in their scenes, this turns out to be the main characteristic to be 
considered so that our method can be functional.  
 
The statistical analysis of small patches implemented is based in part on the Feldman and 
Yunes algorithm (Feldman & Yunes, 2006). This algorithm extracts characteristics of interest 
from an image through the observation of an image database and obtains an internal 
representation that concentrates the relevant information in a form of a ternary variable. To 
generate the internal representation we follow three steps. First, we reduce (in scale) the 
images in the database (see Figure 2). Then, each image is divided in patches of same size 
(e.g. 13 x13 pixels), with these patches we make a new database which is decomposed in its 
principal components by applying PCA to extract the most representative information, 
which is usually contained, in the first five eigenvectors. In Figure 3, the eigenvectors are 
depicted. These eigenvectors are the filters that are used to highlight certain characteristics 
on the intensity images, specifically the regions with relevant geometric information.  
The last step consists on applying a threshold in order to map the images onto a ternary 
variable where we assign -1 value to very low values, 1 to high values and 0 otherwise. This 
way, we can obtain an internal representation 
 
 k

i G }1,0,1{:  ,               (1) 
 

 

where k represents the number of filters (eigenvectors). G is the set of pixels of the scaled 
image. 
 

 
Fig. 2. Some of the images taken from the van Hateren database. These images are reduced 
by a scaled factor of 2. 
 

 
Fig. 3. The first 5 eigenvectors (zoomed out). These eigenvectors are used as filters to 
highlight relevant geometric information. 
 
The internal representation gives information about the changes in depth as it is shown in 
Figure 4. It can be observed that, depending on the filter used, the representation gives a 
different orientation on the depth discontinuities in the scene. For example, if we use the 
first filter, the highlighted changes are the horizontal ones. If we applied the second filter, 
the discontinuities obtained are the vertical ones. 
 

 
 

Fig. 4. The internal representation after the input image is filtered. 
 
This internal representation is the basis to capture the initial range data from which we can 
obtain a dense range map. 

 
3.2 Obtaining the registered sparse depth map 
In order to obtain the initial range data we need to register the camera and laser sensors, i.e., 
the corresponding reference frame of the intensity image taken from the camera with the 
reference frame of the laser rangefinder.  Our data acquisition system consists of a high 
resolution digital camera and a 2D laser rangefinder (laser scanner), both mounted on a pan 
unit and on top of a mobile robot. Registering different types of sensor data, which have 
different projections, resolutions and scaling properties is a difficult task. The simplest and 
easiest way to facilitate this sensor-to-sensor registration is to vertically align their center of 
projections (optical center for the camera and mirror center for the laser) are aligned to the 
center of projection of the pan unit. Thus, both sensors can be registered with respect to a 
common reference frame. The laser scanner and camera sensors work with different 
coordinate systems and they must be adjusted one to another. The laser scanner delivers 
spherical coordinates whereas the camera puts out data in a typical image projection. Once 
the initial the range data is collected we apply a post-registration algorithm which uses their 
projection types in order to do an image mapping.  
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The key role of our active perception process concentrates on capturing range data from 
places where the visual cues of the images show depth discontinuities. Man-made indoor 
environments have inherent geometric and photometric characteristics that can be exploited 
to help in the detection of this type of visual cues.  
 
First, we apply a statistical analysis on an image database to detect regions of interest on 
which range data should be acquired. With the internal representation, we can assign 
confidence values according to the ternary values obtained. These values will indicate the 
filling order of the missing range values. And finally, we use a non-parametric range 
synthesis method in (Torres-Méndez & Dudek, 2003) to estimate the missing range values 
and obtain a dense depth map. In the following sections, all these stages are explained in 
more detail. 

 
3.1 Detecting regions of interest from intensity images 
We wish to capture limited range data in order to simplify the data acquisition process. 
However, in order to have a good estimation of the unknown range, the quality of this 
initial range data is crucial. That is, it should represent the depth discontinuities existing in 
the scene.  Since we have only information from images, we can apply a statistical analysis 
on the images and extract changes in depth. 
 
Given that our method is based on a statistical analysis, the type of images to analyze in the 
database must contain characteristics and properties similar to the scenes of interest, as we 
focus on man-made scenes, we should have images containing those types of images. 
However, we start our experiments using a public available image database, the van 
Hateren database, which contains scenes of natural images. As this database contains 
important changes in depth in their scenes, this turns out to be the main characteristic to be 
considered so that our method can be functional.  
 
The statistical analysis of small patches implemented is based in part on the Feldman and 
Yunes algorithm (Feldman & Yunes, 2006). This algorithm extracts characteristics of interest 
from an image through the observation of an image database and obtains an internal 
representation that concentrates the relevant information in a form of a ternary variable. To 
generate the internal representation we follow three steps. First, we reduce (in scale) the 
images in the database (see Figure 2). Then, each image is divided in patches of same size 
(e.g. 13 x13 pixels), with these patches we make a new database which is decomposed in its 
principal components by applying PCA to extract the most representative information, 
which is usually contained, in the first five eigenvectors. In Figure 3, the eigenvectors are 
depicted. These eigenvectors are the filters that are used to highlight certain characteristics 
on the intensity images, specifically the regions with relevant geometric information.  
The last step consists on applying a threshold in order to map the images onto a ternary 
variable where we assign -1 value to very low values, 1 to high values and 0 otherwise. This 
way, we can obtain an internal representation 
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where k represents the number of filters (eigenvectors). G is the set of pixels of the scaled 
image. 
 

 
Fig. 2. Some of the images taken from the van Hateren database. These images are reduced 
by a scaled factor of 2. 
 

 
Fig. 3. The first 5 eigenvectors (zoomed out). These eigenvectors are used as filters to 
highlight relevant geometric information. 
 
The internal representation gives information about the changes in depth as it is shown in 
Figure 4. It can be observed that, depending on the filter used, the representation gives a 
different orientation on the depth discontinuities in the scene. For example, if we use the 
first filter, the highlighted changes are the horizontal ones. If we applied the second filter, 
the discontinuities obtained are the vertical ones. 
 

 
 

Fig. 4. The internal representation after the input image is filtered. 
 
This internal representation is the basis to capture the initial range data from which we can 
obtain a dense range map. 

 
3.2 Obtaining the registered sparse depth map 
In order to obtain the initial range data we need to register the camera and laser sensors, i.e., 
the corresponding reference frame of the intensity image taken from the camera with the 
reference frame of the laser rangefinder.  Our data acquisition system consists of a high 
resolution digital camera and a 2D laser rangefinder (laser scanner), both mounted on a pan 
unit and on top of a mobile robot. Registering different types of sensor data, which have 
different projections, resolutions and scaling properties is a difficult task. The simplest and 
easiest way to facilitate this sensor-to-sensor registration is to vertically align their center of 
projections (optical center for the camera and mirror center for the laser) are aligned to the 
center of projection of the pan unit. Thus, both sensors can be registered with respect to a 
common reference frame. The laser scanner and camera sensors work with different 
coordinate systems and they must be adjusted one to another. The laser scanner delivers 
spherical coordinates whereas the camera puts out data in a typical image projection. Once 
the initial the range data is collected we apply a post-registration algorithm which uses their 
projection types in order to do an image mapping.  
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The image-based registration algorithm is similar to that presented in (Torres-Méndez & 
Dudek, 2008) and assumes that the optical center of the camera and the mirror center of the 
laser scanner are vertically aligned and the orientation of both rotation axes coincide (see 
Figure 5). Thus, we only need to transform the panoramic camera data into the laser 
coordinate system. Details of the algorithm we use are given in (Torres-Méndez & Dudek, 
2008). 
 

 
Fig. 5. Camera and laser scanner orientation and world coordinate system. Image taken 
from (Torres-Méndez & Dudek, 2008). 

 
3.3 The range synthesis method 
After obtaining the internal representation and a registered sparse depth map, we can apply 
the range synthesis method in (Torres-Méndez & Dudek, 2008).  In general, the method 
estimates dense depth maps using intensity and partial range information. The Markov 
Random Field (MRF) model is trained using the (local) relationships between the observed 
range data and the variations in the intensity images and then used to compute the 
unknown range values. The Markovianity condition describes the local characteristics of the 
pixel values (in intensity and range, called voxels). The range value at a voxel depends only 
on neighboring voxels which have direct interactions on each other. We describe the non-
parametric method in general and skip the details of the basis of MRF; the reader is referred 
to (Torres-Méndez & Dudek, 2008) for further details. 
 
In order to compute the maximum a posteriori (MAP) for a depth value Ri of a voxel Vi, we 
need first to build an approximate distribution of the conditional probability P(fi  fNi) and 
sample from it. For each new depth value Ri  R to estimate, the samples that correspond to  
 

 

 
Fig. 6. A sketch of the neighborhood system definition. 
 
the neighborhood system of voxel i, i.e., Ni, are taken and the distribution of Ri is built as a 
histogram of all possible values that occur in the sample. The neighborhood system Ni (see 
Figure 6) is an infinite real subset of voxels, denoted by Nreal. Taking the MRF model as a 
basis, it is assumed that the depth value Ri depends only on the intensity and range values 
of its immediate neighbors defined in Ni. If we define a set 

 

 },0:{)( **  NNNR ireali N           (2) 

 
that contains all occurrences of Ni in Nreal, then the conditional probability distribution of Ri 
can be estimated through a histogram based on the depth values of voxels representing each 
Ni in (Ri). Unfortunately, the sample is finite and there exists the possibility that no 
neighbor has exactly the same characteristics in intensity and range, for that reason we use 
the heuristic of finding the most similar value in the available finite sample ’(Ri), where 
’(Ri)  (Ri). Now, let Ap be a local neighborhood system for voxel p, which is composed 
for neighbors that are located within radius r and is defined as: 
 
 }.),(dist { rqpNAA qp   (3) 

 
In the non-parametric approximation, the depth value Rp of voxel Vp with neighborhood Np, 
is synthesized by selecting the most similar neighborhood Nbest to Np. 
 
 .  , minarg pqpbest AAANN q       (4) 

 
All neighborhoods Aq in Ap that are similar to Nbest are included in ’(Rp) as follows: 
 
   . 1 bestpqp NNAN     (5) 

 
The similarity measure between two neighborhoods Na and Nb is described over the partial 
data of the two neighborhoods and is calculated as follows: 
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that contains all occurrences of Ni in Nreal, then the conditional probability distribution of Ri 
can be estimated through a histogram based on the depth values of voxels representing each 
Ni in (Ri). Unfortunately, the sample is finite and there exists the possibility that no 
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the heuristic of finding the most similar value in the available finite sample ’(Ri), where 
’(Ri)  (Ri). Now, let Ap be a local neighborhood system for voxel p, which is composed 
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In the non-parametric approximation, the depth value Rp of voxel Vp with neighborhood Np, 
is synthesized by selecting the most similar neighborhood Nbest to Np. 
 
 .  , minarg pqpbest AAANN q       (4) 

 
All neighborhoods Aq in Ap that are similar to Nbest are included in ’(Rp) as follows: 
 
   . 1 bestpqp NNAN     (5) 

 
The similarity measure between two neighborhoods Na and Nb is described over the partial 
data of the two neighborhoods and is calculated as follows: 
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Fig. 7. The notation diagram. Taken from (Torres-Méndez, 2008). 
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where 0v


represents the voxel located in the center of the neighborhood Na and Nb, v


 is the 

neighboring pixel of 0v


. Ia and Ra are the intensity and range values to be compared. G is a 
Gaussian kernel that is applied to each neighborhood so that voxels located near the center 
have more weight that those located far from it. In this way we can build a histogram of 
depth values Rp in the center of each neighborhood in ’(Ri). 

 
3.3.1 Computing the priority values to establish the filling order 
To achieve a good estimation for the unknown depth values, it is critical to establish an 
order to select the next voxel to synthesize. We base this order on the amount of available 
information at each voxel’s neighborhood, so that the voxel with more neighboring voxels 
with already assigned intensity and range is synthesized first. We have observed that the 
reconstruction in areas with discontinuities is very problematic and a probabilistic inference 
is needed in these regions. Fortunately, such regions are identified by our internal 
representation (described in Section 3.1) and can be used to assign priority values. For 
example, we assign a high priority to voxels which ternary value is 1, so these voxels are 
synthesized first; and a lower priority to voxels with ternary value 0 and -1, so they are 
synthesized at the end.  
The region to be synthesized is indicated by ={wi  iA}, where wi = R(xi,yi) is the unknown 
depth value located at pixel coordinates (xi,yi). The input intensity and the known range 
value together conform the source region and is indicated by  (see Figure 6). This region is 
used to calculate the statistics between the input intensity and range for the reconstruction. 
If Vp is the voxel with an unknown range value, inside  and Np is its neighborhood, which 

 

is an nxn window centered at Vp, then for each voxel Vp, we calculate its priority value as 
follows 
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where . indicates the total number of voxels in Np. Initially, the priority value of C(Vi) for 
each voxel Vp is assigned a value of 1 if the associated ternary value is 1, 0.8 if its ternary 
value is 0 and 0.2 if -1. F(Vi) is a flag function, which takes value 1 if the intensity and range 
values of Vi are known, and 0 if its range value is unknown. In this way, voxels with greater 
priority are synthesized first. 

 
3.4 Integration of dense range maps  
We have mentioned that at each position the mobile robot takes an image, computes its 
internal representation to direct the laser range finder on the regions detected and capture 
range data. In order to produce a complete 3D model or representation of a large 
environment, we need to integrate dense panoramas with depth from multiple viewpoints. 
The approach taken is based on a hybrid method similar to that in (Torres-Méndez & 
Dudek, 2008) (the reader is advised to refer to the article for further details).  
In general, the integration algorithm combines a geometric technique, which is a variant of 
the ICP algorithm (Besl & McKay, 1992) that matches 3D range scans, and an image-based 
technique, the SIFT algorithm (Lowe, 1999), that matches intensity features on the images. 
Since dense range maps with its corresponding intensity images are given as an input, their 
integration to a common reference frame is easier than having only intensity or range data 
separately.  

 
4. Experimental Results 

In order to evaluate the performance of the method, we use three databases, two of which 
are available on the web. One is the Middlebury database (Hiebert-Treuer, 2008) which 
contains intensity and dense range maps of 12 different indoor scenes containing objects 
with a great variety of texture. The other is the USF database from the CESAR lab at Oak 
Ridge National Laboratory. This database has intensity and dense range maps of indoor 
scenes containing regular geometric objects with uniform textures. The third database was 
created by capturing images using a stereo vision system in our laboratory. The scenes 
contain regular geometric objects with different textures. As we have ground truth range 
data from the public databases, we first simulate sparse range maps by eliminating some of 
the range information using different sampling strategies that follows different patterns 
(squares, vertical and horizontal lines, etc.) The sparse depth maps are then given as an 
input to our algorithm to estimate dense range maps. In this way, we can compare the 
ground-truth dense range maps with those synthesized by our method and obtain a quality 
measure for the reconstruction.  
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Fig. 7. The notation diagram. Taken from (Torres-Méndez, 2008). 
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Gaussian kernel that is applied to each neighborhood so that voxels located near the center 
have more weight that those located far from it. In this way we can build a histogram of 
depth values Rp in the center of each neighborhood in ’(Ri). 

 
3.3.1 Computing the priority values to establish the filling order 
To achieve a good estimation for the unknown depth values, it is critical to establish an 
order to select the next voxel to synthesize. We base this order on the amount of available 
information at each voxel’s neighborhood, so that the voxel with more neighboring voxels 
with already assigned intensity and range is synthesized first. We have observed that the 
reconstruction in areas with discontinuities is very problematic and a probabilistic inference 
is needed in these regions. Fortunately, such regions are identified by our internal 
representation (described in Section 3.1) and can be used to assign priority values. For 
example, we assign a high priority to voxels which ternary value is 1, so these voxels are 
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The region to be synthesized is indicated by ={wi  iA}, where wi = R(xi,yi) is the unknown 
depth value located at pixel coordinates (xi,yi). The input intensity and the known range 
value together conform the source region and is indicated by  (see Figure 6). This region is 
used to calculate the statistics between the input intensity and range for the reconstruction. 
If Vp is the voxel with an unknown range value, inside  and Np is its neighborhood, which 

 

is an nxn window centered at Vp, then for each voxel Vp, we calculate its priority value as 
follows 
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where . indicates the total number of voxels in Np. Initially, the priority value of C(Vi) for 
each voxel Vp is assigned a value of 1 if the associated ternary value is 1, 0.8 if its ternary 
value is 0 and 0.2 if -1. F(Vi) is a flag function, which takes value 1 if the intensity and range 
values of Vi are known, and 0 if its range value is unknown. In this way, voxels with greater 
priority are synthesized first. 

 
3.4 Integration of dense range maps  
We have mentioned that at each position the mobile robot takes an image, computes its 
internal representation to direct the laser range finder on the regions detected and capture 
range data. In order to produce a complete 3D model or representation of a large 
environment, we need to integrate dense panoramas with depth from multiple viewpoints. 
The approach taken is based on a hybrid method similar to that in (Torres-Méndez & 
Dudek, 2008) (the reader is advised to refer to the article for further details).  
In general, the integration algorithm combines a geometric technique, which is a variant of 
the ICP algorithm (Besl & McKay, 1992) that matches 3D range scans, and an image-based 
technique, the SIFT algorithm (Lowe, 1999), that matches intensity features on the images. 
Since dense range maps with its corresponding intensity images are given as an input, their 
integration to a common reference frame is easier than having only intensity or range data 
separately.  

 
4. Experimental Results 

In order to evaluate the performance of the method, we use three databases, two of which 
are available on the web. One is the Middlebury database (Hiebert-Treuer, 2008) which 
contains intensity and dense range maps of 12 different indoor scenes containing objects 
with a great variety of texture. The other is the USF database from the CESAR lab at Oak 
Ridge National Laboratory. This database has intensity and dense range maps of indoor 
scenes containing regular geometric objects with uniform textures. The third database was 
created by capturing images using a stereo vision system in our laboratory. The scenes 
contain regular geometric objects with different textures. As we have ground truth range 
data from the public databases, we first simulate sparse range maps by eliminating some of 
the range information using different sampling strategies that follows different patterns 
(squares, vertical and horizontal lines, etc.) The sparse depth maps are then given as an 
input to our algorithm to estimate dense range maps. In this way, we can compare the 
ground-truth dense range maps with those synthesized by our method and obtain a quality 
measure for the reconstruction.  
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To evaluate our results we compute a well-know metric, called mean absolute residual 
(MAR) error. The MAR error of two matrices R1 and R2 is defined as 
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In general, just computing the MAR error is not a good mechanism to evaluate the success 
of the method. For example, when there are few results with a high MAR error, the average 
of the MAR error elevates. For this reason, we also compute the absolute difference at each 
pixel and show the result as an image, so we can visually evaluate our performance. 
In all the experiments, the size of the neighborhood N is 3x3 pixels for one experimental set 
and 5x5 pixels for other. The search window varies between 5 and 10 pixels. The missing 
range data in the sparse depth maps varies between 30% and 50% of the total information. 

 
4.1 Range synthesis on sparse depth maps with different sampling strategies 
In the following experiments, we have used the two first databases described above. For 
each of the input range maps in the databases, we first simulate a sparse depth map by 
eliminating a given amount of range data from these dense maps. The areas with missing 
depth values follow an arbitrary pattern (vertical, horizontal lines, squares). The size of 
these areas depends on the amount of information that is eliminated for the experiment 
(from 30% up to 50%). After obtaining a simulated sparse depth map, we apply the 
proposed algorithm. The result is a synthesized dense range map. We compare our results 
with the ground truth range map computing the MAR error and also an image of the 
absolute difference at each pixel. 
 
Figure 8 shows the experimental setup of one of the scenes in the Middlebury database. In 
8b the ground truth range map is depicted. Figure 9 shows the synthesized results for 
different sampling strategies for the baby scene. 
 

 
               (a) Intensity image.           (b) Ground truth dense             (c) Ternary variable image. 
            range map. 
Fig. 8. An example of the experimental setup to evaluate the method (Middlebury database). 
 
 
 
 

 

 
            Input range map             Synthesized result            Input range map           Synthesized result 

                               (a)                                                                                 (b)  
Fig. 9. Experimental results after running our range synthesis method on the baby scene. 
 
The first column shows the incomplete depth maps and the second column the synthesized 
dense range maps. In the results shown in Figure 9a, most of the missing information is 
concentrated in a bigger area compared to 9b. It can be observed that for some cases, it is not 
possible to have a good reconstruction as there is little information about the inherent 
statistics in the intensity and its relationship with the available range data. In the 
synthesized map corresponding to the set in Figure 9a following a sampling strategy of 
vertical lines, we can observe that there is no information of the object to be reconstructed 
and for that reason it does not appear in the result. However, in the set of images of Figure 
9b the same sampling strategies were used and the same amount of range information as of 
9a is missing, but in these incomplete depth maps the unknown information is distributed in 
four different regions. For this reason, there is much more information about the scene and 
the quality of the reconstruction improves considerably as it can be seen. In the set of Figure 
8c, the same amount of unknown depth values is shown but with a greater distribution over 
the range map. In this set, the variation between the reconstructions is small due to the 
amount of available information. A factor that affects the quality of the reconstruction is the 
existence of textures in the intensity images as it affects the ternary variable computation. 
For the case of the Middlebury database, the images have a great variety of textures, which 
affects directly the values in the ternary variable as it can be seen in Figure 8c.  
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each of the input range maps in the databases, we first simulate a sparse depth map by 
eliminating a given amount of range data from these dense maps. The areas with missing 
depth values follow an arbitrary pattern (vertical, horizontal lines, squares). The size of 
these areas depends on the amount of information that is eliminated for the experiment 
(from 30% up to 50%). After obtaining a simulated sparse depth map, we apply the 
proposed algorithm. The result is a synthesized dense range map. We compare our results 
with the ground truth range map computing the MAR error and also an image of the 
absolute difference at each pixel. 
 
Figure 8 shows the experimental setup of one of the scenes in the Middlebury database. In 
8b the ground truth range map is depicted. Figure 9 shows the synthesized results for 
different sampling strategies for the baby scene. 
 

 
               (a) Intensity image.           (b) Ground truth dense             (c) Ternary variable image. 
            range map. 
Fig. 8. An example of the experimental setup to evaluate the method (Middlebury database). 
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Fig. 9. Experimental results after running our range synthesis method on the baby scene. 
 
The first column shows the incomplete depth maps and the second column the synthesized 
dense range maps. In the results shown in Figure 9a, most of the missing information is 
concentrated in a bigger area compared to 9b. It can be observed that for some cases, it is not 
possible to have a good reconstruction as there is little information about the inherent 
statistics in the intensity and its relationship with the available range data. In the 
synthesized map corresponding to the set in Figure 9a following a sampling strategy of 
vertical lines, we can observe that there is no information of the object to be reconstructed 
and for that reason it does not appear in the result. However, in the set of images of Figure 
9b the same sampling strategies were used and the same amount of range information as of 
9a is missing, but in these incomplete depth maps the unknown information is distributed in 
four different regions. For this reason, there is much more information about the scene and 
the quality of the reconstruction improves considerably as it can be seen. In the set of Figure 
8c, the same amount of unknown depth values is shown but with a greater distribution over 
the range map. In this set, the variation between the reconstructions is small due to the 
amount of available information. A factor that affects the quality of the reconstruction is the 
existence of textures in the intensity images as it affects the ternary variable computation. 
For the case of the Middlebury database, the images have a great variety of textures, which 
affects directly the values in the ternary variable as it can be seen in Figure 8c.  
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                    (a) Intensity image.           (b) Ground truth dense     (c) Ternary variable image. 
            range map. 
Fig. 10. An example of the experimental setup to evaluate the proposed method (USF 
database). 

 
4.2 Range synthesis on sparse depth maps obtained from the internal representation 
We conducted experiments where the sparse depth maps contain range data only on regions 
indicated by the internal representation. Therefore, apart from greatly reducing the 
acquisition time, the initial range would represent all the relevant variations related to depth 
discontinuities in the scene. Thus, it is expected that the dense range map will be estimated 
more efficiently.  
 
In Figure 10 an image from the USF database is shown with its corresponding ground truth 
range map and ternary variable image. In the USF database, contrary to the Middlebury 
database, the scenes are bigger and objects are located at different depths and the texture is 
uniform. Figure 10c depicts the ternary variable, which represents the initial range given as 
an input together with the intensity image to the range synthesis process. It can be seen that 
the discontinuities can be better appreciated in objects as they have a uniform texture. 
Figure 11 shows the synthesized dense range map. As before, the quality of the 
reconstruction depends on the available information. Good results are obtained as the 
known range is distributed around the missing range. It is important to determine which 
values inside the available information have greater influence on the reconstruction so we 
can give to them a high priority.  
In general, the experimental results show that the ternary variable influences in the quality 
of the synthesis, especially in areas with depth discontinuities. 
 

 
Fig. 11. The synthesized dense range map of the initial range values indicated in figure 10c. 

 

4.3 Range synthesis on sparse depth maps obtained from stereo 
We also test our method by using real sparse depth maps by acquiring pair of images 
directly from the stereo vision system, obtaining the sparse depth map, the internal 
representation and finally synthesizing the missing depth values in the map using the non-
parametric MRF model. In Figure 12, we show the input data to our algorithm for three 
different scenes acquired in our laboratory. The left images of the stereo pair for each scene 
are shown in the first column. The sparse range maps depicted on Figure 12b are obtained 
from the Shirai’s stereo algorithm (Klette & Schlns, 1998) using the epipolar geometry and  
the Harris corner detector (Harris & Stephens, 1988) as constraints. Figure 12c shows the 
ternary variable images used to compute the priority values to establish the synthesis order. 
In Figure 13, we show the synthesized results for each of the scenes shown in Figure 12. 
From top to bottom we show the synthesized results for iterations at different intervals. It 
can be seen that the algorithm first synthesizes the voxels with high priority, that is, the 
contours where depth discontinuities exists. This gives a better result as the synthesis 
process progresses. The results vary depending on the size of the neighborhood N and the 
size of the searching window d. On one hand, if N is more than 5x5 pixels, it can be difficult 
to find a neighborhood with similar statistics. On the other hand, if d is big, for example, it 
considers the neighborhoods in the whole image, then the computing time increases 
accordingly. 
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Fig. 12. Input data for three scenes captured in our laboratory. 
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(a) Scene 1 (b) Scene 2 (c) Scene 3 

 

Fig. 13. Experimental results of the three different scenes shown in Figure 11. Each row 
shows the results at different steps of the range synthesis algorithm. 

 
5. Conclusion 

We have presented an approach to recover dense depth maps based on the statistical 
analysis of visual cues. The visual cues extracted represent regions indicating depth 
discontinuities in the intensity images. These are the regions where range data should be 
captured and represent the range data given as an input together with the intensity map to 
the range estimation process. Additionally, the internal representation of the intensity map 
is used to assign priority values to the initial range data.  The range synthesis is improved as 
the orders in which the voxels are synthesized are established from these priority values. 

 

The quality of the results depends on the amount and type of the initial range information, 
in terms of the variations captured on it.  In other words, if the correlation between the 
intensity  and  range  data  available  represents  (although partially)  the  correlation  of  the 
intensity near regions with missing range data, we can establish the statistics to be looked 
for in such available input data.  
Also, as in many non-deterministic methods, we have seen that the results depend on the 
suitable selection of some parameters. One is the neighborhood size (N) and the other the 
radius of search (r). With the method here proposed the synthesis near the edges (indicated 
by areas that present depth discontinuities) is improved compared to prior work in the 
literature. 
 
While a broad variety of problems have been covered with respect to the automatic 3D 
reconstruction of unknown environments, there remain several open problems and 
unanswered questions. With respect to the data collection, a key issue in our method is the 
quality of the observable range data. In particular, with the type of the geometric 
characteristics that can be extracted in relation to the objects or scene that the range data 
represent. If the range data do not capture the inherent geometry of the scene to be modeled, 
then the range synthesis process on the missing range values will be poor. The experiments 
presented in this chapter were based on acquiring the initial range data in a more directed 
way such that the regions captured reflect important changes in the geometry.  
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