
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



State Optimal Estimation for Nonstandard Multi-sensor Information Fusion System 1

State Optimal Estimation for Nonstandard Multi-sensor Information 
Fusion System

Jiongqi Wang and Haiyin Zhou

X 
 

State Optimal Estimation for Nonstandard 
Multi-sensor Information Fusion System 

 
Jiongqi Wang and Haiyin Zhou 

National University of Defense Technology 
China 

 
1. Introduction 

In the field of information fusion, state estimation is necessary1-3. The traditional state 
estimation is a process to use statistics principle to estimate the target dynamical (or static) 
state by using of measuring information including error from single measure system. 
However, single measure system can’t give enough information to satisfy the system 
requirement for target control, and is bad for the precision and solidity of state estimation. 
Therefore, developing and researching information fusion estimation theory and method is 
the only way to obtain state estimation with high precision and solidity. 
The traditional estimation method for target state (parameter) can be traced back to the age 
of Gauss; in 1975, Gauss presented least square estimation (LSE), which is then applied in 
orbit determination for space target. In the end of 1950s, Kalman presented a linear filter 
method, which is widely applied in target state estimation and can be taken as the recursion 
of LSE4. At present, these two algorithms are the common algorithms in multi-sensor state 
fusion estimation, which are respectively called as batch processing fusion algorithm and 
sequential fusion algorithm.  
The classical LSE is unbiased, consistent and effective as well as simple algorithm and easy 
operation when being applied in standard multi sensor information fusion system (which is 
the character with linear system state equation and measuring equation, uncorrelated plus 
noise with zero mean)5. However, because of the difference of measuring principle and 
character of sensor as well as measuring environment, in actual application, some 
non-standard multi-sensor information fusion systems are often required to be treated, 
which mainly are as follows:  

1) Each system error, mixing error and random disturbed factor as well as each 
nonlinear factor, uncertain factor (color noise) existing in multi sensor measuring 
information6;  

2) Uncertain and nonlinear factors existing in multi sensor fusion system model, which 
is expressed in two aspects: one is much stronger sense, uncertain and nonlinear factors in 
model structure and another is time-change and uncertain factor in model parameter7; 

3) Relativity between system noise and measuring noise in dynamical system or 
relativity among sub-filter estimation as well as uncertain for system parameter and 
unknown covariance information8-9.  
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Ignoring the above situations, the optimal estimation results cannot be obtained if still using 
the traditional batch processing fusion algorithm or sequential fusion algorithm. So to 
research the optimal fusion estimation algorithm for non standard multi-sensor system with 
the above situations is very essential and significative10.  
In the next three sections, the research work in this chapter focuses on non-standard 
multi-sensor information fusion system respectively with nonlinear, uncertain and 
correlated factor in actual multi-sensor system and then presents the corresponding 
resolution methods.  
Firstly, the modeling method based on semi-parameter modeling is researched to solve state 
fusion estimation in nonstandard multi-sensor fusion system to eliminate and solve the 
nonlinear mixing error and uncertain factor existing in multi-sensor information and 
moreover to realize the optimal fusion estimation for the state. 
Secondly, a multi-model fusion estimation methods respectively based on multi-model 
adaptive estimation and interacting multiple model fusion are researched to deal with 
nonlinear and time-change factors existing in multi-sensor fusion system and moreover to 
realize the optimal fusion estimation for the state.  
Thirdly, self-adaptive optimal fusion estimation for non-standard multi-sensor dynamical 
system is researched. Self-adaptive fusion estimation strategy is introduced to solve local 
dependency and system parameter uncertainty existed in multi-sensor dynamical system 
and moreover to realize the optimal fusion estimation for the state.  

 
2. Information Fusion Estimation of Nonstandard Multisensor Based on Semi 
parametric Modeling  

From the perspective of parameter modeling, any system models generally consist of two 
parts: deterministic model (It means that the physical model and the corresponding 
parameters are determined) and non-deterministic model (It means that the physical models 
are determined but some parameter uncertainty, or physical models and parameters are not 
fully identified). In general case, the practical problems of information fusion can be 
described approximately by means of parametric modeling, then to establish the compact 
convergence of information processing model. Namely, the part of the systematic error of 
measurement can be deduced or weaken through the establishment of the classic parametric 
regression model, but it cannot inhibit mixed errors not caused by parametric modeling and 
uncertainty errors and other factors. Strictly speaking, the data-processing method of 
classical parametric regression cannot fundamentally solve the problem of uncertainty 
factors11. Yet it is precisely multi-sensor measurement information in the mixed errors and 
uncertainties that have a direct impact on the accuracy indicated by the model of 
multi-sensor fusion system, then in turn will affect the state estimation accuracy to be 
estimated and computational efficiency. So, it is one of the most important parts to research 
and resolve such error factors of uncertainty, and to establish a reasonable estimation 
method under the state fusion estimation. 
As for this problem, there are a large number of studies to obtain good results at present. 
For instance, systematic error parameter model suitable for the engineering background is 
established to deal with the system error in measurement information. 
Extended-dimensional vector is employed to directly turn systematic error into the problem 
of the state fusion estimation under the standard form12. However, due to the increase of the 

number of parameters to be estimated, the treatment not only lowered the integration of 
estimation accuracy, but also increased the complexity of the computation of the matrix 
inversion. In addition, robust estimation theory and its research are designed to the problem 
of the incomplete computing of the abnormal value and the condition of systems affected by 
the large deviation13. A first order Gauss - Markov process is used to analyze and handle the 
random noise in measurement information. However, most of these treatments and 
researches are based on artificial experience and strong hypothesis, which are sometimes so 
contrary to the actual situation that they can doubt the feasibility and credibility of the state 
fusion estimation. 
The main reason for the failure of the solution of the above-mentioned problems is that there 
is no suitable uncertainty modeling method or a suitable mathematical model to describe 
the non-linear mixed-error factors in the multi-sensor measurement information14.  
Parts of the linear model (or called) semi-parameter model can be used as a suitable 
mathematical model to describe the non-linear mixed-error factors in the measurement 
information 15. Semi-parametric model have both parametric and non-parametric 
components. Its advantages are that it focused on the main part of (i.e. the parameter 
component) the information but without neglecting the role of the interference terms 
(non-parametric component). Semi-parametric model is a set of tools for solving practical 
problems with a broad application prospects. On the one hand, it solves problems which are 
difficult for only parameter model or non-parametric model alone to solve, thus enhancing 
the adaptability of the model; on the other, it overcome the issue of excessive loss of 
information by the non-parametric method and describe practical problems closer to the real 
and made fuller use of the information provided by data to eliminate or weaken the impact 
of the state fusion estimation accuracy caused by non-linear factors more effectively. 
This section attempts to introduce the idea of semi-parametric modeling into the fusion state 
estimation theory of the non-standard multi-sensor. It establishes non-standard multi-sensor 
fusion state estimation model based on semi-parametric regression and its corresponding 
parameters and non-parametric algorithm. At the same time of determining the unknown 
parameters, it can also distinguish between nonlinear factors and uncertainties or between 
system error and accidental error so as to enhance the state fusion estimation accuracy. 

 
2.1 State Fusion Estimation Based on Mutual Iteration Semi-parametric Regression 
In terms of the optimal state fusion estimation of the multi-sensor fusion system integration, 
its main jobs are to determine the "measurement information" and the state of mapping 
relationship to be assessed, to reveal statistical characteristics of measurement errors, and 
then to reach the result to be consistent with the optimal state fusion of the project scene. 
The mapping matrix is determined by specific engineering and the model established by the 
physical background, having a clear expression generally. Therefore, the core task of the 
multi-sensor consists in the statistical characteristics of the measurement error analysis. But 
in practice, the differences of sensor measuring principle and its properties often touch upon 
the existence of the observing system error and the non-standard multi-sensor data fusion 
system under the influence of nonlinear uncertain elements. Among them, the errors in 
constant-value system or parameterized system are rather special but conventional system 
error. For these systems, it is easy to deal with12. But in fact, some systematic errors, 
non-linear uncertainties in particular, which occur in the multi-sensor information fusion 
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Ignoring the above situations, the optimal estimation results cannot be obtained if still using 
the traditional batch processing fusion algorithm or sequential fusion algorithm. So to 
research the optimal fusion estimation algorithm for non standard multi-sensor system with 
the above situations is very essential and significative10.  
In the next three sections, the research work in this chapter focuses on non-standard 
multi-sensor information fusion system respectively with nonlinear, uncertain and 
correlated factor in actual multi-sensor system and then presents the corresponding 
resolution methods.  
Firstly, the modeling method based on semi-parameter modeling is researched to solve state 
fusion estimation in nonstandard multi-sensor fusion system to eliminate and solve the 
nonlinear mixing error and uncertain factor existing in multi-sensor information and 
moreover to realize the optimal fusion estimation for the state. 
Secondly, a multi-model fusion estimation methods respectively based on multi-model 
adaptive estimation and interacting multiple model fusion are researched to deal with 
nonlinear and time-change factors existing in multi-sensor fusion system and moreover to 
realize the optimal fusion estimation for the state.  
Thirdly, self-adaptive optimal fusion estimation for non-standard multi-sensor dynamical 
system is researched. Self-adaptive fusion estimation strategy is introduced to solve local 
dependency and system parameter uncertainty existed in multi-sensor dynamical system 
and moreover to realize the optimal fusion estimation for the state.  

 
2. Information Fusion Estimation of Nonstandard Multisensor Based on Semi 
parametric Modeling  

From the perspective of parameter modeling, any system models generally consist of two 
parts: deterministic model (It means that the physical model and the corresponding 
parameters are determined) and non-deterministic model (It means that the physical models 
are determined but some parameter uncertainty, or physical models and parameters are not 
fully identified). In general case, the practical problems of information fusion can be 
described approximately by means of parametric modeling, then to establish the compact 
convergence of information processing model. Namely, the part of the systematic error of 
measurement can be deduced or weaken through the establishment of the classic parametric 
regression model, but it cannot inhibit mixed errors not caused by parametric modeling and 
uncertainty errors and other factors. Strictly speaking, the data-processing method of 
classical parametric regression cannot fundamentally solve the problem of uncertainty 
factors11. Yet it is precisely multi-sensor measurement information in the mixed errors and 
uncertainties that have a direct impact on the accuracy indicated by the model of 
multi-sensor fusion system, then in turn will affect the state estimation accuracy to be 
estimated and computational efficiency. So, it is one of the most important parts to research 
and resolve such error factors of uncertainty, and to establish a reasonable estimation 
method under the state fusion estimation. 
As for this problem, there are a large number of studies to obtain good results at present. 
For instance, systematic error parameter model suitable for the engineering background is 
established to deal with the system error in measurement information. 
Extended-dimensional vector is employed to directly turn systematic error into the problem 
of the state fusion estimation under the standard form12. However, due to the increase of the 

number of parameters to be estimated, the treatment not only lowered the integration of 
estimation accuracy, but also increased the complexity of the computation of the matrix 
inversion. In addition, robust estimation theory and its research are designed to the problem 
of the incomplete computing of the abnormal value and the condition of systems affected by 
the large deviation13. A first order Gauss - Markov process is used to analyze and handle the 
random noise in measurement information. However, most of these treatments and 
researches are based on artificial experience and strong hypothesis, which are sometimes so 
contrary to the actual situation that they can doubt the feasibility and credibility of the state 
fusion estimation. 
The main reason for the failure of the solution of the above-mentioned problems is that there 
is no suitable uncertainty modeling method or a suitable mathematical model to describe 
the non-linear mixed-error factors in the multi-sensor measurement information14.  
Parts of the linear model (or called) semi-parameter model can be used as a suitable 
mathematical model to describe the non-linear mixed-error factors in the measurement 
information 15. Semi-parametric model have both parametric and non-parametric 
components. Its advantages are that it focused on the main part of (i.e. the parameter 
component) the information but without neglecting the role of the interference terms 
(non-parametric component). Semi-parametric model is a set of tools for solving practical 
problems with a broad application prospects. On the one hand, it solves problems which are 
difficult for only parameter model or non-parametric model alone to solve, thus enhancing 
the adaptability of the model; on the other, it overcome the issue of excessive loss of 
information by the non-parametric method and describe practical problems closer to the real 
and made fuller use of the information provided by data to eliminate or weaken the impact 
of the state fusion estimation accuracy caused by non-linear factors more effectively. 
This section attempts to introduce the idea of semi-parametric modeling into the fusion state 
estimation theory of the non-standard multi-sensor. It establishes non-standard multi-sensor 
fusion state estimation model based on semi-parametric regression and its corresponding 
parameters and non-parametric algorithm. At the same time of determining the unknown 
parameters, it can also distinguish between nonlinear factors and uncertainties or between 
system error and accidental error so as to enhance the state fusion estimation accuracy. 

 
2.1 State Fusion Estimation Based on Mutual Iteration Semi-parametric Regression 
In terms of the optimal state fusion estimation of the multi-sensor fusion system integration, 
its main jobs are to determine the "measurement information" and the state of mapping 
relationship to be assessed, to reveal statistical characteristics of measurement errors, and 
then to reach the result to be consistent with the optimal state fusion of the project scene. 
The mapping matrix is determined by specific engineering and the model established by the 
physical background, having a clear expression generally. Therefore, the core task of the 
multi-sensor consists in the statistical characteristics of the measurement error analysis. But 
in practice, the differences of sensor measuring principle and its properties often touch upon 
the existence of the observing system error and the non-standard multi-sensor data fusion 
system under the influence of nonlinear uncertain elements. Among them, the errors in 
constant-value system or parameterized system are rather special but conventional system 
error. For these systems, it is easy to deal with12. But in fact, some systematic errors, 
non-linear uncertainties in particular, which occur in the multi-sensor information fusion 
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system, are difficult to be completely expressed by parameters. In the first place, there are 
many factors which effect the value-taken of nonlinearity but all of these cannot be 
considered when establishing mathematical models. Secondly, some relative simple 
functional relations are chosen to substitute for functional relation between those factors and 
their parameters, so the established functional model are often said to be the approximate 
expression of the practical problems, that is to say, there is the existence of the model 
representation for error. When the error value of the model is a small amount, there is 
nothing much influence on the result of the assessment of the general state of this system if 
omitting it. But when the error value of the model is comparatively large, the neglect of it 
will exert a strong influence and lead to the wrong conclusion. Therefore, we main focused 
on the refinement issues of the state fusion estimation model under the condition of the 
non-linear uncertain factors (those non-linear uncertainties which are not parameterized 
fully), introducing semi-parametric regression analysis to establish non-standard 
multi-sensor information fusion estimation theory based on semi-parametric regression and 
its corresponding fusion estimation algorithm. 
(1) Semi-parametric Regression Model 
Assuming a unified model of linear integration of standard multi-sensor fusion system is:  

 
N Nv Y HX   

Where, YN  is the observation vector, X the state vector of the fusion to be estimated, vN 

observation error, H the mapping matrix between metrical information and the state fusion 
to be estimated. In this model, vN is supposed to be white noise of the zero mean. That is to 
say, except observation error, the observation vector YN is completely used as the function 
of status to be assessed. However, if the model is not accurate, with nonlinear uncertainties, 
the above formula cannot be strictly established and should be replaced by: 

 
N N N Nv  Y H X S           (2.1) 

Where, )(tS N  is the amount of model error which describes an unknown function 

relationship, it is the function of a certain variables t. 
Currently, there are three methods for using semi-parametric model to estimate the error 
with nonlinear factor model in theory, including the estimation of part of the linear model of 
approximation parameterization, the estimation of part of the linear model of regularization 
matrix compensation, and part of the two-stage linear model estimation16. But the process of 
its solution implies that the algorithm realization is comparative complex, and that the 
accuracy of estimation depends on the cognition of characteristics of non-parametric 
component as well as the choice of basis function. Taking the estimation of part of the linear 
model of regularization matrix compensation for instance, the programming of key factors 
like regular matrix and smoothing factor are highly hypothetical, including some elements 
presumed in advance, furthermore, the solution process is very complex. If there is 
something error or something that cannot meet the model requirement in the solution of 
smoothing factor   and regularization matrix sR , it will directly lead to unsolvable 
result to the semi-parametric fusion model. Here, we propose an algorithm based on the 
state fusion estimation of mutual-iteration semi-parametric regression, by the compensation 
for the error of the non-standard multi-sensor fusion model and the spectrum feature 
analysis to non-linear uncertainties, through aliasing frequency estimation method of 

decoupling to define the best fitting model, thus establishing the algorithm between the 
model compensation for the state fusion estimation model and the state fusion estimation of 
mutual iteration semi-parametric regression, isolating from non-linear uncertainties and 
eliminating the influence on its accuracy of the state fusion estimation. 
(2) The basis function of nonlinear uncertainties is expressed as a method for decoupling 
parameter estimation of the aliasing frequency.  
According to the signal processing theory, in the actual data processing, model errors and 
random errors under the influence of the real signal, non-linear uncertainties are often at 
different frequency ranges. Frequency components which are included in the error of 
measurement model are higher than the true signal frequency, but lower than random 
errors, so it can be called sub-low-frequency error17-18. It is difficult for classical least squares 
estimation method to distinguish between non-linear model error and random errors. 
However, the error characteristics of the measurement model can be extracted from the 
residual error in multi-sensor observation. Namely, it is possible to improve the state 
estimation accuracy if model error of residual error (caused mainly by the non-linear 
uncertainties) can be separated from random noise and the impact of model error deducted 
in each process of iterative solution.  
On consideration that nonlinear factors S in semi-parametric model can be fitted as the 
following polynomial modulation function forms: 

 

11 1def
( )

0 0 0
( ) ( ) exp{ 2 } ( ) exp{ 2 }

mNM M
m i

i m m m
m i m

S t a t j f t b t j f t 
 

  

         (2.2) 

Where, mf  is the frequency item of non-linear uncertainties, )(tbm  the amplitude 

envelope of each component signal, )(m
ka  polynomial coefficients corresponding to 

envelope function. From Equation (2.2), )(tS  is a multi-component amplitude-harmonic 
signal. It is complicated to directly use maximum likelihood estimation method to 
distinguish the frequency parameters of various components and amplitude parameter but 
apply the combination of matching pursuit and the ESPRIT method of basis pursuit to 
decouple parameter estimation. 
Firstly, recording 0 ( ) ( )y t S t , the method of ESPRIT 19 to estimate the characteristic roots 

closest to the unit circle from )(0 ty  is used to estimate frequency of corresponding 

harmonic components ̂ . Without loss of generality, if the estimation corresponded to 0f , 

that is, 0̂
ˆ(1/ 2π) Arg{ }f   , according to this, the original signal frequency is shifted to 

frequency to get 

 }ˆ2exp{)()(~
000 tfjtyty             (2.3) 

The baseband signal is obtained from low pass and filter of the shifted signal )(~
0 ty . 

Namely, it can be used as an estimate of amplitude envelope )(0 tb . 
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system, are difficult to be completely expressed by parameters. In the first place, there are 
many factors which effect the value-taken of nonlinearity but all of these cannot be 
considered when establishing mathematical models. Secondly, some relative simple 
functional relations are chosen to substitute for functional relation between those factors and 
their parameters, so the established functional model are often said to be the approximate 
expression of the practical problems, that is to say, there is the existence of the model 
representation for error. When the error value of the model is a small amount, there is 
nothing much influence on the result of the assessment of the general state of this system if 
omitting it. But when the error value of the model is comparatively large, the neglect of it 
will exert a strong influence and lead to the wrong conclusion. Therefore, we main focused 
on the refinement issues of the state fusion estimation model under the condition of the 
non-linear uncertain factors (those non-linear uncertainties which are not parameterized 
fully), introducing semi-parametric regression analysis to establish non-standard 
multi-sensor information fusion estimation theory based on semi-parametric regression and 
its corresponding fusion estimation algorithm. 
(1) Semi-parametric Regression Model 
Assuming a unified model of linear integration of standard multi-sensor fusion system is:  

 
N Nv Y HX   

Where, YN  is the observation vector, X the state vector of the fusion to be estimated, vN 

observation error, H the mapping matrix between metrical information and the state fusion 
to be estimated. In this model, vN is supposed to be white noise of the zero mean. That is to 
say, except observation error, the observation vector YN is completely used as the function 
of status to be assessed. However, if the model is not accurate, with nonlinear uncertainties, 
the above formula cannot be strictly established and should be replaced by: 

 
N N N Nv  Y H X S           (2.1) 

Where, )(tS N  is the amount of model error which describes an unknown function 

relationship, it is the function of a certain variables t. 
Currently, there are three methods for using semi-parametric model to estimate the error 
with nonlinear factor model in theory, including the estimation of part of the linear model of 
approximation parameterization, the estimation of part of the linear model of regularization 
matrix compensation, and part of the two-stage linear model estimation16. But the process of 
its solution implies that the algorithm realization is comparative complex, and that the 
accuracy of estimation depends on the cognition of characteristics of non-parametric 
component as well as the choice of basis function. Taking the estimation of part of the linear 
model of regularization matrix compensation for instance, the programming of key factors 
like regular matrix and smoothing factor are highly hypothetical, including some elements 
presumed in advance, furthermore, the solution process is very complex. If there is 
something error or something that cannot meet the model requirement in the solution of 
smoothing factor   and regularization matrix sR , it will directly lead to unsolvable 
result to the semi-parametric fusion model. Here, we propose an algorithm based on the 
state fusion estimation of mutual-iteration semi-parametric regression, by the compensation 
for the error of the non-standard multi-sensor fusion model and the spectrum feature 
analysis to non-linear uncertainties, through aliasing frequency estimation method of 

decoupling to define the best fitting model, thus establishing the algorithm between the 
model compensation for the state fusion estimation model and the state fusion estimation of 
mutual iteration semi-parametric regression, isolating from non-linear uncertainties and 
eliminating the influence on its accuracy of the state fusion estimation. 
(2) The basis function of nonlinear uncertainties is expressed as a method for decoupling 
parameter estimation of the aliasing frequency.  
According to the signal processing theory, in the actual data processing, model errors and 
random errors under the influence of the real signal, non-linear uncertainties are often at 
different frequency ranges. Frequency components which are included in the error of 
measurement model are higher than the true signal frequency, but lower than random 
errors, so it can be called sub-low-frequency error17-18. It is difficult for classical least squares 
estimation method to distinguish between non-linear model error and random errors. 
However, the error characteristics of the measurement model can be extracted from the 
residual error in multi-sensor observation. Namely, it is possible to improve the state 
estimation accuracy if model error of residual error (caused mainly by the non-linear 
uncertainties) can be separated from random noise and the impact of model error deducted 
in each process of iterative solution.  
On consideration that nonlinear factors S in semi-parametric model can be fitted as the 
following polynomial modulation function forms: 
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Where, mf  is the frequency item of non-linear uncertainties, )(tbm  the amplitude 

envelope of each component signal, )(m
ka  polynomial coefficients corresponding to 

envelope function. From Equation (2.2), )(tS  is a multi-component amplitude-harmonic 
signal. It is complicated to directly use maximum likelihood estimation method to 
distinguish the frequency parameters of various components and amplitude parameter but 
apply the combination of matching pursuit and the ESPRIT method of basis pursuit to 
decouple parameter estimation. 
Firstly, recording 0 ( ) ( )y t S t , the method of ESPRIT 19 to estimate the characteristic roots 

closest to the unit circle from )(0 ty  is used to estimate frequency of corresponding 

harmonic components ̂ . Without loss of generality, if the estimation corresponded to 0f , 

that is, 0̂
ˆ(1/ 2π) Arg{ }f   , according to this, the original signal frequency is shifted to 

frequency to get 
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The baseband signal is obtained from low pass and filter of the shifted signal )(~
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Namely, it can be used as an estimate of amplitude envelope )(0 tb . 
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Noting: )](~[LPF)(ˆ
00 tytb  , among them, ][LPF   refers to low-pass filter. The 

observation model of amplitude envelope is deduced from Formula (2.2): 
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         (2.4) 

The corresponding coefficient )0(ˆ ia  is estimated by Least Square, which is also used to 
reconstruct the corresponding signal components.   
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To move forward a step, the reconstruction of the harmonic component of amplitude 
modulation is subtracted from )(0 ty , then we can obtain residual signal: 

 )()()( 001 tbtyty                         (2.5) 
The residual signal is used as a new observing signal to repeat the above processes to get 

parameter estimates of multi-component signals, that is }ˆ,ˆ{ )(k
ik af ，

0,1, , 1, 0,1, , 1ki N k M     . The stop condition of iterative algorithm can be 
represented as residual control criterion and the order selection of other models. 
(3) Steps of how to calculate mutual iterative state estimation 
By means of the basis function to nonlinear uncertainties and the estimation method of 
decoupling parameter of corresponding aliasing frequency, nonlinear uncertainties can be 
extracted by fitting method, establishing multi-sensor fusion system model. The optimal 
fusion estimate of the state X to be estimated can be determined by the mutual iteration 
method of the following linear and nonlinear factors. If the degree of the Monte-Carlo 
simulation test is L, the implementation algorithm will be as following. 

Step1: For the obtaining multi-sensor fusion system, least squares estimation fusion is used 

to get jX  in the known observation sequence ),,2,1(,,, 21 LjYYY jNjj   ; 

Setp2: Computing observation residuals jNjj YYY  ,,, 21   in multi-sensor fusion 

system; 

Setp3: Examining whether the observation residual family 

 },,2,1|,,,{ 21 NiYYY iLii  
 is white noise series, if it is, turn to Step5, if 

not, turning to Step4; 

Step4: With the method for aliasing frequency estimation, nonlinear uncertainties vector 

1 2{ , , , }N
NS S SS   can be determined. That is to say, iS  should satisfy the 

following conditions: 
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Where, the white noise series is iLii vvv ,,, 21  , jNjj YYY ,,, 21   is replaced by 

1 1 2, , ,j j j N j NY S Y S Y S   , and then turn to Step1. 

Step5: The exported value of 
1

1ˆ
L

j
jL 

 X X  is the optimal fusion estimate of the state to 

be estimated. 
The above algorithm is all dependent on iteration. We will keep estimating and fitting the 

value of the nonlinear uncertainty vector NS . Simultaneously, it is also a process of being 
close to the true value of a state to be assessed. When approaching the true state values, 
observation residuals equaled to Gaussian white noise series. This method is in essence an 
improvement to iterative least squares estimation of Gauss-Newton by the use of two-layer 
iterative correction. Step4 (a process of fitting nonlinear uncertainties) is a critical part. 

 
2.2 Analysis of Fusion Accuracy 
Two theorems will be given in the following. Comparing to the classical least square 
algorithm, the state fusion estimation accuracy based on mutual iteration semi-parametric 
regression will be analyzed in theory to draw a corresponding conclusion. 

Theorem 2.2: On the condition of nonlinear uncertain factors, the estimation for X̂  is 

BCSX̂  which is called unbiased estimation, and X̂  is obtained from the state fusion 
estimation based on mutual iteration semi-parametric regression, while with classical 
weighted least squares, the estimate value WLSEX̂  is biased estimate.  
Demonstration: Under the influence of factors of the nonlinear uncertain error, the state 
fusion estimation based on semi-parametric regression from the generalized unified fusion 
model (2.1) is deduced as:  

   1T 1 T 1
BCS

ˆˆ ( )
  X H R H H R Y S                    (2.6) 

And Ŝ  is function fitted values of nonlinear uncertain error vector, then its expectation is: 

 
T 1 1 T 1 T 1 1 T 1

BCS
ˆˆE[ ] E[( ) ( )] ( )        X H R H H R Y S H R H H R HX X  (2.7) 

BCSX̂  is the unbiased estimation of X . The estimated value WLSEX̂  is computed by the 
method of weighted least squares estimation fusion. That is: 

 
T 1 1 T 1 T 1 1 T 1

WLSE
ˆˆ ( ) ( ) ( )       X H R H H R Y H R H H R HX S    (2.8) 

Its expectation is: 
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Noting: )](~[LPF)(ˆ
00 tytb  , among them, ][LPF   refers to low-pass filter. The 

observation model of amplitude envelope is deduced from Formula (2.2): 
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         (2.4) 

The corresponding coefficient )0(ˆ ia  is estimated by Least Square, which is also used to 
reconstruct the corresponding signal components.   
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To move forward a step, the reconstruction of the harmonic component of amplitude 
modulation is subtracted from )(0 ty , then we can obtain residual signal: 

 )()()( 001 tbtyty                         (2.5) 
The residual signal is used as a new observing signal to repeat the above processes to get 

parameter estimates of multi-component signals, that is }ˆ,ˆ{ )(k
ik af ，

0,1, , 1, 0,1, , 1ki N k M     . The stop condition of iterative algorithm can be 
represented as residual control criterion and the order selection of other models. 
(3) Steps of how to calculate mutual iterative state estimation 
By means of the basis function to nonlinear uncertainties and the estimation method of 
decoupling parameter of corresponding aliasing frequency, nonlinear uncertainties can be 
extracted by fitting method, establishing multi-sensor fusion system model. The optimal 
fusion estimate of the state X to be estimated can be determined by the mutual iteration 
method of the following linear and nonlinear factors. If the degree of the Monte-Carlo 
simulation test is L, the implementation algorithm will be as following. 

Step1: For the obtaining multi-sensor fusion system, least squares estimation fusion is used 

to get jX  in the known observation sequence ),,2,1(,,, 21 LjYYY jNjj   ; 

Setp2: Computing observation residuals jNjj YYY  ,,, 21   in multi-sensor fusion 

system; 

Setp3: Examining whether the observation residual family 

 },,2,1|,,,{ 21 NiYYY iLii  
 is white noise series, if it is, turn to Step5, if 

not, turning to Step4; 

Step4: With the method for aliasing frequency estimation, nonlinear uncertainties vector 

1 2{ , , , }N
NS S SS   can be determined. That is to say, iS  should satisfy the 

following conditions: 

 

1 1

2 2 , 1, 2, ,

i i i

i i i

iL i iL

Y S v
Y S v

i N

Y S v

  
    

   




  
Where, the white noise series is iLii vvv ,,, 21  , jNjj YYY ,,, 21   is replaced by 

1 1 2, , ,j j j N j NY S Y S Y S   , and then turn to Step1. 

Step5: The exported value of 
1

1ˆ
L

j
jL 

 X X  is the optimal fusion estimate of the state to 

be estimated. 
The above algorithm is all dependent on iteration. We will keep estimating and fitting the 

value of the nonlinear uncertainty vector NS . Simultaneously, it is also a process of being 
close to the true value of a state to be assessed. When approaching the true state values, 
observation residuals equaled to Gaussian white noise series. This method is in essence an 
improvement to iterative least squares estimation of Gauss-Newton by the use of two-layer 
iterative correction. Step4 (a process of fitting nonlinear uncertainties) is a critical part. 

 
2.2 Analysis of Fusion Accuracy 
Two theorems will be given in the following. Comparing to the classical least square 
algorithm, the state fusion estimation accuracy based on mutual iteration semi-parametric 
regression will be analyzed in theory to draw a corresponding conclusion. 

Theorem 2.2: On the condition of nonlinear uncertain factors, the estimation for X̂  is 

BCSX̂  which is called unbiased estimation, and X̂  is obtained from the state fusion 
estimation based on mutual iteration semi-parametric regression, while with classical 
weighted least squares, the estimate value WLSEX̂  is biased estimate.  
Demonstration: Under the influence of factors of the nonlinear uncertain error, the state 
fusion estimation based on semi-parametric regression from the generalized unified fusion 
model (2.1) is deduced as:  

   1T 1 T 1
BCS

ˆˆ ( )
  X H R H H R Y S                    (2.6) 

And Ŝ  is function fitted values of nonlinear uncertain error vector, then its expectation is: 

 
T 1 1 T 1 T 1 1 T 1

BCS
ˆˆE[ ] E[( ) ( )] ( )        X H R H H R Y S H R H H R HX X  (2.7) 

BCSX̂  is the unbiased estimation of X . The estimated value WLSEX̂  is computed by the 
method of weighted least squares estimation fusion. That is: 

 
T 1 1 T 1 T 1 1 T 1

WLSE
ˆˆ ( ) ( ) ( )       X H R H H R Y H R H H R HX S    (2.8) 

Its expectation is: 
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T 1 1 T 1 T 1 1 T 1

WLSE
ˆ ˆˆE[ ] E[( ) ( )] ( )        X H R H H R HX S X H R H H R S  (2.9) 

The following relationship formula is from Formula (2.6) and (2.8): 

 
T 1 1 T 1

WLSE BCS
ˆˆ ˆ ( )   X X H R H H R S       (2.10) 

Theorem 2.3: On the condition of nonlinear error factors, the valuation accuracy of X̂  
which is based on the state fusion estimation of the mutual iteration semi-parametric 
regression ranked above the valuation accuracy which is based on the method of weighted 
least squares estimation fusion.  

Demonstration: The estimation accuracy of semi-parametric state fusion is supposed to 

be BCS
ˆCov[ ]X , so: 

 T T 1 1
BCS BCS BCS

ˆ ˆ ˆCov[ ] E[( )( ) ] ( )    X X X X X H R H    (2.11) 

However, the valuation accuracy WLSE
ˆCov[ ]X  obtained by the method of weighted least 

squares estimation fusion. 
T

WLSE WLSE WLSE

T T 1 1 T
BCS BCS

ˆ ˆ ˆCov[ ] E[( )( ) ]
ˆ ˆE[( )( ) ] ( ) 

  

      

X X X X X

X P X X P X H R H P P
 (2.12) 

Where, T 1 1 T 1 ˆ( )  P H R H H R S , obviously T 0P P ，the estimation accuracy of 

X̂  based on the state fusion estimation of the mutual iteration semi-parametric regression 
is superior to the estimation accuracy obtained by the method of weighted least squares 
estimation fusion. 

 
2.3 Numerical Examples and Analysis  
In order to verify these conclusions, the experiment of numerical simulation is conducted on 
the basis of the method of the state fusion estimation of the mutual iteration 
semi-parametric. 
On consideration of the state fusion estimation of the constant-value 10x  , the fusion 
system, which consists of three sensors, is used to the conduction of the state fusion 
estimation. The measurement equation of non-standard multi-sensor fusion is: 

i i iy x b v   , 3,2,1i ; where iv  noise which is zero mean, and each variance is 

the Gaussian-noise of 2,1 21  RR and 3 3R  . Simultaneously, non-linear error 

component ( 1,2,3)ib i   is something related to cycle colored noise of the number of 

Monte-Carlo simulation L , each amplitude is 1,5.0 21  bb  and 3 1.5b  . The 

simulation times 100L  . The estimate values and estimated variance of the state to be 
estimated are obtained from the method of the classical least squares estimation and the 
state fusion estimation of the mutual iteration semi-parametric given in the Table 2.1. 
Comparing the simulation results by the two methods, the fusion estimation accuracy is 
relatively low by the use of the least squares due to the influence of nonlinearity error. And 

it can also be predicted that with the increase of non-linear error factors, the estimation 
accuracy is bound to reduce more and more.  But the method for the state fusion estimation 
of the mutual iteration semi-parametric can separate white noise series in observation noise 
from non-linear error factors, canceling its influence to state fusion estimation accuracy by 
fitting estimates. If there is nonlinearity error, the state estimator, which is obtained by the 
method for the state fusion estimation of the iteration semi-parametric, will be the optimal 
estimation of true value. 
 

Fusion Algorithm State Fusion 
Estimation 

Fusion Estimation 
Variance 

Method of Weighted Least Squares 
Estimation Fusion. 11.084 1.957 

Method of State Fusion Estimation of 
Iteration Semi-parametric 10.339 1.434 

Table 2.1. Comparison of Estimation Result between the two Fusion Algorithms  

 
3. Nonstandard Multisensor Information Fusion Estimate Based on 
Multi-model Fusion 

In recent years, it becomes a hot research topic to establish the parametric / semi-parametric 
model in the control of a complex nonlinear model, which has also been a great application, 
but there are so few tactics which are used in actual projects. The main reason for this 
problem is due to the difficulties of establishing an accurate model for complex non-linear 
parameters and the uncertainty of the actual system to a degree. These uncertainties 
sometimes are performed within the system, sometimes manifests in the system outside. 
The designer can not exactly describe the structure and parameters of the mathematical 
model of the controlled object in advance within the system. As the influence to the system 
from external environment, it can be equivalent to be expressed by many disturbances, 
which are unpredictable but might be deterministic or even random. Furthermore, some 
other measurement noise logged in the system from the feedback loop of the different 
measurement, and these random disturbances and noise statistics are always unknown. In 
this case, for dynamic parameters of the model which is from doing experiments on the 
process of parametric modeling, it is hard for the accuracy and adaptability expressed by the 
test model, which is even a known model structure, to estimate parameters and their status 
in the real-time constraints conditions. 
Multi-model fusion processing is a common method for dealing with a complex nonlinear 
system20-21, using multi-model to approach dynamic performance of the system, completing 
real-time adjustment to model parameter and noise parameter which is related to the system, 
and programming multiple model estimator based on multiple model. This estimator 
avoided the complexity of the direct model due to the reason that it can achieve better 
estimation to its accuracy, complex tracking speed and stability. Compared with the single 
model algorithm, multi-model fusion has the following advantages: it can refine the 
modeling by appropriate expansion model; it can improve the transient effect effectively; 
the estimation will be the optimal one in the sense of mean square error after assumptions 
are met; the algorithm with parallel structure will be conducive to parallel computing.  

www.intechopen.com



State Optimal Estimation for Nonstandard Multi-sensor Information Fusion System 9

 
T 1 1 T 1 T 1 1 T 1

WLSE
ˆ ˆˆE[ ] E[( ) ( )] ( )        X H R H H R HX S X H R H H R S  (2.9) 

The following relationship formula is from Formula (2.6) and (2.8): 

 
T 1 1 T 1

WLSE BCS
ˆˆ ˆ ( )   X X H R H H R S       (2.10) 

Theorem 2.3: On the condition of nonlinear error factors, the valuation accuracy of X̂  
which is based on the state fusion estimation of the mutual iteration semi-parametric 
regression ranked above the valuation accuracy which is based on the method of weighted 
least squares estimation fusion.  

Demonstration: The estimation accuracy of semi-parametric state fusion is supposed to 

be BCS
ˆCov[ ]X , so: 

 T T 1 1
BCS BCS BCS

ˆ ˆ ˆCov[ ] E[( )( ) ] ( )    X X X X X H R H    (2.11) 

However, the valuation accuracy WLSE
ˆCov[ ]X  obtained by the method of weighted least 

squares estimation fusion. 
T

WLSE WLSE WLSE

T T 1 1 T
BCS BCS

ˆ ˆ ˆCov[ ] E[( )( ) ]
ˆ ˆE[( )( ) ] ( ) 

  

      

X X X X X

X P X X P X H R H P P
 (2.12) 

Where, T 1 1 T 1 ˆ( )  P H R H H R S , obviously T 0P P ，the estimation accuracy of 

X̂  based on the state fusion estimation of the mutual iteration semi-parametric regression 
is superior to the estimation accuracy obtained by the method of weighted least squares 
estimation fusion. 

 
2.3 Numerical Examples and Analysis  
In order to verify these conclusions, the experiment of numerical simulation is conducted on 
the basis of the method of the state fusion estimation of the mutual iteration 
semi-parametric. 
On consideration of the state fusion estimation of the constant-value 10x  , the fusion 
system, which consists of three sensors, is used to the conduction of the state fusion 
estimation. The measurement equation of non-standard multi-sensor fusion is: 

i i iy x b v   , 3,2,1i ; where iv  noise which is zero mean, and each variance is 

the Gaussian-noise of 2,1 21  RR and 3 3R  . Simultaneously, non-linear error 

component ( 1,2,3)ib i   is something related to cycle colored noise of the number of 

Monte-Carlo simulation L , each amplitude is 1,5.0 21  bb  and 3 1.5b  . The 

simulation times 100L  . The estimate values and estimated variance of the state to be 
estimated are obtained from the method of the classical least squares estimation and the 
state fusion estimation of the mutual iteration semi-parametric given in the Table 2.1. 
Comparing the simulation results by the two methods, the fusion estimation accuracy is 
relatively low by the use of the least squares due to the influence of nonlinearity error. And 

it can also be predicted that with the increase of non-linear error factors, the estimation 
accuracy is bound to reduce more and more.  But the method for the state fusion estimation 
of the mutual iteration semi-parametric can separate white noise series in observation noise 
from non-linear error factors, canceling its influence to state fusion estimation accuracy by 
fitting estimates. If there is nonlinearity error, the state estimator, which is obtained by the 
method for the state fusion estimation of the iteration semi-parametric, will be the optimal 
estimation of true value. 
 

Fusion Algorithm State Fusion 
Estimation 

Fusion Estimation 
Variance 

Method of Weighted Least Squares 
Estimation Fusion. 11.084 1.957 

Method of State Fusion Estimation of 
Iteration Semi-parametric 10.339 1.434 

Table 2.1. Comparison of Estimation Result between the two Fusion Algorithms  

 
3. Nonstandard Multisensor Information Fusion Estimate Based on 
Multi-model Fusion 

In recent years, it becomes a hot research topic to establish the parametric / semi-parametric 
model in the control of a complex nonlinear model, which has also been a great application, 
but there are so few tactics which are used in actual projects. The main reason for this 
problem is due to the difficulties of establishing an accurate model for complex non-linear 
parameters and the uncertainty of the actual system to a degree. These uncertainties 
sometimes are performed within the system, sometimes manifests in the system outside. 
The designer can not exactly describe the structure and parameters of the mathematical 
model of the controlled object in advance within the system. As the influence to the system 
from external environment, it can be equivalent to be expressed by many disturbances, 
which are unpredictable but might be deterministic or even random. Furthermore, some 
other measurement noise logged in the system from the feedback loop of the different 
measurement, and these random disturbances and noise statistics are always unknown. In 
this case, for dynamic parameters of the model which is from doing experiments on the 
process of parametric modeling, it is hard for the accuracy and adaptability expressed by the 
test model, which is even a known model structure, to estimate parameters and their status 
in the real-time constraints conditions. 
Multi-model fusion processing is a common method for dealing with a complex nonlinear 
system20-21, using multi-model to approach dynamic performance of the system, completing 
real-time adjustment to model parameter and noise parameter which is related to the system, 
and programming multiple model estimator based on multiple model. This estimator 
avoided the complexity of the direct model due to the reason that it can achieve better 
estimation to its accuracy, complex tracking speed and stability. Compared with the single 
model algorithm, multi-model fusion has the following advantages: it can refine the 
modeling by appropriate expansion model; it can improve the transient effect effectively; 
the estimation will be the optimal one in the sense of mean square error after assumptions 
are met; the algorithm with parallel structure will be conducive to parallel computing.  
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Obtaining the state optimal fusion estimate is the processing of using multi-model to 
approach dynamic performance of the system at first, then realizing the disposure of 
multi-model multi-sensor fusion to the controlled object tracking measurement, This is the 
problem of the multi-model fusion estimation in essence22. The basic idea of it is to map the 
uncertainty of the parameter space (or model space) to model set. Based on each model 
parallel estimator, the state estimation of the system is the optimal fusion of estimation 
obtained by each estimator corresponding to the model. As it is very difficult to analyze this 
system, one of these methods is to use a linear stochastic control system to denote the 
original nonlinear system approximately and to employ the treatment of thinking linear 
regression model to solve the nonlinear problem which should be solved by uncertain 
control systems 23. The fusion approach diagram is shown in Fig. 3.1. 
 

Model 1(ρ＝ρ1) 

Model 2(ρ＝ρ2) 

Model 3(ρ＝ρ3) 

u 

Z iX̂
Fusion Estimation 

Hypothesis Testing 

optX̂  

R
e-initialization

 
Fig. 3.1. Multi-model Fusion Estimation Approach Principle  
 
Where, since different operational modes of stochastic uncertain systems worked with a 
group of parallel estimator, the input of each estimator will be the control input u  and 
metrical information Z  in a system, while the output of each estimator will be each one 
based on output residuals and state estimation iX  in a single model. According to the 
residual information, a hypothesis testing principle is used for programming model weight 
of an estimator corresponding to each model to reflect the situation that the probability of a 
model-taken at the determining time in a system. And the overall system state estimation is 
the weighted average value of the state estimation of each estimator. 

 
3.1 Basic Principles of Multi-model Fusion 
The description of multi-model fusion problem can be summed up: if the mathematical 
model of the object and the disturbance cannot be fully determined, multiple models will be 
designed as control sequence to approach the process of complex nonlinear time-varying in 
a system so as to make specified performance approaching as much as possible and keep it 
best. 
The following nonlinear system will be given: 

 

( 1) ( ( ), ( ))
( ) ( ( ), ( ))
k F k k
k G k k
 

 

X X θ
Z X θ

    (3.1) 

Where, ( ) R nk X  is supposed to be the system state vector, ( ) Rmk Z  being the 

system output vector, ,F G  being nonlinear functions, ( )kθ  being the vector of 
uncertain parameters. 
(1) Model Design 
Without loss of generality, the system output space is supposed to be  , then some 

outputs 1 NZ Z   can be chosen from  and get a corresponding equilibrium 
( , , ), 1, ,i i iX Z i N   . The linearization expansion of the system at each equilibrium point 

can get some linear model i  
from the original nonlinear system, and they constituted 

linear multi-model representation of the original system. Now the parameter 

1 2{ , , , }N      can choose some discrete values. Thus the following model set can be 
obtained:  

 { | 1,2, , }iM i N                (3.2) 

Where, iM  is related to the parameter  . In a broad sense, iM  can express plant 
model and also feedback matrix of different states and the different local area where the 
error fall on. Also defined a collection of design-based estimator :   

 { | 1,2, , }iE i N            (3.3) 

Where, iE  is supposed to be designed based estimator iM . 
Based on the above analysis, the linear multi-model of the nonlinear systems (3.1) can be 
described as follows: 

 

( 1) ( , ) ( ) ( , ) ( ) ( , ) ( )
1,2, ,

( ) ( , ) ( ) ( )
i i i

i i i

k k k k k k w k
i N

k k k v k
  


   

  

X Φ X C u Γ
Z H X

   (3.4) 

Where, ( , ), ( , ), ( , )k k kΦ θ C θ Γ θ  are the system matrixes, ( )ku  being the control 

vector of the system, ( , )kH θ  being the mapping matrix, )(kw  being the n  

dimensional system noise sequence, ( )v k  being the m dimensional system noise sequence. 
The meanings of other symbol are the same as those in Equation (3.1). Here, the multi-model 
fusion refers to use some linear stochastic control systems given in Equation (3.4) to solve 
nonlinear problems in Equation (3.1).  
(2) Selection of Estimator 
This is the second most important aspect, namely, choosing some estimators that can 
reasonably describe nonlinear systems to complete the process of the state fusion estimation. 
(3) Rules and Model Fusion 
In order to generate the global optimal fusion estimation, fusion rules can be fallen into 
three patterns: 
1) Soft Decision or No Decision: At any k moment, global estimates are obtained from the 

estimation ˆ ( 1, 2, , )ik i NX   based on all estimators instead of the mandatory use of 
the estimator to estimate the value. It is claimed to be the mainstream multi-model fusion 
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Obtaining the state optimal fusion estimate is the processing of using multi-model to 
approach dynamic performance of the system at first, then realizing the disposure of 
multi-model multi-sensor fusion to the controlled object tracking measurement, This is the 
problem of the multi-model fusion estimation in essence22. The basic idea of it is to map the 
uncertainty of the parameter space (or model space) to model set. Based on each model 
parallel estimator, the state estimation of the system is the optimal fusion of estimation 
obtained by each estimator corresponding to the model. As it is very difficult to analyze this 
system, one of these methods is to use a linear stochastic control system to denote the 
original nonlinear system approximately and to employ the treatment of thinking linear 
regression model to solve the nonlinear problem which should be solved by uncertain 
control systems 23. The fusion approach diagram is shown in Fig. 3.1. 
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Fig. 3.1. Multi-model Fusion Estimation Approach Principle  
 
Where, since different operational modes of stochastic uncertain systems worked with a 
group of parallel estimator, the input of each estimator will be the control input u  and 
metrical information Z  in a system, while the output of each estimator will be each one 
based on output residuals and state estimation iX  in a single model. According to the 
residual information, a hypothesis testing principle is used for programming model weight 
of an estimator corresponding to each model to reflect the situation that the probability of a 
model-taken at the determining time in a system. And the overall system state estimation is 
the weighted average value of the state estimation of each estimator. 

 
3.1 Basic Principles of Multi-model Fusion 
The description of multi-model fusion problem can be summed up: if the mathematical 
model of the object and the disturbance cannot be fully determined, multiple models will be 
designed as control sequence to approach the process of complex nonlinear time-varying in 
a system so as to make specified performance approaching as much as possible and keep it 
best. 
The following nonlinear system will be given: 

 

( 1) ( ( ), ( ))
( ) ( ( ), ( ))
k F k k
k G k k
 

 

X X θ
Z X θ

    (3.1) 

Where, ( ) R nk X  is supposed to be the system state vector, ( ) Rmk Z  being the 

system output vector, ,F G  being nonlinear functions, ( )kθ  being the vector of 
uncertain parameters. 
(1) Model Design 
Without loss of generality, the system output space is supposed to be  , then some 

outputs 1 NZ Z   can be chosen from  and get a corresponding equilibrium 
( , , ), 1, ,i i iX Z i N   . The linearization expansion of the system at each equilibrium point 

can get some linear model i  
from the original nonlinear system, and they constituted 

linear multi-model representation of the original system. Now the parameter 

1 2{ , , , }N      can choose some discrete values. Thus the following model set can be 
obtained:  

 { | 1,2, , }iM i N                (3.2) 

Where, iM  is related to the parameter  . In a broad sense, iM  can express plant 
model and also feedback matrix of different states and the different local area where the 
error fall on. Also defined a collection of design-based estimator :   

 { | 1,2, , }iE i N            (3.3) 

Where, iE  is supposed to be designed based estimator iM . 
Based on the above analysis, the linear multi-model of the nonlinear systems (3.1) can be 
described as follows: 

 

( 1) ( , ) ( ) ( , ) ( ) ( , ) ( )
1,2, ,

( ) ( , ) ( ) ( )
i i i

i i i

k k k k k k w k
i N

k k k v k
  


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Where, ( , ), ( , ), ( , )k k kΦ θ C θ Γ θ  are the system matrixes, ( )ku  being the control 

vector of the system, ( , )kH θ  being the mapping matrix, )(kw  being the n  

dimensional system noise sequence, ( )v k  being the m dimensional system noise sequence. 
The meanings of other symbol are the same as those in Equation (3.1). Here, the multi-model 
fusion refers to use some linear stochastic control systems given in Equation (3.4) to solve 
nonlinear problems in Equation (3.1).  
(2) Selection of Estimator 
This is the second most important aspect, namely, choosing some estimators that can 
reasonably describe nonlinear systems to complete the process of the state fusion estimation. 
(3) Rules and Model Fusion 
In order to generate the global optimal fusion estimation, fusion rules can be fallen into 
three patterns: 
1) Soft Decision or No Decision: At any k moment, global estimates are obtained from the 

estimation ˆ ( 1, 2, , )ik i NX   based on all estimators instead of the mandatory use of 
the estimator to estimate the value. It is claimed to be the mainstream multi-model fusion 
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method. If the conditional mean of the system state is considered as estimation, global 
estimates will be the sum of the probability weighted of estimated value of all estimators. 
That is: 
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2) Hard Decision: The approximation of the obtained global estimates is always from the 
estimated value of some estimators. The principle of selection of these estimators is the 
model maximum possible matching with the current model and the final state estimation 
will be mandatory. If only one model is to be selected in all models by maximum probability, 
consider its estimated value as the global one.  
3) Random Decision: Global estimates are determined approximately based on some of the 
randomly selected sequence of the estimated model. The first fusion mode is the main 
method of multi-model fusion estimation. With the approximation of the nonlinear system 
and the improvement for system fault tolerance, the tendency of the multi-model fusion will 
be: estimating designing real-time adaptive weighted factor and realizing the adaptive 
control between models. 
In reality, according to different model structures and fusion methods, multi-model fusion 
algorithm can be divided into two categories: (1) fixed multi-model (FMM); (2) interacting 
multiple model (IMM)24-25. The latter is designed for overcoming the shortcomings of the 
former. It can expand the system to the new mode without changing the structure of the 
system, but requires some prior information of a probability density function and the 
condition that the switching between the various models should satisfy the Markov process. 
Related closely to the fixed structure MM algorithms, there is a virtually ignored question: 
the performance of MM Estimator is heavily dependent on the use of the model set. There is 
a dilemma here: more models should be increased to improve the estimation accuracy, but 
the use of too many models will not only increase computation, but reduce the estimator's 
performance. 
There are two ways out of this dilemma: 1) Designing a better model set (But so far the 
available theoretical results are still very limited); 2) using the variable model set. 
It will be discussed Multi-model Adaptive Estimation (MMAE) and Interactive Multiple 
Model in Multi-model estimation method in a later paper. 

 
3.2 Multi-model Adaptive Estimation  
(1) The Fusion Architecture in MMAE 
Multiple model adaptive estimators consisted of a parallel Kalman filter bank and 
hypothesis testing algorithm. Each library has a special filter system model, the independent 
vector parameters ( , 1, 2, ,ia i N  ) are used to describe its inherent Kalman filter model. 

Each Kalman filter model formed the current system state estimation ˆ
iX  according to the 

independent unit under its own model and input vector, then using the estimate of the 
formation of the predictive value of the measurement vector, considering the residual error 
obtained by subtracting this value to the actual measurement vector Z as the similar levels 
of instruction between the filter model and the real system model. The smaller the residual 
error is the more matching between filter model and the real system model. Assuming the 

residual error is used to calculate the conditional probability ip  in the conditions of the 
actual measured values and the actual vector parameter a  by test algorithm. The 
conditional probability is used to weigh the correctness of each Kalman filter state estimate. 
The probability weighted average being from the state estimation, formed the mixed state 

estimation of the actual system ˆ
MMAEX . Multiple model adaptive estimators are shown in 

Fig. 3.2.  
(2) The Filtering Algorithm in MMAE 
Step1 Parallel Filtering Equation 
The Kalman filter of the ( 1, 2, , )i i N   linear model is: 
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The symbols have the same meaning as those of Formula (3.4). In addition, systematic noise 
( )i kw t  and observation noise ( )i kv t  are both zero mean white noise, and for all jk , , 
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method. If the conditional mean of the system state is considered as estimation, global 
estimates will be the sum of the probability weighted of estimated value of all estimators. 
That is: 

 
 |

1

ˆ ˆE | ( | )
N

k k
k k k ik ik

i
P M



 X X Z X Z       (3.5) 

2) Hard Decision: The approximation of the obtained global estimates is always from the 
estimated value of some estimators. The principle of selection of these estimators is the 
model maximum possible matching with the current model and the final state estimation 
will be mandatory. If only one model is to be selected in all models by maximum probability, 
consider its estimated value as the global one.  
3) Random Decision: Global estimates are determined approximately based on some of the 
randomly selected sequence of the estimated model. The first fusion mode is the main 
method of multi-model fusion estimation. With the approximation of the nonlinear system 
and the improvement for system fault tolerance, the tendency of the multi-model fusion will 
be: estimating designing real-time adaptive weighted factor and realizing the adaptive 
control between models. 
In reality, according to different model structures and fusion methods, multi-model fusion 
algorithm can be divided into two categories: (1) fixed multi-model (FMM); (2) interacting 
multiple model (IMM)24-25. The latter is designed for overcoming the shortcomings of the 
former. It can expand the system to the new mode without changing the structure of the 
system, but requires some prior information of a probability density function and the 
condition that the switching between the various models should satisfy the Markov process. 
Related closely to the fixed structure MM algorithms, there is a virtually ignored question: 
the performance of MM Estimator is heavily dependent on the use of the model set. There is 
a dilemma here: more models should be increased to improve the estimation accuracy, but 
the use of too many models will not only increase computation, but reduce the estimator's 
performance. 
There are two ways out of this dilemma: 1) Designing a better model set (But so far the 
available theoretical results are still very limited); 2) using the variable model set. 
It will be discussed Multi-model Adaptive Estimation (MMAE) and Interactive Multiple 
Model in Multi-model estimation method in a later paper. 

 
3.2 Multi-model Adaptive Estimation  
(1) The Fusion Architecture in MMAE 
Multiple model adaptive estimators consisted of a parallel Kalman filter bank and 
hypothesis testing algorithm. Each library has a special filter system model, the independent 
vector parameters ( , 1, 2, ,ia i N  ) are used to describe its inherent Kalman filter model. 

Each Kalman filter model formed the current system state estimation ˆ
iX  according to the 

independent unit under its own model and input vector, then using the estimate of the 
formation of the predictive value of the measurement vector, considering the residual error 
obtained by subtracting this value to the actual measurement vector Z as the similar levels 
of instruction between the filter model and the real system model. The smaller the residual 
error is the more matching between filter model and the real system model. Assuming the 

residual error is used to calculate the conditional probability ip  in the conditions of the 
actual measured values and the actual vector parameter a  by test algorithm. The 
conditional probability is used to weigh the correctness of each Kalman filter state estimate. 
The probability weighted average being from the state estimation, formed the mixed state 

estimation of the actual system ˆ
MMAEX . Multiple model adaptive estimators are shown in 

Fig. 3.2.  
(2) The Filtering Algorithm in MMAE 
Step1 Parallel Filtering Equation 
The Kalman filter of the ( 1, 2, , )i i N   linear model is: 
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The symbols have the same meaning as those of Formula (3.4). In addition, systematic noise 
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The Kalman filter algorithm use the above model to determine the optimum time to update 
the prediction and measurement of Kalman filter state estimation, optimum estimate update 
equation and state estimation error covariance matrix. Based on Kalman filter model, the 
update time equation of the Kalman filter state estimation is as follows:  
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i i i i
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The update time equation of the state estimation error covariance matrix is: 

     T T/ 1 1/ 1i i i i i i ik k k k    P Φ P Φ Γ Q Γ   (3.9) 

The Kalman filter state estimation can achieve the measurement update by the following 
formula:  

 
ˆ ˆ( / ) ( / 1) ( ) ( )i i i ik k k k k k  X X K r     (3.10) 

And the gain of Kalman is: 

     T 1/ 1 ( )i i i ik k k k  K P H A       (3.11) 

The O-C residual vector referred to the deviation by subtracting the measured value ( )iZ k  

to the Kalman estimation based on previous measurements ( / 1)iZ k k  , and that is: 
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Its variance matrix is:   

   T( ) / 1i i i i ik k k  A H P H R          (3.13) 

And the update equation of the state estimate covariance matrix is:  

      / [I ] / 1i i i ik k k k k  P K H P       (3.14) 

Step2 Solving of Model Probability  
It can obtain the new residual income of single linear model at any moment through the 
calculation of each parallel filter system of local filtering equation. At this moment, on the 
basis of the residual information and a hypothesis test principle, the model probability, 
corresponding to each estimator model, is designed reflect real-time system model in 
determining the time to take the possibility of a size. The representation of the probability of 
two models will be given as: 
1) The representation of the model probability based on statistical properties of residuals  
It is known to all: If the Single Kalman model and the system model phase are matching, the 
residual is the Gaussian white noise of the sequence zero-mean, and the variance matrix can 
be obtained by Formula (3.13). Therefore, the conditional probability density function under 
the condition of the measured values ( )ktZ  of the ( 1, 2, , )i i N   filter model at 

the kth moment is:  
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Defining the following objective function: 

 ( ) ( | ) ( ) Pr{ | ( ) }i i k i k i k kJ k p p t t    θ Z H H Z Z      (3.16) 

And there will be the following recurrence relations:   
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For the normalized of the above objective function, if:  
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The representation of the model probability based on statistical properties of residuals will 
be obtained. 
2) The representation of the model probability based on normalized residuals 
From the preceding analysis, it shows that O-C residual error ( )ir k  meant that the error 

between the actual output at the k time and the output of the ith model, so the residual can 
be used directly to define the following performance index function:  
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Where, the model weight of the ith estimator will be 2
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which is the weighted value in the actual model. The more accurate the ith estimator is, the 
smaller the corresponding residuals will be. Therefore, the greater the model weight of the 
estimator is, the smaller other corresponding models will be.  
It does not involve the statistical distribution residuals in this model probabilistic 
representation, but the calculation is relatively simple. 
Step3 Optimal Fusion Estimate 
The optimal fusion estimate of the state is the product integration of the local estimates 
corresponding to local parallel linear model and their corresponding performance index 
function. That is:  
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There are the following forms in the covariance matrix: 
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In addition, the estimates of the actual model parameters at the kth moment will be: 
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3.3 Interacting Multiple Model Algorithm  
The American Scholar Blom was the first one who proposed IMM algorithm in 1984. There 
are the following advantages in the interacting multiple model algorithm. In the first place, 
IMM is the optimum estimate after the completeness and the exclusive condition are 
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The Kalman filter algorithm use the above model to determine the optimum time to update 
the prediction and measurement of Kalman filter state estimation, optimum estimate update 
equation and state estimation error covariance matrix. Based on Kalman filter model, the 
update time equation of the Kalman filter state estimation is as follows:  

 

ˆ ˆ( / 1) ( 1 / 1) ( 1)
ˆ ˆ( / 1) ( / 1)

i i i i

i i i

k k k k k

k k k k

      


  

X Φ X C u

Z H X
        (3.8) 

The update time equation of the state estimation error covariance matrix is: 
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The Kalman filter state estimation can achieve the measurement update by the following 
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Step2 Solving of Model Probability  
It can obtain the new residual income of single linear model at any moment through the 
calculation of each parallel filter system of local filtering equation. At this moment, on the 
basis of the residual information and a hypothesis test principle, the model probability, 
corresponding to each estimator model, is designed reflect real-time system model in 
determining the time to take the possibility of a size. The representation of the probability of 
two models will be given as: 
1) The representation of the model probability based on statistical properties of residuals  
It is known to all: If the Single Kalman model and the system model phase are matching, the 
residual is the Gaussian white noise of the sequence zero-mean, and the variance matrix can 
be obtained by Formula (3.13). Therefore, the conditional probability density function under 
the condition of the measured values ( )ktZ  of the ( 1, 2, , )i i N   filter model at 

the kth moment is:  
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Defining the following objective function: 
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The representation of the model probability based on statistical properties of residuals will 
be obtained. 
2) The representation of the model probability based on normalized residuals 
From the preceding analysis, it shows that O-C residual error ( )ir k  meant that the error 

between the actual output at the k time and the output of the ith model, so the residual can 
be used directly to define the following performance index function:  
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Where, the model weight of the ith estimator will be 2
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which is the weighted value in the actual model. The more accurate the ith estimator is, the 
smaller the corresponding residuals will be. Therefore, the greater the model weight of the 
estimator is, the smaller other corresponding models will be.  
It does not involve the statistical distribution residuals in this model probabilistic 
representation, but the calculation is relatively simple. 
Step3 Optimal Fusion Estimate 
The optimal fusion estimate of the state is the product integration of the local estimates 
corresponding to local parallel linear model and their corresponding performance index 
function. That is:  
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In addition, the estimates of the actual model parameters at the kth moment will be: 
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3.3 Interacting Multiple Model Algorithm  
The American Scholar Blom was the first one who proposed IMM algorithm in 1984. There 
are the following advantages in the interacting multiple model algorithm. In the first place, 
IMM is the optimum estimate after the completeness and the exclusive condition are 
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satisfied in the model. Secondly, IMM can expand the new operation model of the estimated 
system without changing the structure of the system. Furthermore, the amount of 
computation in IMM is moderate, having advantages of nonlinear filtering. 
(1) The Fusion Architecture of IMM 
Assuming a certain system can be described as the following state equation and 
measurement equation: 

 
( 1) ( , ( )) ( ) ( , ( ))
( ) ( , ( )) ( ) ( , ( ))

X k k m k X k w k m k
Z k H k m k X k v k m k

   
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       (3.23) 

Where, ( )X k  is the system state vector, ( , ( ))k m k  being the state transition matrix; 

( , ( ))w k m k  is a mean zero, the variance being the Gaussian white noise 

( , ( ))Q k m k ; 
( )Z k  is the measurement vector, ( , ( ))H k m k  being the observation matrix; 

( , ( ))v k m k  is a mean zero, the variance being the Gaussian white noise ( , ( ))R k m k ; 

And there is no relation between ( , ( ))w k m k  and ( , ( ))v k m k . 

Where, ( )m k  means an effective mode at kt  sampling time. At kt time, the effective 

representation of im  is ( ) { ( ) }i im k m k m  . All possible system mode set is 

1 2{ , , , }NM m m m  . The systematic pattern sequence is assumed to be first-order 

Markov Chain, then the transition probability from ( 1)im k   to ( )jm k  will be:  

 { ( 1) | ( )} , ,i j ji i jP m k m k m m M          (3.24) 

And                       
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When received measurement information, the actual transition probability between models 

is the maximum posterior probability based on the above ji  and measurement set 

{ }kZ . 
The core of the interacting multiple model algorithms can modify the filter's input/output 
by using the actual transition probability in the above. The schematic figure of 
inter-influencing multiple model algorithms will be given in Fig. 3.3.  

 
Fig. 3.3 Algorithm Flow of the Interacting Multiple Model 
 
(2) The Filtering Algorithm for IMM 
The interacting multiple model expanded the state of the conditional mean along the model 
space to do the Bayes probability. It is the optimum estimate under the condition of target 
motion model set covering model and the model of mutual independence. The interacting 
multiple model algorithm is a recursive algorithm: the model number is supposed to be 
limited, and each algorithm included 4-step in a cycle: input interaction, filter calculation, 
the updated for model probability and output interaction.  
 
Step1 Input interaction 
Input interaction is the most typical step of the interacting multiple model algorithm, using 
all state and model conditional probability obtained at last circulation as the computation 
and input state of each filtering model and the input state error covariance matrix. 
That is: 

 0 |
1

ˆ ˆ( 1| 1) ( 1| 1) ( 1| 1)
N

i j j i
j

X k k X k k k k


              (3.26) 

 0 |
1

( 1| 1) ( 1| 1){ ( 1| 1) }
N

T
i j i j

j
P k k k k P k k a a



                 (3.27) 

And  
 0

ˆ ˆ[ ( 1| 1) ( 1| 1)]j ia X k k X k k              (3.28) 

www.intechopen.com



State Optimal Estimation for Nonstandard Multi-sensor Information Fusion System 17

satisfied in the model. Secondly, IMM can expand the new operation model of the estimated 
system without changing the structure of the system. Furthermore, the amount of 
computation in IMM is moderate, having advantages of nonlinear filtering. 
(1) The Fusion Architecture of IMM 
Assuming a certain system can be described as the following state equation and 
measurement equation: 

 
( 1) ( , ( )) ( ) ( , ( ))
( ) ( , ( )) ( ) ( , ( ))

X k k m k X k w k m k
Z k H k m k X k v k m k

   
  

       (3.23) 

Where, ( )X k  is the system state vector, ( , ( ))k m k  being the state transition matrix; 

( , ( ))w k m k  is a mean zero, the variance being the Gaussian white noise 

( , ( ))Q k m k ; 
( )Z k  is the measurement vector, ( , ( ))H k m k  being the observation matrix; 

( , ( ))v k m k  is a mean zero, the variance being the Gaussian white noise ( , ( ))R k m k ; 

And there is no relation between ( , ( ))w k m k  and ( , ( ))v k m k . 

Where, ( )m k  means an effective mode at kt  sampling time. At kt time, the effective 

representation of im  is ( ) { ( ) }i im k m k m  . All possible system mode set is 

1 2{ , , , }NM m m m  . The systematic pattern sequence is assumed to be first-order 

Markov Chain, then the transition probability from ( 1)im k   to ( )jm k  will be:  

 { ( 1) | ( )} , ,i j ji i jP m k m k m m M          (3.24) 

And                       
1

1 1, 2, ,
N

ji
i

j N


              (3.25) 

When received measurement information, the actual transition probability between models 

is the maximum posterior probability based on the above ji  and measurement set 

{ }kZ . 
The core of the interacting multiple model algorithms can modify the filter's input/output 
by using the actual transition probability in the above. The schematic figure of 
inter-influencing multiple model algorithms will be given in Fig. 3.3.  

 
Fig. 3.3 Algorithm Flow of the Interacting Multiple Model 
 
(2) The Filtering Algorithm for IMM 
The interacting multiple model expanded the state of the conditional mean along the model 
space to do the Bayes probability. It is the optimum estimate under the condition of target 
motion model set covering model and the model of mutual independence. The interacting 
multiple model algorithm is a recursive algorithm: the model number is supposed to be 
limited, and each algorithm included 4-step in a cycle: input interaction, filter calculation, 
the updated for model probability and output interaction.  
 
Step1 Input interaction 
Input interaction is the most typical step of the interacting multiple model algorithm, using 
all state and model conditional probability obtained at last circulation as the computation 
and input state of each filtering model and the input state error covariance matrix. 
That is: 
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1

ˆ ˆ( 1| 1) ( 1| 1) ( 1| 1)
N

i j j i
j

X k k X k k k k


              (3.26) 

 0 |
1

( 1| 1) ( 1| 1){ ( 1| 1) }
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T
i j i j

j
P k k k k P k k a a



                 (3.27) 

And  
 0

ˆ ˆ[ ( 1| 1) ( 1| 1)]j ia X k k X k k              (3.28) 
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The predicted probability of the model |j i  is: 

 1
|

1( 1| 1) { ( 1) | ( ), } ( 1)k
j i j i ji j

i

k k P m k m k Z k
c

              (3.29) 

Where  

 
1

( 1)
N

i ji j
j

c k 


             (3.30) 

( )i k  means the probability of model mi at the kth time,  

And that is: ( ) { ( ) | }k
i ik P m k Z  . 

Step2 Filter Calculation 
Each filter will do the Kalman filtering after obtaining measurement data collection Z (k) 
signal. What the filter of each model outputted are the mode estimation, covariance matrix, 
the residual covariance matrix of the Kalman filter and the updated state vector. Kalman 
filter equations of the ith model at the kth time will be introduced below.  
The state and covariance prediction of the ith model at the kth time is: 

 0
ˆ( | 1) ( 1| 1)i i iX k k X k k               (3.31) 

 0( | 1) ( 1| 1) T
i i i i iP k k P k k Q           (3.32) 

The residual vector of the Kalman Filter is the difference between measured values and the 
Kalman filter estimates of the previous measured values. That is: 

 ˆ( ) ( ) ( | 1)i i iv k Z k H X k k           (3.33) 

And ( )Z k  is the measurement data collection at the kth time. 
The residual covariance matrix of the Kalman filter is: 

 ( ) ( | 1) T
i i i i iS k H P k k H R      (3.34) 

The gain matrix of the Kalman filter is:  

 1( ) ( | 1) T
i i i iK k P k k H S        (3.35) 

The updated state equation of the Kalman filter is: 

 ˆ ˆ( | ) ( | 1)i i i iX k k X k k K v              (3.36) 
The state covariance updated equation of the Kalman filter is: 
 ( | ) ( ) ( | 1)i i i iP k k I K H P k k              (3.37) 
Step3 Updated for Model Probability  
Model probability provides information for working of a model at any time, which is given 
by Bayes Theorem. The updated equation of the specific model probability is:  

 
1

1( ) { ( ) | } ( ) ( 1)
N

k
i i i ji j

j
k P m k Z k k

c
  



             (3.38) 

Where, 1

1

{ ( ) | } ( )
N

k
i i

i
c P Z k Z k c



     

So, ( )i k  is the likelihood function for model im  the kth time, the likelihood value will 
be calculated by the residual error and the updated amount of covariance. That is: 

 1/2 11( ) [ ( ) : 0, ( )] | 2 | exp{ }
2

T
i i i i i i ik N v k S k S v S v         (3.39) 

Step4 Output Fusion 
The final state of the output is obtained by weighting and combining all sub-model state 
estimation, namely, by the product of the state estimation of each model and model 
probability. 

 
1

ˆ ˆ( | ) ( | ) ( )
N

i i
i

X k k X k k k


           (3.40) 

Simultaneously, the estimated covariance matrix is: 

 
1

( | ) ( ){ ( | ) }
N

T
i i

i
P k k k P k k b b



            (3.41) 

And 

 ˆ ˆ[ ( | ) ( | )]ib X k k X k k              (3.42) 
As will be readily seen, when IMM estimation is taking into historical information of mode 
at the kth time, it also mixes the previous estimated information in the beginning of each 
circulation to avoid the shortcoming that the complexity of the optimal estimation will 
present an exponential growth with time. It is the main aspect that can distinguish 
interacting multiple model algorithm from other non-interacting multiple model estimation. 

 
4. Nonstandard Multi-sensor Information Fusion Based on Local Filtering 
Estimate Decoupling 

The algorithm of the state fusion estimation of dynamic multi-sensor system is related to the 
fusion structure. There commonly are: centralization, distribution and hybrid26-27. Each 
fusion structure has its own particular advantages and disadvantages. For instance, 
problems as heavy computational burden and poor tolerance are existed in the 
centralization, but all the raw sensor measurements are used without loss, so the fusion 
result is the optimal one. In regard to the distribution, it adopts two-level information 
processing to use a primary filter and several local filters replace the original single 
centralized fusion model. In the first stage, each local filter processed the information of 
each corresponding subsystem measurement in parallel; then in the second stage, the 
primary filter will filter the local state of each local filter to improve the computational 
efficiency and error tolerance of the system. However, the distributed fusion estimation 
always assumes that the local estimates obtained from each sensor are independent of each 
other and that the local covariance is diagonal to achieve the decoupling of the estimated 
state of each sensor, which is the basis for the distributed optimal algorithm. In the 
multi-sensor system, state estimates of the corresponding local filter in each subsystem are 
often related. In view of the relevant local filter, the distributed fusion filter is needed to 
transform in order to achieve the global optimal estimates to make the local filtering 
estimate irrelevant in the actual operation. 
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The predicted probability of the model |j i  is: 

 1
|

1( 1| 1) { ( 1) | ( ), } ( 1)k
j i j i ji j
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Where  

 
1

( 1)
N

i ji j
j

c k 


             (3.30) 

( )i k  means the probability of model mi at the kth time,  

And that is: ( ) { ( ) | }k
i ik P m k Z  . 

Step2 Filter Calculation 
Each filter will do the Kalman filtering after obtaining measurement data collection Z (k) 
signal. What the filter of each model outputted are the mode estimation, covariance matrix, 
the residual covariance matrix of the Kalman filter and the updated state vector. Kalman 
filter equations of the ith model at the kth time will be introduced below.  
The state and covariance prediction of the ith model at the kth time is: 

 0
ˆ( | 1) ( 1| 1)i i iX k k X k k               (3.31) 

 0( | 1) ( 1| 1) T
i i i i iP k k P k k Q           (3.32) 

The residual vector of the Kalman Filter is the difference between measured values and the 
Kalman filter estimates of the previous measured values. That is: 

 ˆ( ) ( ) ( | 1)i i iv k Z k H X k k           (3.33) 

And ( )Z k  is the measurement data collection at the kth time. 
The residual covariance matrix of the Kalman filter is: 

 ( ) ( | 1) T
i i i i iS k H P k k H R      (3.34) 

The gain matrix of the Kalman filter is:  

 1( ) ( | 1) T
i i i iK k P k k H S        (3.35) 

The updated state equation of the Kalman filter is: 

 ˆ ˆ( | ) ( | 1)i i i iX k k X k k K v              (3.36) 
The state covariance updated equation of the Kalman filter is: 
 ( | ) ( ) ( | 1)i i i iP k k I K H P k k              (3.37) 
Step3 Updated for Model Probability  
Model probability provides information for working of a model at any time, which is given 
by Bayes Theorem. The updated equation of the specific model probability is:  
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1( ) { ( ) | } ( ) ( 1)
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i i i ji j
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c P Z k Z k c


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So, ( )i k  is the likelihood function for model im  the kth time, the likelihood value will 
be calculated by the residual error and the updated amount of covariance. That is: 

 1/2 11( ) [ ( ) : 0, ( )] | 2 | exp{ }
2

T
i i i i i i ik N v k S k S v S v         (3.39) 

Step4 Output Fusion 
The final state of the output is obtained by weighting and combining all sub-model state 
estimation, namely, by the product of the state estimation of each model and model 
probability. 

 
1

ˆ ˆ( | ) ( | ) ( )
N

i i
i

X k k X k k k


           (3.40) 

Simultaneously, the estimated covariance matrix is: 

 
1

( | ) ( ){ ( | ) }
N

T
i i

i
P k k k P k k b b



            (3.41) 

And 

 ˆ ˆ[ ( | ) ( | )]ib X k k X k k              (3.42) 
As will be readily seen, when IMM estimation is taking into historical information of mode 
at the kth time, it also mixes the previous estimated information in the beginning of each 
circulation to avoid the shortcoming that the complexity of the optimal estimation will 
present an exponential growth with time. It is the main aspect that can distinguish 
interacting multiple model algorithm from other non-interacting multiple model estimation. 

 
4. Nonstandard Multi-sensor Information Fusion Based on Local Filtering 
Estimate Decoupling 

The algorithm of the state fusion estimation of dynamic multi-sensor system is related to the 
fusion structure. There commonly are: centralization, distribution and hybrid26-27. Each 
fusion structure has its own particular advantages and disadvantages. For instance, 
problems as heavy computational burden and poor tolerance are existed in the 
centralization, but all the raw sensor measurements are used without loss, so the fusion 
result is the optimal one. In regard to the distribution, it adopts two-level information 
processing to use a primary filter and several local filters replace the original single 
centralized fusion model. In the first stage, each local filter processed the information of 
each corresponding subsystem measurement in parallel; then in the second stage, the 
primary filter will filter the local state of each local filter to improve the computational 
efficiency and error tolerance of the system. However, the distributed fusion estimation 
always assumes that the local estimates obtained from each sensor are independent of each 
other and that the local covariance is diagonal to achieve the decoupling of the estimated 
state of each sensor, which is the basis for the distributed optimal algorithm. In the 
multi-sensor system, state estimates of the corresponding local filter in each subsystem are 
often related. In view of the relevant local filter, the distributed fusion filter is needed to 
transform in order to achieve the global optimal estimates to make the local filtering 
estimate irrelevant in the actual operation. 
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The distributed joint filter (FKF, Federal Kalman Filter) was proposed by an American 
Scholar N.A. Carlson in 1988 concerning with a special form of distributed fusion. It has 
been considered as a new information fusion method which is only directed towards the 
synthesis of the estimated information of sub-filter. The sub-filter is also a parallel structure 
and each filter adopted the Kalman filter algorithm to deal with its own sensor 
measurements. In order to make the structure of the master filter and the accuracy of the 
centralized fusion estimation similar, the feature which distinguished the combined filter 
from the general distributed filter is that the combined filter applied variance upper bound 
technique and information distribution principle to eliminate the correlation estimates of the 
sub-filter in each sensor, and distributed the global state estimate information and noise 
information of the system to each sub-filter without changing the form of sub-filter 
algorithm. Therefore, it has the advantages of more simple in algorithm, better fault 
tolerance and easy to implement, etc. When information distribution factor determined the 
performance of the combined filter, the selection rules became the focus of recent research 
and debate28. Under the present circumstances, it is the main objective and research 
direction in this field to search for and design "information distribution" which will be 
simple, effective and self-adaptive.  

 
4.1 Analysis and Decoupling for the Relevance of the Combined Filter 
The system description will be given as:  

 ( 1) ( 1, ) ( ) ( 1, ) ( )k k k k k k w k    X Φ X Γ            (4.1) 

 ( 1) ( 1) ( 1) ( 1) 1, 2, ,i i i ik k k v k i N      Z H X        (4.2) 

Where, ( 1) R nk  X is the system state vector at the 1k   time, ( 1, ) R n nk k  Φ  
being the state transition matrix of the system, ( 1, )k kΓ  being the process noise 

distribution matrix, ( 1) R ( 1, 2, , )m
i k i N  Z   being the measurements of the 

i sensor at the 1k  time, and ( 1)i k H  being the mapping matrix of the ith sensor at 

the ( 1)i k H  time. Assume E[ ( )] 0w k  , TE[ ( ) ( )] ( ) kjw k w j k Q , E[ ( )] 0iv k  , 

and
 

TE[ ( ) ( )] ( )i i i kjv k v j k  R .  

Theorem 4.1: In the multi-sensor information fusion system described by Equation (4.1) and 

(4.2), if local estimates are unrelated, the global optimal fusion estimate of the state ˆ
gX can 

have the following general formulas:  
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( ) ( )

N

g g i i g g g N N
i

N

g i N
i

   



     



     

     
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
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P P P P P





     (4.3) 

Where, ˆ , 1,2, ,i i i NX P   are respectively referred as the local estimates of the 
subsystem and the corresponding estimated covariance matrix.  

Supposing ˆ ( | )g k kX , ( | )g k kP  are the optimal estimates and the covariance matrix of 

the combined Kalman filter (the fusion center), 
ˆ ( | )i k kX , ( | )i k kP  being the estimate 

and the covariance matrix of the i sub-filter, ˆ ( | )m k kX , ( | )m k kP  being the estimate and 
the covariance matrix of the Master Filter, and if there is no feedback from the fusion center 
to the sub-filter, when the Master Filter completed the fusion process at k time, there will 

be ˆ ˆ( | ) ( | )m k k k kX X ， ( | ) ( | )m k k k kP P . The forecast for the main filter will be 
(Because of no measurements, the Master Filter only had time updates, but no measurement 
updates.):   

 
T T
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P Φ P Φ Γ Q

     (4.4) 

Where, the meanings of ( )kΦ , ( )kΓ and ( )kQ are the same as those above. As the ith 

sub-filter has both time updates and measurement updates, it should have: 
ˆ ˆ ˆ( 1 | 1) ( 1 | ) ( 1)( ( 1) ( 1) ( 1 | ))
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Accordingly, 
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Then we can get the covariance of the local sub-filters i and j at the 1k  th time: 
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There is no measurement in the master filter, so the time updates is also the measurement 
updates: 
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The distributed joint filter (FKF, Federal Kalman Filter) was proposed by an American 
Scholar N.A. Carlson in 1988 concerning with a special form of distributed fusion. It has 
been considered as a new information fusion method which is only directed towards the 
synthesis of the estimated information of sub-filter. The sub-filter is also a parallel structure 
and each filter adopted the Kalman filter algorithm to deal with its own sensor 
measurements. In order to make the structure of the master filter and the accuracy of the 
centralized fusion estimation similar, the feature which distinguished the combined filter 
from the general distributed filter is that the combined filter applied variance upper bound 
technique and information distribution principle to eliminate the correlation estimates of the 
sub-filter in each sensor, and distributed the global state estimate information and noise 
information of the system to each sub-filter without changing the form of sub-filter 
algorithm. Therefore, it has the advantages of more simple in algorithm, better fault 
tolerance and easy to implement, etc. When information distribution factor determined the 
performance of the combined filter, the selection rules became the focus of recent research 
and debate28. Under the present circumstances, it is the main objective and research 
direction in this field to search for and design "information distribution" which will be 
simple, effective and self-adaptive.  

 
4.1 Analysis and Decoupling for the Relevance of the Combined Filter 
The system description will be given as:  

 ( 1) ( 1, ) ( ) ( 1, ) ( )k k k k k k w k    X Φ X Γ            (4.1) 

 ( 1) ( 1) ( 1) ( 1) 1, 2, ,i i i ik k k v k i N      Z H X        (4.2) 

Where, ( 1) R nk  X is the system state vector at the 1k   time, ( 1, ) R n nk k  Φ  
being the state transition matrix of the system, ( 1, )k kΓ  being the process noise 

distribution matrix, ( 1) R ( 1, 2, , )m
i k i N  Z   being the measurements of the 

i sensor at the 1k  time, and ( 1)i k H  being the mapping matrix of the ith sensor at 

the ( 1)i k H  time. Assume E[ ( )] 0w k  , TE[ ( ) ( )] ( ) kjw k w j k Q , E[ ( )] 0iv k  , 

and
 

TE[ ( ) ( )] ( )i i i kjv k v j k  R .  

Theorem 4.1: In the multi-sensor information fusion system described by Equation (4.1) and 

(4.2), if local estimates are unrelated, the global optimal fusion estimate of the state ˆ
gX can 

have the following general formulas:  
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Where, ˆ , 1,2, ,i i i NX P   are respectively referred as the local estimates of the 
subsystem and the corresponding estimated covariance matrix.  

Supposing ˆ ( | )g k kX , ( | )g k kP  are the optimal estimates and the covariance matrix of 

the combined Kalman filter (the fusion center), 
ˆ ( | )i k kX , ( | )i k kP  being the estimate 

and the covariance matrix of the i sub-filter, ˆ ( | )m k kX , ( | )m k kP  being the estimate and 
the covariance matrix of the Master Filter, and if there is no feedback from the fusion center 
to the sub-filter, when the Master Filter completed the fusion process at k time, there will 

be ˆ ˆ( | ) ( | )m k k k kX X ， ( | ) ( | )m k k k kP P . The forecast for the main filter will be 
(Because of no measurements, the Master Filter only had time updates, but no measurement 
updates.):   
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Where, the meanings of ( )kΦ , ( )kΓ and ( )kQ are the same as those above. As the ith 

sub-filter has both time updates and measurement updates, it should have: 
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Then we can get the covariance of the local sub-filters i and j at the 1k  th time: 
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There is no measurement in the master filter, so the time updates is also the measurement 
updates: 
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Therefore, the covariance of any sub-filter i and the Master Filter m  at the ( 1)k  th time 

will be: 
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As can be seen, only on the condition of both ( ) 0k Q and , ( ) 0i j k P ，the filtering errors 

between each sub-filter and the Master Filter at ( 1)k  time are not related to each other. 
While in the usual case, both constraint conditions are hard to establish.  
In addition, supposing: 
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(4.11) 

As can be seen, due to the influence of the common process noise ( )w k , even 

if , ( ) 0i j k P , there cannot get , ( 1) 0i j k  P . At this time, "variance upper-bound" 

technology can be used to eliminate this correlation. Known by the matrix theory29, there are 

upper-bound existed in the phalanx being composed of ( )kQ  from the Formula (4.11). 
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 (4.12) 

And: 1 2 1, 0 1N m i            
As can be seen, the positive definite of the upper-bound in Formula (4.12) is stronger than 
that of original matrix. That is to say, the difference between the upper-bound matrix and 
the original matrix is positive semi-definite.  

A similar upper-bound can also be set in the initial state covariance 0P . That is: 
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(4.13) 

It also can be seen from this, there is no related items in the right side of the Formula (4.13). 
Namely, if enlarge the initial covariance of the master filter and each sub-filter, the 
correlation of the initial covariance errors of the mater filter and each sub-filter. Then, it can 
be known from Formula (4.7) and (4.9). 

, ( ) 0 ( , , 1, 2, , , )i j k i j i j N m  P  . 

It can be got the following by substituting Formula (4.12) and (4.13) into Formula (4.11): 
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Therefore, the covariance of any sub-filter i and the Master Filter m  at the ( 1)k  th time 

will be: 
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As can be seen, only on the condition of both ( ) 0k Q and , ( ) 0i j k P ，the filtering errors 

between each sub-filter and the Master Filter at ( 1)k  time are not related to each other. 
While in the usual case, both constraint conditions are hard to establish.  
In addition, supposing: 

 

( 1) (I ( 1) ( 1)) ( ), ( 1)
(I ( 1) ( 1)) ( ), ( 1,2, , )

i i i i

i i

k k k k k
k k k i N

     
    

B K Η Φ C
K H Γ       

(4.10) 

And: 
1,1 1, 1,

,1 , ,

,1 , ,

T T T
1 1,1 1 1 1, 1 1,

T
,1 1

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)
( 1) ( 1) ( 1)

( 1) ( )( ( 1)) ( 1) ( )( ( 1)) ( 1) ( ) ( )

( 1) ( )( ( 1))

N m

N N N N m

m m N m m

N N m

N N N

k k k

k k k
k k k

k k k k k k k k k

k k k

   
 
 
   
    

    


 

P P P

P P P
P P P

B P B B P B B P Φ

B P B B


   





   

 T T
, ,

T T T
,1 1 ,

T T T
1 1 1 1

T
1

( 1) ( )( ( 1)) ( 1) ( ) ( )
( ) ( )( ( 1)) ( ) ( )( ( 1)) ( ) ( ) ( )

( 1) ( )( ( 1)) ( 1) ( )( ( 1)) ( 1) ( ) ( )

( 1) ( )( ( 1))

N N N N N m

m m N N m

N

N N

k k k k k k
k k k k k k k k k

k k k k k k k k k

k k k

 
 
 
   
 

   

    


 

P B B P Φ
Φ P B Φ P B Φ P Φ

C Q C C Q C C Q Γ

C Q C C




   

 T T

T T T
1

( 1) ( )( ( 1)) ( 1) ( ) ( )
( ) ( )( ( 1)) ( ) ( )( ( 1)) ( ) ( ) ( )

N N

N

k k k k k k
k k k k k k k k k

 
 
 
   
 

   

Q C C Q Γ
Γ Q C Γ Q C Γ Q Γ  

T
1,1 1, 1,1 1

T
,1 , ,

T
,1 , ,

1

( ) ( ) ( )( 1) 0 0 ( 1) 0 0

( ) ( ) ( )0 ( 1) 0 0 ( 1) 0
( ) ( ) ( )0 0 ( ) 0 0 ( )

( 1) 0 0

0 ( 1) 0
0 0

N m

N N N N mN N

m m N m m

N

k k kk k

k k kk k
k k kk k

k

k

    
   
   
    
   

   





P P PB B

P P PB Β
P P PΦ Φ

C

C

 
          

 
 


   




T
1

T

T

( ) ( ) ( ) ( 1) 0 0

( ) ( ) ( ) 0 ( 1) 0
( ) ( ) ( ) ( ) 0 0 ( )

N

k k k k

k k k k
k k k k k

   
   
   
    
   

   

Q Q Q C

Q Q Q C
Γ Q Q Q Γ

 
       

 
    

(4.11) 

As can be seen, due to the influence of the common process noise ( )w k , even 

if , ( ) 0i j k P , there cannot get , ( 1) 0i j k  P . At this time, "variance upper-bound" 

technology can be used to eliminate this correlation. Known by the matrix theory29, there are 

upper-bound existed in the phalanx being composed of ( )kQ  from the Formula (4.11). 
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And: 1 2 1, 0 1N m i            
As can be seen, the positive definite of the upper-bound in Formula (4.12) is stronger than 
that of original matrix. That is to say, the difference between the upper-bound matrix and 
the original matrix is positive semi-definite.  

A similar upper-bound can also be set in the initial state covariance 0P . That is: 
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It also can be seen from this, there is no related items in the right side of the Formula (4.13). 
Namely, if enlarge the initial covariance of the master filter and each sub-filter, the 
correlation of the initial covariance errors of the mater filter and each sub-filter. Then, it can 
be known from Formula (4.7) and (4.9). 

, ( ) 0 ( , , 1, 2, , , )i j k i j i j N m  P  . 

It can be got the following by substituting Formula (4.12) and (4.13) into Formula (4.11): 
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(4.14) 
If taken the equal sign, that is, achieved the de-correlation of local estimates, on the one 
hand, the global optimal fusion estimate can be realized by Theorem 4.1 , but on the other, 
the initial covariance matrix and process noise covariance of the sub-filter themselves can 

enlarged by 1
i


 times. What’s more, the filter results of every local filter will not be 
optimal. 

 
4.2 Structure and Performance Analysis of the Combined Filter 
The combined filter is a 2-level filter. The characteristic to distinguish from the traditional 
distributed filters is the use of information distribution to realize information share of every 
sub-filter. Information fusion structure of the combined filter is shown in Fig. 4.1.  
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Fig. 4.1 Structure Indication of the Combined Filter 

From the filter structure shown in the Fig. 4.1, the fusion process for the combined filter can 
be divided into the following four steps. 
Step1 Given initial value and information distribution: The initial value of the global state in 
the initial moment is supposed to be 0X , the covariance to be 0Q , the state estimate vector 
of the local filter, the system covariance matrix and the state vector covariance matrix 

separately, respectively to be ˆ , , , 1, ,i i i i NX Q P  , and the corresponding master filter 

to be ˆ , ,m m mX Q P .The information is distributed through the information distribution 
factor by the following rules in the sub-filter and the master filter. 
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Where, i should meet the requirements of information conservation principles: 
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Step2 the time to update the information: The process of updating time conducted 
independently, the updated time algorithm is shown as follows: 

T T

ˆ ˆ( 1| ) ( 1| ) ( | ) 1,2, , ,

( 1| ) ( 1| ) ( | ) ( 1| ) ( 1| ) ( ) ( 1| )
i i

i i i

k k k k k k i N m
k k k k k k k k k k k k k

    


      

X Φ X
P Φ P Φ Γ Q Γ



 
(4.16) 

Step3 Measurement update: As the master filter does not measure, there is no measurement 
update in the Master Filter. The measurement update only occurs in each local sub-filter, 
and can work by the following formula: 
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(4.17) 
Step4 the optimal information fusion: The amount of information of the state equation and 
the amount of information of the process equation can be apportioned by the information 
distribution to eliminate the correlation among sub-filters. Then the core algorithm of the 
combined filter can be fused to the local information of every local filter to get the state 
optimal estimates.    
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(4.18) 

It can achieve the goal to complete the workflow of the combined filter after the processes of 
information distribution, the updated time, the updated measurement and information 
fusion. Obviously, as the variance upper-bound technique is adopted to remove the 
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If taken the equal sign, that is, achieved the de-correlation of local estimates, on the one 
hand, the global optimal fusion estimate can be realized by Theorem 4.1 , but on the other, 
the initial covariance matrix and process noise covariance of the sub-filter themselves can 

enlarged by 1
i


 times. What’s more, the filter results of every local filter will not be 
optimal. 

 
4.2 Structure and Performance Analysis of the Combined Filter 
The combined filter is a 2-level filter. The characteristic to distinguish from the traditional 
distributed filters is the use of information distribution to realize information share of every 
sub-filter. Information fusion structure of the combined filter is shown in Fig. 4.1.  
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Fig. 4.1 Structure Indication of the Combined Filter 

From the filter structure shown in the Fig. 4.1, the fusion process for the combined filter can 
be divided into the following four steps. 
Step1 Given initial value and information distribution: The initial value of the global state in 
the initial moment is supposed to be 0X , the covariance to be 0Q , the state estimate vector 
of the local filter, the system covariance matrix and the state vector covariance matrix 

separately, respectively to be ˆ , , , 1, ,i i i i NX Q P  , and the corresponding master filter 

to be ˆ , ,m m mX Q P .The information is distributed through the information distribution 
factor by the following rules in the sub-filter and the master filter. 
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Where, i should meet the requirements of information conservation principles: 
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Step2 the time to update the information: The process of updating time conducted 
independently, the updated time algorithm is shown as follows: 
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Step3 Measurement update: As the master filter does not measure, there is no measurement 
update in the Master Filter. The measurement update only occurs in each local sub-filter, 
and can work by the following formula: 
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(4.17) 
Step4 the optimal information fusion: The amount of information of the state equation and 
the amount of information of the process equation can be apportioned by the information 
distribution to eliminate the correlation among sub-filters. Then the core algorithm of the 
combined filter can be fused to the local information of every local filter to get the state 
optimal estimates.    
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It can achieve the goal to complete the workflow of the combined filter after the processes of 
information distribution, the updated time, the updated measurement and information 
fusion. Obviously, as the variance upper-bound technique is adopted to remove the 
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correlation between sub-filters and the master filter and between the various sub-filters in 
the local filter and to enlarge the initial covariance matrix and the process noise covariance 

of each sub-filter by 1
i
 times, the filter results of each local filter will not be optimal. But 

some information lost by the variance upper-bound technique can be re-synthesized in the 
final fusion process to get the global optimal solution for the equation. 
In the above analysis for the structure of state fusion estimation, it is known that centralized 
fusion structure is the optimal fusion estimation for the system state in the minimum 
variance. While in the combined filter, the optimal fusion algorithm is used to deal with 
local filtering estimate to synthesize global state estimate. Due to the application of variance 
upper-bound technique, local filtering is turned into being suboptimal, the global filter after 
its synthesis becomes global optimal, i.e. the fact that the equivalence issue between the 
combined filtering process and the centralized fusion filtering process. To sum up, as can be 
seen from the above analysis, the algorithm of combined filtering process is greatly 
simplified by the use of variance upper-bound technique. It is worth pointing out that the 
use of variance upper-bound technique made local estimates suboptimum but the global 
estimate after the fusion of local estimates is optimal, i.e. combined filtering model is 
equivalent to centralized filtering model in the estimated accuracy.  

 
4.3 Adaptive Determination of Information Distribution Factor 
By the analysis of the estimation performance of combined filter, it is known that the 
information distribution principle not only eliminates the correlation between sub-filters as 
brought from public baseline information to make the filtering of every sub-filter conducted 
themselves independently, but also makes global estimates of information fusion optimal. 
This is also the key technology of the fusion algorithm of combined filter. Despite it is in this 
case, different information distribution principles can be guaranteed to obtain different 
structures and different characteristics (fault-tolerance, precision and amount of calculation) 
of combined filter. Therefore, there have been many research literatures on the selection of 
information distribution factor of combined filter in recent years. In the traditional structure 
of the combined filter, when distributed information to the subsystem, their distribution 
factors are predetermined and kept unchanged to make it difficult to reflect the dynamic 
nature of subsystem for information fusion. Therefore, it will be the main objective and 
research direction to find and design the principle of information distribution which will be 
simple, effective and dynamic fitness, and practical. Its aim is that the overall performance 
of the combined filter will keep close to the optimal performance of the local system in the 
filtering process, namely, a large information distribution factors can be existed in high 
precision sub-system, while smaller factors existed in lower precision sub-system to get 
smaller to reduce its overall accuracy of estimated loss. Method for determining adaptive 
information allocation factors can better reflect the diversification of estimation accuracy in 
subsystem and reduce the impact of the subsystem failure or precision degradation but 
improve the overall estimation accuracy and the adaptability and fault tolerance of the 
whole system. But it held contradictory views given in Literature [28] to determine 
information distribution factor formula as the above held view. It argued that global optimal 
estimation accuracy had nothing to do with the information distribution factor values when 
statistical characteristics of noise are known, so there is no need for adaptive determination. 

Combined with above findings in the literature, on determining rules for information 
distribution factor, we should consider from two aspects. 
1) Under circumstances of meeting conditions required in Kalman filtering such as exact 
statistical properties of noise, it is known from filter performance analysis in Section 4.2 that: 
if the value of the information distribution factor can satisfy information on conservation 
principles, the combined filter will be the global optimal one. In other words, the global 
optimal estimation accuracy is unrelated to the value of information distribution factors, 
which will influence estimation accuracy of a sub-filter yet. As is known in the information 

distribution process, process information obtained from each sub-filter is 1 1,i g i g  Q P , 

Kalman filter can automatically use different weights according to the merits of the quality 
of information: the smaller the value of i is, the lower process message weight will be, so 
the accuracy of sub-filters is dependent on the accuracy of measuring information; on the 
contrary, the accuracy of sub-filters is dependent on the accuracy of process information.  
2) Under circumstances of not knowing statistical properties of noise or the failure of a 
subsystem, global estimates obviously loss the optimality and degrade the accuracy, and it 
is necessary to introduce the determination mode of adaptive information distribution factor. 
Information distribution factor will be adaptive dynamically determined by the sub-filter 
accuracy to overcome the loss of accuracy caused by fault subsystem to remain the relatively 
high accuracy in global estimates. In determining adaptive information distribution factor, it 
should be considered that less precision sub-filter will allocate factor with smaller 
information to make the overall output of the combined filtering model had better fusion 
performance, or to obtain higher estimation accuracy and fault tolerance. 
In Kalman filter, the trace of error covariance matrix P includes the corresponding estimate 
vector or its linear combination of variance. The estimated accuracy can be reflected in filter 
answered to the estimate vector or its linear combination through the analysis for the trace 
of P. So there will be the following definition: 
Definition 4.1: The estimation accuracy of attenuation factor of the i th local filter is: 

 
Ttr( )i i iEDOP



 P P
          (4.19) 

Where, the definition of iEDOP  (Estimation Dilution of Precision) is attenuation factor 
estimation accuracy, meaning the measurement of estimation error covariance matrix 
in i local filter, tr( )  meaning the demand for computing trace function of the matrix.  

When introduced attenuation factor estimation accuracy iEDOP , in fact, it is said to use 

the measurement of norm characterization iP  in iP  matrix: the bigger the matrix norm is, 
the corresponding estimated covariance matrix will be larger, so the filtering effect is poorer; 
and vice versa. 
According to the definition of attenuation factor estimation accuracy, take the computing 
formula of information distribution factor in the combined filtering process as follows: 
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correlation between sub-filters and the master filter and between the various sub-filters in 
the local filter and to enlarge the initial covariance matrix and the process noise covariance 

of each sub-filter by 1
i
 times, the filter results of each local filter will not be optimal. But 

some information lost by the variance upper-bound technique can be re-synthesized in the 
final fusion process to get the global optimal solution for the equation. 
In the above analysis for the structure of state fusion estimation, it is known that centralized 
fusion structure is the optimal fusion estimation for the system state in the minimum 
variance. While in the combined filter, the optimal fusion algorithm is used to deal with 
local filtering estimate to synthesize global state estimate. Due to the application of variance 
upper-bound technique, local filtering is turned into being suboptimal, the global filter after 
its synthesis becomes global optimal, i.e. the fact that the equivalence issue between the 
combined filtering process and the centralized fusion filtering process. To sum up, as can be 
seen from the above analysis, the algorithm of combined filtering process is greatly 
simplified by the use of variance upper-bound technique. It is worth pointing out that the 
use of variance upper-bound technique made local estimates suboptimum but the global 
estimate after the fusion of local estimates is optimal, i.e. combined filtering model is 
equivalent to centralized filtering model in the estimated accuracy.  
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contrary, the accuracy of sub-filters is dependent on the accuracy of process information.  
2) Under circumstances of not knowing statistical properties of noise or the failure of a 
subsystem, global estimates obviously loss the optimality and degrade the accuracy, and it 
is necessary to introduce the determination mode of adaptive information distribution factor. 
Information distribution factor will be adaptive dynamically determined by the sub-filter 
accuracy to overcome the loss of accuracy caused by fault subsystem to remain the relatively 
high accuracy in global estimates. In determining adaptive information distribution factor, it 
should be considered that less precision sub-filter will allocate factor with smaller 
information to make the overall output of the combined filtering model had better fusion 
performance, or to obtain higher estimation accuracy and fault tolerance. 
In Kalman filter, the trace of error covariance matrix P includes the corresponding estimate 
vector or its linear combination of variance. The estimated accuracy can be reflected in filter 
answered to the estimate vector or its linear combination through the analysis for the trace 
of P. So there will be the following definition: 
Definition 4.1: The estimation accuracy of attenuation factor of the i th local filter is: 

 
Ttr( )i i iEDOP



 P P
          (4.19) 

Where, the definition of iEDOP  (Estimation Dilution of Precision) is attenuation factor 
estimation accuracy, meaning the measurement of estimation error covariance matrix 
in i local filter, tr( )  meaning the demand for computing trace function of the matrix.  

When introduced attenuation factor estimation accuracy iEDOP , in fact, it is said to use 

the measurement of norm characterization iP  in iP  matrix: the bigger the matrix norm is, 
the corresponding estimated covariance matrix will be larger, so the filtering effect is poorer; 
and vice versa. 
According to the definition of attenuation factor estimation accuracy, take the computing 
formula of information distribution factor in the combined filtering process as follows: 

 1 2
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EDOP EDOP EDOP EDOP
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Obviously, i  can satisfy information on conservation principles and possess a very 
intuitive physical sense, namely, the line reflects the estimated performance of sub-filters to 
improve the fusion performance of the global filter by adjusting the proportion of the local 
estimates information in the global estimates information. Especially when the performance 
degradation of a subsystem makes its local estimation error covariance matrix such a 
singular huge increase that its adaptive information distribution can make the combined 
filter participating of strong robustness and fault tolerance. 

 
5. Summary 

The chapter focuses on non-standard multi-sensor information fusion system with each kind 
of nonlinear, uncertain and correlated factor, which is widely popular in actual application, 
because of the difference of measuring principle and character of sensor as well as 
measuring environment.  
Aiming at the above non-standard factors, three resolution schemes based on semi-parameter 
modeling, multi model fusion and self-adaptive estimation are relatively advanced, and 
moreover, the corresponding fusion estimation model and algorithm are presented.  
(1) By introducing semi-parameter regression analysis concept to non-standard multi-sensor 
state fusion estimation theory, the relational fusion estimation model and 
parameter-non-parameter solution algorithm are established; the process is to separate 
model error brought by nonlinear and uncertainty factors with semi-parameter modeling 
method and then weakens the influence to the state fusion estimation precision; besides, the 
conclusion is proved in theory that the state estimation obtained in this algorithm is the 
optimal fusion estimation.  
(2) Two multi-model fusion estimation methods respectively based on multi-model adaptive 
estimation and interacting multiple model fusion are researched to deal with nonlinear and 
time-change factors existing in multi-sensor fusion system and moreover to realize the 
optimal fusion estimation for the state. 
(3) Self-adaptive fusion estimation strategy is introduced to solve local dependency and 
system parameter uncertainty existed in multi-sensor dynamical system and moreover to 
realize the optimal fusion estimation for the state. The fusion model for federal filter and its 
optimality are researched; the fusion algorithms respectively in relevant or irrelevant for 
each sub-filter are presented; the structure and algorithm scheme for federal filter are 
designed; moreover, its estimation performance was also analyzed, which was influenced 
by information allocation factors greatly. So the selection method of information allocation 
factors was discussed, in this chapter, which was dynamically and self-adaptively 
determined according to the eigenvalue square decomposition of the covariance matrix.  
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Obviously, i  can satisfy information on conservation principles and possess a very 
intuitive physical sense, namely, the line reflects the estimated performance of sub-filters to 
improve the fusion performance of the global filter by adjusting the proportion of the local 
estimates information in the global estimates information. Especially when the performance 
degradation of a subsystem makes its local estimation error covariance matrix such a 
singular huge increase that its adaptive information distribution can make the combined 
filter participating of strong robustness and fault tolerance. 

 
5. Summary 

The chapter focuses on non-standard multi-sensor information fusion system with each kind 
of nonlinear, uncertain and correlated factor, which is widely popular in actual application, 
because of the difference of measuring principle and character of sensor as well as 
measuring environment.  
Aiming at the above non-standard factors, three resolution schemes based on semi-parameter 
modeling, multi model fusion and self-adaptive estimation are relatively advanced, and 
moreover, the corresponding fusion estimation model and algorithm are presented.  
(1) By introducing semi-parameter regression analysis concept to non-standard multi-sensor 
state fusion estimation theory, the relational fusion estimation model and 
parameter-non-parameter solution algorithm are established; the process is to separate 
model error brought by nonlinear and uncertainty factors with semi-parameter modeling 
method and then weakens the influence to the state fusion estimation precision; besides, the 
conclusion is proved in theory that the state estimation obtained in this algorithm is the 
optimal fusion estimation.  
(2) Two multi-model fusion estimation methods respectively based on multi-model adaptive 
estimation and interacting multiple model fusion are researched to deal with nonlinear and 
time-change factors existing in multi-sensor fusion system and moreover to realize the 
optimal fusion estimation for the state. 
(3) Self-adaptive fusion estimation strategy is introduced to solve local dependency and 
system parameter uncertainty existed in multi-sensor dynamical system and moreover to 
realize the optimal fusion estimation for the state. The fusion model for federal filter and its 
optimality are researched; the fusion algorithms respectively in relevant or irrelevant for 
each sub-filter are presented; the structure and algorithm scheme for federal filter are 
designed; moreover, its estimation performance was also analyzed, which was influenced 
by information allocation factors greatly. So the selection method of information allocation 
factors was discussed, in this chapter, which was dynamically and self-adaptively 
determined according to the eigenvalue square decomposition of the covariance matrix.  
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