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1. Introduction

The aim of this chapter is to review the state of the art of the possibilities and existing knowl-
edge on characterization of mechanical and coupling properties and damage detection in
piezoelectric ceramics. To address the theoretical problem with a proper rational basis, a re-
view of numerical and experimental techniques to solve the so-called inverse problem of char-
acterization of properties and damage is given. Finally, the relevant details of finite element
and boundary element formulations and implementation when addressing correct damage
simulation in piezoelectric ceramics (Pérez-Aparicio et al. (2007)) is presented.
In recent years, the theoretical framework of inverse problems has been developed to under-
stand and formalize the property and damage characterization problems. This theory has
been applied in a variety of continuum mechanics applications, by the groups of Liu & Chen
(1996), Oh et al. (2005), Pagano (1970), Rus et al. (2005) and Tarantola & Valette (1982). There is
a growing body of knowledge in identification inverse problems for elasticity, like the groups
of Tardieu & Constantinescu (2000) or Bonnet & Constantinescu (2005), but due to the intrin-
sic coupling of magnitudes, the formulation of the piezoelectric problems is more complex
than in elastic problems. Despite this difficulty, the electric field and its coupling with the
elastic field has the potential to be exploited in monitoring piezoelectrics and in the solution
of the inverse problem. Inverse problem techniques have been applied specifically for the
piezoelectric ceramics for:

Characterization of properties: The basic formulation has been established by Kaltenbacher
et al. (2006) defining a cost functional as the difference between electric impedances observed
in laboratory and those obtained after solving the direct problem by the finite element method.
A similar cost functional was used by Ruíz et al. (2004a;b), which was minimized using ge-
netic algorithms. On the other hand, Araújo et al. (2006); Araújo et al. (2002) proposed an in-
verse problem to obtain the constitutive properties of composite plate specimens with surface
bonded piezoelectric patches or layers, where the cost functional was the difference between
the experimental and FEM–predicted eigen–frequencies and its minimization was carried out
using two strategies: a gradient–based method, and neural networks. A genetic algorithm
was applied by Chou & Ghaboussi (2001) and Mares & Surace (1996) to solve the IP in elastic
structures. Based on crystallographic criteria by Russell & Ghomshei (1997) a cost functional
was formulated as the difference in the orientation distribution function, which provides a
statistical description of the orientation.
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Fig. 1. Inverse problem concept

Damage detection: The group of Palma et al. (2009); Rus et al. (2009) developed the identifi-
cation inverse problems to design self-diagnosing piezoceramics, by formulating and solving
the defects identification problem in piezoelectric plates. They obtained the optimal exper-
imental configuration based on the concept of the probability of detection. Their findings
show which excitation-measurement combination provides the most robust self-diagnosis de-
sign, and also give criteria to determine which degree of uncertainty needs to be assured in
each constitutive property to yield a robust and sensitive damage characterization. A small
body of research groups is currently emerging both in the experimental and theoretical fields
of monitoring damage in piezoelectrics.

2. Inverse Problems

An Inverse Problem (IP) can be defined in opposition to the forward problem. If a forward
problem aims at finding the response (output, in red colour, Fig. 1) of a system given a known
model (input, in blue colour), an inverse problem consists in retrieving unknown information
of the model given the response as known input data. IPs have been recently applied to
study and characterize not only damage or mechanical properties of piezoelectric and classical
materials, but provide the general framework for reconstructing an unknown part of a system
model.
The model-based IP is the most advanced approach for IP solution. Following Fig. 2, it con-
sists in (1) obtaining a set of experimental measurements given a specific experimental de-
sign, which interrogate the system by propagating some physical magnitude that interacts
with the unknown part of the system and manifests on an accessible part of it. Some physical
assumptions need to be made to generate a mathematical model (2) that can be solved com-
putationally, in which the unknown part of the model to be reconstructed is dependent on
some defined parameters. This model simulates the measurements given a set of parameter
values. A discrepancy (3) between experimenental and simulated measurements is defined
using some metrics to define a Cost Function (CF). The IP is finally solved by finding the val-
ues of the parameters that minimize the CF (4), and thus the problem is mathematically fully
stated.
Inverse problems are ill-conditioned problems, in the sense that the solution may not be
unique, may not exist and may be unstable and divergent. This ill-conditioning is rooted
in the physical meaning of the problem, and cannot be completely avoided by purely mathe-
matical manipulations. Instead, some physical pieces of a priori information have to be incor-
porated into the formulation. This is the basis of a set of techniques called regularization that
were formally introduced by Tikhonov & Arsenin (1979); Tikhonov & Arsénine (1974) and
extended by Menke (1984) and Aster et al. (2005). These strategies were successfully incor-
porated to the model-based inverse problem by Rus, establishing a corps of knowledge to be
used in this project, while dealing with a variety of mechanical parameter extraction ranging
from continuum damage Lee et al. (2007; 2008); Rus & Gallego (2002); Rus & García-Martínez
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Fig. 2. Model-based inverse problem flowchart

(2007); Rus et al. (2005; 2004) to fractures Gallego & Rus (2004); Rus & Gallego (2005; 2006);
Rus et al. (2007a;b) in advanced materials, and using either advanced finite element (FEM)
and boundary element (BEM) formulations for the model solution.

2.1 Cost function

The CF, also called objective function, is usually defined (Eqn. 1) as a L-2 norm of the dif-
ference between the experimental measurements ψEXP and those simulated by the numerical
procedure ψNUM, and integrated over the observed period of time T, in the case of dynamic
measurements,

f =
1

2NT

∫

T

N

∑
i=1

(

ψEXP
i − ψNUM

i

)2
dt (1)

Other alternatives are possible, like L-1 norm, or defining the residual between the frequency-
domain counterpart of the measurement, or in any other domain.
When genetic algorithms or other heuristic search algorithms are used as for the minimization,
an alternative form of the CF is defined, that improves the convergence of the algorithm, as
argued by Gallego & Rus (2004),

f L = − lg ( f + ε) (2)

where ε is a small adimensional constant (typically ε = 10−16) that ensures the existence of
the logarithm when f vanishes.

2.2 Parametrization

In the context of inverse problems, parametrization of the model means to characterize the
sought solution (the defect in this case) by a set of parameters pi, which are the working
variables and the output of the inverse problem. The choice of parametrization is not obvious,
and it is a critical step in the problem setup, since the inverse problem is a badly conditioned
one, in the sense that the solution may not be stable, exist or be unique, and the assumptions
on the damage model that allow to represent it by a set of parameters can be understood
as a strong regularization technique. In particular, a reduced set of parameters is chosen to
facilitate the convergence of the search algorithm, and they are also defined to avoid coupling
between them.
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Typical parametrizations in damage location parameters are some geometric parameters that
define the damage extent or size (Level-2 NDE, severity, while Level-1 NDE classification is
attained by telling if there is or not damage), other parameters for damage location (Level-
3 NDE, location). On the other hand, typical material constant parametrization contain the
mechanical, electrical and piezoelectrical constants as coordinates of the parameter vector.

2.3 Search algorithm

The CF minimization can be performed by two alternative families of methods: gradient based
methods (among which Gauss-Newton algorithms, BFGS or Simulated annealing are some of
the most popular, see Dennis & Schnabel (1983, 1996)) and random search algorithms (Genetic
Algorithms, See Goldberg (1989), particle sworm algotihms, simulated annealing, etc.). The
latter family require significantly small amount of data in dealing with complex problems,
while attaining global convergence as opposed to gradient-based methods, which in opposi-
tion are much less computationally expensive.
The IP can be mathematically formalized as a minimization problem, that starts from a mea-
suring system from which the response is recorded, a computational idealization of the system
that simulates the measurements (forward problem) depending on the unknown characteri-
zation of the defect (parametrization) and defining a CF as above. The solution of the IP is
obtained by solving,

min
pi

f (pi) (3)

3. Damage characterization

Piezoelectric ceramics are brittle and susceptible to fracture: the ultimate strength is less than
100 [MPa], while the fracture toughness is between 0.5 and 2.0 [MPa/m1/2]. Furthermore,
due to their ceramic nature, these materials are highly inhomogeneous, causing cracks and/or
cavities in the manufacturing process or during their operation. When this occurs, high stress
and electric fields concentrations appear around the defect, failing to serve the function for
which their were designed. This has contributed to the emergence of many analytical and
experimental works about fracture mechanics in the last two decades. However, there are few
studies about damage detection, despite it is an interesting way to prevent the failure of these
ceramics.
This section describes the damage effects from an analytical and an experimental point of
view. Furthermore, inverse problems applied to damage characterization are supervised. Fi-
nally, the probability of detection is presented, which gives an idea of the probability that a
defect is positively detected, is defined.

3.1 Damage effects: analytical

Analytical studies about piezoelectric fracture mechanics began in 1976 by Parton. Thereafter,
traditional mathematical methods, as Lekhnitskii and Stroh formalisms, used in elastic frac-
ture mechanics were applied to these ceramics. Note that fracture behavior of a piezoelectric
ceramic under combined electro-mechanical loading is much more complex than that of the
traditional ceramics.

3.1.1 Boundary conditions on defect faces

Several researchers have published theoretical studies on infinite piezoelectric ceramics con-
taining an elliptic hole and have reported different results depending on the electric boundary
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Fig. 3. Normal electric displacement on boundary faces

conditions chosen on defect faces. Therefore, one of the key problems in piezoelectric fracture
mechanics is the selection of electric boundary conditions, as it it reported by Ou & Chen
(2003).
Consider an infinite piezoelectric ceramic material with a elliptical hole inside, where Dn

+ and
Dn

−

are the normal electric displacement to upper and lower defect faces, respectively, and

Di is the electric displacement inside the cavity, see Figure 3. There exist three (four for some
authors) electric boundary conditions:

Impermeable The dielectric permittivity inside the cavity is assumed to be zero, because it is
three order of magnitude less than the ceramic permittivity:

Dn
+ = Dn

−
= 0 (4)

Permeable The dielectric permittivity inside the cavity is assumed to be infinity or, alterna-
tively, both sides of the defect is in electrical contact:

Dn
+ = Dn

−
(5)

Exact This boundary condition is also denominated semi–permeable. It is the only one with
physical sense, since the cavity is assumed to behave like a capacitor, from an electrical
point of view.

Ou & Chen (2003) reported that: i) impermeable boundary condition has no physical mean-
ing and when it is applied, mathematical singularities appear and ii) permeable boundary
condition can be applied when free traction on defect face is assumed. Therefore, the exact
boundary condition is the only physically correct and should always be used.

3.1.2 Lekhnitskii formalism–based approach

A 3–D analytical work was developed by Sosa & Pak (1990) in order to study the fracture
mechanics of a transversely isotropic ceramic with a crack inside, under electro–mechanics
loads. Two important conclusions were obtained:

i) Field variables at crack tip depend on the crack orientation
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ii) Crack growth can be accelerated or delayed, depending on the direction of the electric
field applied.

Sosa & Pak (1990) only computed the crack tip concentrations, so Sosa (1991) considered an
infinity plain strain ceramic with an elliptic hole perpendicular to the polarization direction
inside, in order to obtain the field variables around the cavity. Xu & Rajapakse (1999) extended
this work considering an arbitrarily oriented elliptic hole and concluding that the highest
concentrations occur when the elliptical hole is 33◦ respect to the polarization direction. In
both works was concluded that the stress concentrations at crack tip are higher in piezoelectric
than that in anisotropic materials without coupling.
Sosa (1992) used the result obtained by Sosa (1991) to define the intensity factors for piezo-
electric ceramics:

KI =
√

a T∞

zz ; KIV =
√

a D∞

z (6)

where a the length of the crack and T∞

zz and D∞

z are the stress and electric displacement (frac-
ture mode I) applied, respectively. Note that an electric intensity factor KIV is emerged in
piezoelectric materials, in order to compute the electric contribution to the fracture.
In previous works, the impermeable boundary condition is assumed. Sosa & Khutoryan-
sky (1996) applied the exact boundary conditions to expand the study developed by Sosa
(1991), concluding that the impermeable boundary condition is unacceptable when the ellip-
tic hole tends to a crack. The same conclusion was numerically obtained by Pérez-Aparicio
et al. (2007), using the finite element method. Finally, Hao & Shen (1994) applied the exact
boundary condition to obtain the fracture parameters, which were obtained by Sosa (1992)
considering the impermeable boundary condition. Then, the fracture parameter of equation
(6) are modified by:

KI =
√

πa T∞

zz ; KIV =
√

πa
(

D∞

z − Di
z

)

(7)

where Di
z is the electric displacement inside the cavity. Stress intensity factors are not affected

by the electric boundary condition. However, the new electric intensity factor KIV depends
on the mechanical load applied.

3.1.3 Stroh formalism–based approach

Suo et al. (1992) extend the Stroh formalism to piezoelectric problems, considering a semi–
infinite piezoelectric ceramics with a crack inside. Plain strain assumption and impermeable
boundary condition were assumed to calculate field concentrations and intensity factors. Fur-
thermore, in this work was calculated the energy release rate GI , which was divided into
mechanical GM

I and electrical parts by Park & Sun (1995a):

GM
I = f

[

(T∞

zz )
2
]

; GI = f
[

(T∞

zz )
2 , T∞

zz D∞

z , (D∞

z )2
]

(8)

According to Park & Sun (1995a), the mechanical energy release rate GM
I has to be used

as fracture criteria. However, Gao et al. (1997) and McMeeking (2001) argued that electro–
mechanical behaviors can not be studied by fracture mechanical parameters. Therefore,
McMeeking (2004) and Wang & Sun (2004) obtained the energy release rate considering the
exact boundary condition.
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3.2 Damage effects: experimental

Experimental works about piezoelectric fracture mechanics started in 1980, in order to find
a fracture criteria for these materials. Two experimental devices are generally used: Compact
Tension (CT) and Three Point Bending (TPB).
Park & Sun (1995b) performed a CT fracture study, where the specimen was a PZT–4 ceramic
with a crack inside, which was perpendicular to the poling direction and the applied electric
field. It was published, an experimental curve that plots fracture loads Fc versus applied
electric field Ea, observing the fracture dependence on applied electric field: Fc increases when
Ea < 0 and decreases when EA > 0. Similar results were obtained by Fu et al. (2000) and Soh
et al. (2003) using PZT–4 and PZT–5 ceramics, respectively. However, Fu et al. (2000) observed
that fracture load decreases for positive or negative electric fields applied for PZT–841. On the
other hand, Park & Sun (1995b) and Soh et al. (2003) used the analytical results obtained by
Park & Sun (1995a) and Gao et al. (1997), respectively, to conclude that the mechanical energy
release rate fitted very well with the experimental results.
Jelitto, Kessler, Schneider & Balke (2005) and Jelitto, Felten, Hausler, Kessler, Balke & Schnei-
der (2005) used a PZT–PIC 151 specimen and a TPB device to perform fracture experiments,
publishing fracture criteria based on: intensity factors, mechanical and total energy release
rates. From a numerical point of view, the intensity factors and the energy release rates ware
calculated by the finite element method and considering the three boundary conditions. Fi-
nally, it was concluded that the mechanical energy release is more appropriate as fracture
criteria, from an empirical point of view.

3.3 Numerical damage characterization approaches

After revising the existing literature (a full review on analytical and experimental piezoelec-
tric fracture mechanics was performed by Chen & Hasebe (2005) and Schneider (2007), respec-
tively), several conclusions are obtained:

• From an analytical point of view, there is no an electric boundary condition can repro-
duce the experimental results, which explains why current researching are based on
non–linear fracture mechanics.

• From an experimental point of view, there is no unique trend for the fracture load as
a function of the electric field. This implies that a general fracture criteria can not be
developed, which explains the absence of work on piezoelectric reliability.

Therefore, there are many analytical and experimental works about piezoelectric fracture me-
chanics. However, there are few studies about damage detection, despite it is an interesting
way to prevent the failure of these ceramics. Then, several questions appear to remain open:
i) the use of the inverse problem to damage detection, ii) optimal experimental measurement
setup for improving the inverse problem solutions, iii) probability of detection, iv) inverse
problem sensitivity to system uncertainties, v) main variables responsible for the experimen-
tal noise and vi) how can the noise be effectively reduced?. All these questions were resolved
by the Non–destructive Evaluation Laboratory of the University of Granada, see Rus (2010),
by the publishing works: Rus et al. (2009), Palma et al. (2009) and Rus, García-Sánchez, Sáez &
Gallego (2010a). Nowadays, these woks are being extended in Rus, Palma & Pérez-Aparicio
(2010) and Rus, García-Sánchez, Sáez & Gallego (2010b).
Figure 4 shows a typical flow chart of the model–based inverse problem, where two inputs
are introduced: i) parametrization is a number of parameters, which characterize the sought
damage and are the inverse problem output and ii) experimental measurements. Finally, a
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P a r a m e t r i z a t i o n
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P r o b l e m

    Cos t

F u n c t i o n a l

    (CF)

E x p e r i m e n t a l

m e a s u r e m e n t

M i n i m i z a t i o n

O u t p u t

Fig. 4. Flow chart of the model-based inverse problem, see Palma et al. (2009)

cost function is defined and it is minimized by genetic algorithms, as it has been reported in
previous sections.

3.3.1 Parametrization

The choice of parametrization is not obvious, and it is a critical step in the problem setup (see
Palma et al. (2009)), since the inverse problem is a badly conditioned one, in the sense that
the solution may not be stable, exist or be unique, and the assumptions on the damage model
that allow to represent it by a set of parameters can be understood as a strong regularization
technique. In particular, a reduced set of parameters is chosen to facilitate the convergence of
the search algorithm, and they are also defined to avoid coupling between them.
Figure 5 shows a 2D piezoelectric plate of dimensions Lx and Lz with (a) a circular defect or
(b) a crack inside, which has to be detected. Note that z is the poling direction. The damage
location and size presented suggests the definition of the immediate parameters:

Circular defect pi = (x0, z0, r),

Crack pi = (x0, z0, L, θ), where L is the length of the crack.

The true (and unknown) parameters are denoted by p̄i. In Rus et al. (2009), Palma et al. (2009)
and Rus, Palma & Pérez-Aparicio (2010) a circular defect was considered as a first approxi-
mation, to simplify the meshing using the finite element method. On the other hand, in Rus,
García-Sánchez, Sáez & Gallego (2010a) and Rus, García-Sánchez, Sáez & Gallego (2010b) a
crack was considered, due to the simplicity of the mesh using the boundary element method.

3.3.2 Experimental measurements

Consider the specimen shown in Figure 5 with the circular defect or crack inside. This sample
is excited by electrical or mechanical loads, and its response (displacements and/or voltage)
is measured at Ni points along the lower boundary of the plate. Note that the piezoelectric
coupling makes mechanical loads generate voltages (direct effect) and the electrical loads gen-
erate mechanical displacements (inverse effect). On the other hand, the boundary conditions
are selected to avoid rigid solid motions.
In the literature there are no works about experimental measurements for damage charac-
terization, so the Non–destructive Evaluation Laboratory of the University of Granada, Rus
(2010), is undertaking experimental tests to verify all its numerical results. In Palma et al.
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Fig. 5. Piezoelectric plate with (a) a circular defect or (b) a crack inside

(2009); Rus, García-Sánchez, Sáez & Gallego (2010a;b); Rus et al. (2009); Rus, Palma & Pérez-
Aparicio (2010) the experimental measurements were generated solving the forward problem
by finite or boundary element method and adding noise generated by a gaussian distribution:

ψi = ψFWD

i
+ ξiRMS(ψFWD

i
)σ (9)

where ψi, ψFWD

i
, ξi and σ are the simulated experimental measurements, measurements gen-

erated by the solution of the forward problem, random variables, and a parameter defined to
study the influence of the noise in the inverse problem solution, respectively. On the other
hand, RMS is the root mean square given in Rus et al. (2009).

3.3.3 Results

Figure 6 shows the dependency of the cost functional on the spatial location of the defect
(fixing the size at the real value) for increasing noise levels, see Rus et al. (2009). If no noise is
simulated, the cost function shows a clear optimum that the search algorithm is able to find.
The shape of the cost function is distorted when the noise level increases.
Figure 7 shows the cost function and genetic algorithm convergence for different noise levels.
For the case without noise the full convergence is obtained for less than 200 generations. A
larger noise level is associated with slower convergence, probably due to the wavy and fuzzy
shapes of the cost functional.

3.4 Probability of detection

The Probability of Detection (POD) gives an idea of the probability that a defect is positively
detected, given a specimen, a defect size and some noise and system uncertainty conditions.
The detection and characterization of defects is based on the interpretation of the alterations of
the measurements due to the presence of the defect, however uncertainties and system noises
also alter these measurements. For this reason, the POD is estimated by the probability that

www.intechopen.com



Piezoelectric Ceramics80

 z0 [cm] 

 x
0 [c

m
] 

σ =  0.01 %

2 3 4

2

3

4

 z0 [cm] 
 x

0 [c
m

] 

σ =  0.05 %

2 3 4

2

3

4

 z0 [cm] 

 x
0 [c

m
] 

σ =  1 %

2 3 4

2

3

4

 z0 [cm] 

 x
0 [c

m
] 

σ =  2 %

2 3 4

2

3

4

Fig. 6. Cost functional for increasing levels of experimental noise, Rus et al. (2009)

the alteration of the measurement caused by the defect is larger than that caused by the noise,
see Rus et al. (2009):

POD = P

(
|SIGNAL|2

|NOISE|2
> 1

)

(10)

where SIGNAL and NOISE terms are obtained assuming: i) a linear dependence between the
variation of the measurements with increasing noise, see 9 and ii) linear piezoelectric behav-
iors. Then, the experimental measurements depend on damage area A and noise σ, expanding
in Taylor series and neglecting higher-order terms:

ψi(A, σ) = ψi(0, 0) + A
∂ψi

∂A
(0, 0)

︸ ︷︷ ︸

SIGNAL

+ σ
∂ψi

∂σ
(0, 0)

︸ ︷︷ ︸

NOISE

+hot (11)

The first term of the right member is the measurement at point i without noise and defect.
The second term is the alteration of that measurement due to the presence of the defect only
SIGNAL. Finally, the third term is the alteration of the signal originated by the noise only
NOISE.
Finally, in Rus et al. (2009) is obtained and validated, using Monte Carlo techniques, an ana-
lytical expression of the POD, which allows to estimate a priori the minimum defect findable
given a specimen geometry and a noise level on measurements.
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Fig. 7. Cost Function and Genetic Algorithm convergence for different noise levels, see Palma
et al. (2009)

4. Property characterization

The performance as sensors or as actuators of piezoelectric elements, usually manufactured in
the form of thin films, is defined by the piezoelectric properties, responsible of the electrome-
chanical coupling, but also on the mechanical and electrical properties. These properties need
to be established at the material design stage. However, when using piezoelectric crystals
for simulation and active noise and vibration control applications, The properties obtained
through manufacturer data are in most of the cases not enough to predict the structural be-
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haviour and implement effcient control algorithms due to non-homogeneities in materials,
and differing geometries and material properties in the regions of actuators and sensors.

4.1 Experimental procedures

Characterization of piezoelectric constants can be based on either the direct or the converse
piezoelectric effect. In direct measurements the voltage produced by an applied stress is
measured; in indirect measurements the displacement produced by an applied electric field
is measured through different methods. The direct measurements can be performed either
quasi-statically or dynamically. The first is typically used for nonresonant applications (sen-
sors and actuators), while the second is typical for those applications where the piezoelectric
thin film is used for the generation or detection of high-frequency bulk acoustic waves or
surface acoustic waves. Various methods have been described for the measurement of the
piezoelectric coefficients (see Fig. 8. For instance, the longitudinal piezoelectric coefficient d33

(see section 5.1) is determined from the generated charge measured when a calibrated stress
is applied to the piezoelectric film.

Fig. 8. Experimental setups for constitutive property characterization
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A recent and more sophisticated alternative method is based on the Atomic Force Microscopy
(AFM), in which a variety of excitation-measurement configurations is applied in order to
minimize the effect of the applied electric field with the microscope tip. The evaluation of
the transverse e31 constant requires different techniques. Here the film is deposited on a can-
tilever beam and two electrodes are deposited on the free film surface. The free edge of the
cantilever is first statically displaced, causing a bending of the cantilever, and then it is sud-
denly released. The consequent damped oscillation of the cantilever at its natural frequency
can be revealed through the voltage appearing between the electrodes and displayed on an
oscilloscope. It is proved that the first maximum of the damped oscillation is proportional to
the e31 constant.
On the other hand, the measurement of the dielectric constants is usually performed with a
standard impedance meter.
The complete characterization of piezoelectric constants requires the elastic stiffness coef-
ficients. These can be determined from Surface Acoustic Wave (SAW) velocity dispersion
curves that can be obtained in several ways. One method consists of measurement of the phase
velocity of several vibration modes. Due to the small amplitude of the vibration, contact-less
vibration measurements are usually employed, such as laser interferometry or reflection angle
measurement.

4.2 Numerical characterization approaches

When a mathematical model of the piezoelectric system dynamics behaviour of the elements
is needed, the physical constants that define the general constitutive laws (see section 5.1) need
to be estimated, and this is done by through fit-to-data techniques. The inverse problem is the
general theoretical and algorithmic framework to be applied, and in particular, the model-
based inverse problem.
To address the limitations of current characterization methods in determining elastic and
piezoelectric constants (Araújo et al. (2009); Araújo et al. (2002)) propose a finite element
model-based, associated to gradient optimisation-based inverse problem algorithm using vi-
bration data to carry out the identification of electromechanical properties in composite plate
specimens with surface bonded piezoelectric patches or layers. This method has been later
refined with neural networks to aid the inversion algorithms Araújo et al. (2006).
The problem of how to define which measurements and how to measure in order to mini-
mize the uncertainties of material parameters given the unavoidable measurement noise has
recently been addressed by Lahmer et al. (2010). An approach for a similar question based on
the definition and maximization of the probability of detection was also addressed by Palma
et al. (2009).

4.3 Experimental advances

A few experimental studies regarding the estimation of parameters in mathematical models
for homogeneous beams (Banks et al. (1994)), plates and grid structures (Banks & Rebnord
(1991)) have been reported. A primary concern when estimating parameters is that the model
fits to data consistently across experiments after a time-domain inverse problem solution, for
example in the presence of passive damping or for a range of eigenfrequencies (Banks et al.
(1997)), to ensure the effectiveness of the model independently of the number of excited fre-
quencies.
Using conventional methods to determine the elastic and piezoelectric constants faces some
difficulties in engineered crystals with high coupling constants. The piezoelectric coeffcients
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e33 and e31 (see section 5.1) become unstable using standard methods because they are highly
sensitive to the elastic stiffness coefficients c12 and c13 due to the large d31 and d33, yielding
serious property fluctuations from sample to sample that often make it impossible to obtain
self-consistent data. The derived values of s11, s33, s12 and s13 also become too sensitive to
the variation of c13 when its value is close to those of c11 and c33. A reversed strategy was
suggested by Jiang et al. (2003) using detailed error analysis to determine the best strategy for
each given material.

5. Numerical considerations

5.1 Governing equations

Consider a deformable electrically sensitive body, which occupies the region Ω of boundary
Γ in a three–dimensional Euclidean space, in the absence of electro–mechanical loads.
From a mechanical point of view, the equilibrium and compatibility equations are given by,
see Eringen (1980):

∇ · T + f = ρü ; S = ∇su (12)

where T, S, f, u and ρ denote the stress tensor, strain tensor, body forces, displacement and
density, respectively. Furthermore, the mechanical boundary conditions are:

Dirichlet → u = ū

Newmann → T · n = t

(13)

where ū, n and t denote the prescribed displacements, normal unit vector and tractions, re-
spectively.
From an electrical point of view, the governing equations are obtained from the uncoupled
Maxwell equations, see Eringen & Maugin (1990), and neglecting the free electric charges:

∇ · D = 0 ; ∇× E = 0 (14)

where D, E are the electric displacement or induction and electric field, respectively. Accord-
ing to the fields theory, the induction and the electric field can be obtained from vector V and
scalar φ potentials:

∇ · D = 0 → D = ∇× V

∇× E = 0 → E = −∇φ

(15)

This duality allows to define two types of boundary condition, as working with vector or
scalar potentials:

Dirichlet → V = V̄ ; φ = φ̄

Newman → n × E = Es ; n · D = Dn

(16)

where V̄, φ̄ and Dn are the prescribed electric vector potential, electric scalar potential or
voltage and normal electric displacement, respectively, and V̄ = −n ×∇φ.
Finally, the piezoelectric constitutive equations, which couple mechanical and electric fields
are given by:

T = cE : S − et · E ; D = e : S + ǫ
S · E (17)

where cE, e and ǫ are the elastic, coupling and dielectric material properties, respectively.
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Fig. 9. FEM discretization

5.2 Finite element method

The Finite Element Method (FEM) is a numerical technique for the solution of linear and non–
linear partial differential equations, which is used to model many problems in science and
engineering. The FEM is the most advanced method for the solution of electro–mechanical
field problems, but involves complex mathematical concepts, see Zienkiewicz et al. (2005) or
Hughes (1987) for further study. In general, the FEM implies the following steps:

i) The continuum domain Ω is divided into subdomains or elements, which are intercon-
nected at nodal points, see Figure 9.

ii) The nodal values, denominated degrees of freedom, are assumed to be the unknown
parameters of the problem.

iii) A set of functions, denominated shape functions, is chose to interpolate the solution
within each finite element in terms of its nodal values.

iv) The principle of virtual work is applied to the governing and constitutive equations to
obtain the weak form of the problem.

iv) The solution is obtained by solving a set of linear (or non–linear) equations. In order to
solve non–linear problems, algorithms such as Newton–Raphson has to be applied.

For the piezoelectric problem, two alternative FEM formulations can be developed, according
to the equations 15: scalar and vector formulations, which are described in the following
sections.

5.2.1 Scalar formulation

The Scalar Formulation (SF) developed in 1970 by Allik & Hughes (1970) has four degree of
freedom per node: three displacement and the scalar potential or voltage: U = (u, φ)t, where
(.)t denotes the transpose.
The weak form is obtained applying the principle of the virtual work to the governing equa-
tions and constitutive equations. Then, Newmann boundary conditions are satisfied automat-
ically, while Dirichlet boundary conditions are applied to the nodal values. Subsequently, a
discretization is performed using the shape functions N to interpolate the nodal values au

and aφ:

u = Nau → S = B
S

au

φ = Naφ → E = B
E

aφ

(18)

where B
S = ∇S

N and B = ∇ · N.
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Finally, the set of linear equations to be solved is given by:
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where the stiffness matrices are:

Kuu =
∫

Ω

B
S

c
E

B
SdΩ ; Kuφ =

∫

Ω

B
S

e
t
B

EdΩ

Kφu =
∫

Ω

B
E

eB
SdΩ ; Kφφ = −

∫

Ω

B
E

ǫ
S

B
EdΩ

(20)

the kinematically consistent mass matrix is given by:

M =
∫

Ω

B
SρB

S
dΩ (21)

and the body forces vector are:

fu = −

∫

Ω

B
S

fdΩ −

∫

Γ

B
S

tdΓ

fφ = −

∫

Γ

B
EρΓdΓ

(22)

Note that this formulation is monolithic, that is, the coupling is at the stiffness matrix. In
Gaudenzi & Bathe (1995) an iterative (stagger) formulation was proposed, which iteratively
solves the mechanical and the electric problems. On the other hand, elastic, coupling and
dielectric properties have different orders of magnitude, making extremely ill-conditioned to
the stiffness matrix. This drawback was resolved in Qi et al. (1997) by rescaling the dimensions
of the properties.
Zeng & Rajapakse (2004) developed a FEM to include the remanent strain and remanent po-
larization induced by poling. This was the first step to model the hysteresis, which is a non–
linear behavior inherent to ferroelectric materials. As it is reported in Kaltenbacher et al.
(2010), three different approaches are developed to model the hysteresis, namely: i) thermo-
dynamically consistent models (see, Kamlah & Bohle (2001)), ii) micromechanical models and
iii) models with hysteresis operator, see Kaltenbacher et al. (2010).

5.2.2 Vector formulation

The Vector Formulation (VF) was developed by Landis (2002) in 2002. In this formulation
there are six degrees of freedom per node (three displacements and three components of the
vector potential): U = (u, V)t. The discretization, weak form and set of equations are ob-
tained in a similar way to that used in SF. However, the main difference arises choosing the
constitutive equations, where the electric displacement has to be chosen such as independent
variable for this formulation.
A problem of the VF is the loss of uniqueness. Thus, in Semenov et al. (2006) some gauging
procedures were investigated and, finally, the Coulomb gauge was incorporated to the FEM
formulation, using the penalty function method.
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Fig. 10. Optimized mesh for damage detection using the FEM

The main drawback of the VF is the increase of CPU time, because there are six degrees free-
dom per node (four in the SF). However, this disadvantage can be offset by the rapid conver-
gence in non–linear problems.
In terms of the inverse problem solutions the SF is better than VF, because in the laboratory it
is easier to measure voltages than vector potentials, which are a mathematical artifice and not
a physical observable.

5.2.3 Mesh generation for damage detection

The mesh generation is the main step to achieve accurate and reliable results using the finite
element method. Therefore, Rus et al. (2009) developed an algorithm that automatically gen-
erates a high quality mesh. Given a square domain with a random (x0, y0, r) circle hole inside
(see Figure 5), the fully automatic algorithm to construct multi–block structured 2D meshes
consists of three steps:

i) The domain is subdivided into simple blocks by means of medial axis transform, which
is the locus of centers of maximal empty circles inside the domain. Therefore, the do-
main skeleton is obtained in this step.

ii) Blocks are meshed by transfinite interpolation, which is a technique to draw meshes
mapping the unit square onto the interior of the physical domain.

iii) Elements are concentrated close to the circular hole using a stretching function, which
is a monotonously increasing function defined in the computational domain.

Finally, Figure 10 shows an optimized mesh generated with the previous algorithm, where
the maximum element size is selected to provide an error in the measurements below an
acceptable threshold, see Rus et al. (2009).

5.3 Boundary element method

The boundary element method is an alternative technique to model the response of piezo-
electric materials in the case of linear constitutive laws particularly for three reasons: (1) the
dimensionality of the problem is reduced by one in comparison with the FEM, requiring only
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boundary meshing instead of domain meshing; (2) the cracks are easily modeled by a single
boundary after introducing the so-called hypersingular formulation; and (3) infinite boundary
conditions in the case of dynamics are satisfied automatically, without need for infinite finite
elements, as is the case for the FEM.
However the formulation of the problem is complex for the case of piezoelectric materials with
cracks and has only been accomplished in recent years, for the case of static piezoelectricity,
by García-Sanchez et al. (2005); García-Sánchez et al. (2005; 2008) and for transient dynamics
by Rojas-Díaz et al. (2009; 2010).

6. Future challenges

Several issues remain unsolved in the fields of damage and material properties characteriza-
tion in piezoelectrics, which makes it a fertile researh field where concepts from other disci-
plines may give new insights.
In the case of damage, fracture growth criteria are a controversial issue, since the mechanical,
electrical and total energy release rates have inconsistent relationships with crack opening at
the theoretical level. The question of the identifiability, or minimal detectable damage, has
neither been addressed, except for some preliminar approaches to the concept of probability
of detection.
Regarding the property characterization, the established methods have a limited range of va-
lidity, and optimal measurement/excitation setups need to be determined and rationally jus-
tified. Furthermore, the classical characterization procedures extract some scalar parameters
from the measurement, dumping large amounts of data that may contain useful information
about the material constants. The complete measurements may be taken advantage of us-
ing model-based inverse problems to reconstruct the unknown coefficients of the constitutive
model.
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