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1. Introduction     
 

Looking back at the history of control engineering, one finds that technology and ideas 
combine themselves until they reach a successful result, over the timeline of several decades 
(Bernstein, 2002). Simple dynamical compensators (such as PID, Phase-Lead, Phase-Lag, etc) 
have done in the past a remarkably good and efficient job in real-life control applications. 
Theoretical insight in the closed-loop behavior is provided by powerful and well-developed 
theories – which are considered as basic knowledge for every control engineer – such as the 
Root Locus and the Frequency Response techniques. In the past, these theories have been 
extensively used as analysis tools – e.g. the stability analysis of a given control system based 
on closed loop poles (Root Locus - RL) or Nyquist criterion (Frequency Response - FR). 
However, analysis implies that a controller is already available, irrespective of its design 
method.  
Nowadays, thanks to the computational and graphical power of modern computers, many 
of these theories can be implemented as interactive graphical design tools. In this way, 
control engineering moves away from being an abstract and mathematical-oriented 
discipline and it evolves gradually towards a mature engineering discipline. An extensive 
reflection upon the role of information science in control engineering has been given in 
(Dormido, 2004). This new way of interactive control education provides practical insights 
into control systems fundamentals (Wittenmark et al, 1998; Dormido et al, 2002). Such 
combinations of interactive environment and animation bring visualization to a new level 
and aid learning and active participation by control engineering students (Kheir et al, 1996; 
Johansson et al, 1998).  
Recently, a Root Locus RL toolbox has been introduced in Matlab – in this chapter, a 
Frequency Response toolbox (FRtool) will be presented. Although some other computer 
aided design (CAD) tools based on frequency response have been developed in the past 
(Balakrihsnan & Boyd, 1994; Satoh et al, 1994; Piguet & Gillet, 1997; Pouliz & Pouliezos, 1997; 
Piguet et al, 1999), the one presented in this contribution is highly interactive, graphical, 
easy-to-use and posing an elegant simplicity (especially for non-experts, as limited control 
engineering insight is required). The Matlab® controller design tool based on the root locus 
method (rltool) cannot handle systems with time-delay without approximating the dead-
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time by a rational transfer function. To tackle this problem, the FRtool operates with 
frequency diagrams (Nichols charts) – and in this way, the dead-time can be treated without 
any approximation. 
The paper is structured as follows: the FRtool graphical interface is depicted in the next 
section, followed in the 3rd section by a description of the underlying frequency response 
concepts. In the 4th section, four examples are given:  

i) a time-delayed and integrating transfer function of a (chemical) process;  
ii) a second order system (velocity control);  
iii) a mass spring damper system, defined by a 4th order transfer function with poor 
damping factors and  
iv) a high order system (6th order)  

A final section concludes this contribution. 

 
2. FRTool Graphical Interface 
 

Probably the most important feature of the FRtool is the user-friendly graphical interface 
(drag & drop and zoom included). It also has the possibility to display design specifications 
as graphical restrictions on the Nichols plot – including a real-time update while dragging 
controller’s poles and zeros. It can also import/export process and controller from or to the 
Matlab workspace and has options to print Nichols, Nyquist or Bode curves and closed-loop 
responses, as depicted in figure 1.  
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Fig. 1. Graphical interface of FRtool. After the system has been imported from Matlab 
workspace (see window in the lower right part), it appears as a curve in the Nichols chart 
corresponding to the loop frequency response (PHC).  

The design specifications can be introduced using the options denoted in the bolded dashed 
green line; e.g. the overshoot (%OS) and the robustness (Ro) specifications are visible in the 
chart. Closed-loop performance can be evaluated with the options in the dashed-dotted blue 
line. The upper right window in figure 1 is used to design the compensator by dragging 
compensator’s poles and zeros with the mouse. Additionally, pre-filter F(s) or feedback H(s) 
transfer functions can be added within the control scheme. In order to design a controller 
with FRtool, the user does not need a detailed knowledge of the frequency-response 
background theory. Tools lessen the need for prior insights, but should provide a better 
understanding of the problem to let the user make better decisions.  In figure 1, the PHC-
curve corresponds to the loop Nichols curve, with a default controller equal to 1 (and in this 
example also H=1). Notice that the PHC-curve is above the critical point in the Nichols 
chart: -1+j0 – denoted by a star corresponding to an open-loop gain of 0dB and phase -180°. 
Consider now figure 2 and a transfer function available in the Matlab workspace: 
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It is obvious that transfer function (1) denotes a system which is not trivial to control: it is 
marginally stable due to the integrator and it has a significant dead-time, two aspects which 
make the control design a challenging task.  
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Fig. 2. General scheme of a control loop: r – reference, w – setpoint, e – error, u – the 
manipulated variable, d and n – disturbances, y – the controlled variable, F(s) is a pre-
filtering transfer function and H(s) is a feedback transfer function; C(s) and P(s) denote the 
controller, respectively the process transfer function. 
 
When imported in FRTool, the process from (1) with controller C=1 gives the result as 
depicted in figure 1. One may observe that the closed loop system will be unstable, and the 
user has then to play with the controller’s poles and zeros to fulfill the specifications by pure 
visual inspection in the Nichols chart. Figures 3 and 4 depict various situations of zeros-
poles placement, affecting the shape of the Nichols curve. Additionally, the user may choose 
to plot the Nichols grid (see dotted grid in figures 3-4), denoting the circles of Hall in the 
Nyquist plane (Nise, 1995). This grid shows the relationship between open-loop and closed-
loop frequency responses. 
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Fig. 2. General scheme of a control loop: r – reference, w – setpoint, e – error, u – the 
manipulated variable, d and n – disturbances, y – the controlled variable, F(s) is a pre-
filtering transfer function and H(s) is a feedback transfer function; C(s) and P(s) denote the 
controller, respectively the process transfer function. 
 
When imported in FRTool, the process from (1) with controller C=1 gives the result as 
depicted in figure 1. One may observe that the closed loop system will be unstable, and the 
user has then to play with the controller’s poles and zeros to fulfill the specifications by pure 
visual inspection in the Nichols chart. Figures 3 and 4 depict various situations of zeros-
poles placement, affecting the shape of the Nichols curve. Additionally, the user may choose 
to plot the Nichols grid (see dotted grid in figures 3-4), denoting the circles of Hall in the 
Nyquist plane (Nise, 1995). This grid shows the relationship between open-loop and closed-
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Fig. 3. Graphical interface of FRtool. It can be observed that the change in gain produces 
only a translation of the Nichols curve along the vertical axis, while its shape (dynamics) is 
influenced by the position of the controller’s poles and zeros. 
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Fig. 4. Graphical interface of FRtool. Referenced to the pole/zero positions in figure 3, this picture 
illustrates the effect of a change in the pole position (left) and in the zero position (right). 

3. Design Specifications 

An important feature of a controller design tool is the possibility to define practically-
meaningful design specifications – which will guide the designer in the tuning process. 
These specifications have to be converted to graphical restrictions to make the designer’s job 
easier. Some of the traditional design specifications are gain margin and phase margin (Nise, 
1995). However, these specifications have not necessarily a clear physical meaning to a 
potential user (unless this user is e.g. a control engineer) – they are based on mathematical 
insight and system theory. Therefore, more practical specifications - which can be easily 
interpreted by any user - are settling-time and overshoot of the closed-loop time response, 
and of course robustness of the design (Nise, 1995). In this section, the background theory 
on which these specifications are taken into account in FRtool is explained with reference to 
their graphical equivalents. The basic (textbook) transfer function of a PID is: 
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with Kp the proportional gain, Ti the integrative and Td the derivative constants, K the 
equivalent controller gain in zero-pole chart, z1 and z2 zeros. Similarly, in FRtool a general 
form of the compensator (filter) can be defined as the following transfer function: 
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Robustness is probably the most important design specification in practice. Since the 
controller tuning is done around a nominal operating point, the control performance should 
still be acceptable irrespective of model changes (e.g. in chemical plants) or model-
mismatches (e.g. in mass-produced mechatronic devices such as DVD-players, hard-disks, 
etc). Denote ( )G s  as the (open-)loop transfer function and ( )T s  as the closed-loop transfer 
function, then the closed-loop sensitivity is defined as the closed-loop relative change over 
the open-loop relative change (the controller does not change, but the process may): 
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Thus the sensitivity should be as small as possible, resulting in 1 ( )G s  to be as big as 
possible. The equivalent representation in the complex plane is given in figure 5. 
 

 
Fig. 5.  Graphical representation of the robustness-function. 
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Robustness is described as how in-sensitive a closed-loop is to changes in the process. In 
FRtool, robustness (Ro) is a design parameter specified by the user, with value 0<Ro<1. It 

has the meaning of 1 ( )G j , thus a larger Ro-value means more robustness. To fulfill the 
robustness spec, the Nyquist curve has to stay outside the circle with radius Ro.  
Every point of this circle can be translated into the Nichols chart, leading to the ellipse-type 
blue curve in figures 2, 3 and 4. The inner part of this ellipse denotes a forbidden zone for 
the Nichols curve (with   0 360 ): 
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The other two specifications – overshoot (%OS) and settling time (Ts) – are derived from the 
dominant second order closed-loop transfer function:  
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From (6) the overshoot and settling time in time-domain are obtained via the damping 

factor (  ) and the natural frequency (n ). Further on, given the user-defined specifications 

for %OS and Ts, it is straightforward to obtain  and n  from: 
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Having (7), the time-domain specifications can be translated into frequency-domain 
specifications by using the following formulas (Nise, 1995): 
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These parameters correspond then to the maximum closed-loop magnitude Mp (which is 
related to overshoot specification) and the closed-loop bandwidth ωBW (which is related to 
the settling time specification).  
From (7) and (8) it results that the designed controller should induce in the closed loop 
transfer function a peak-magnitude smaller than Mp, and the -3dB-bandwith frequency 
should be bigger than ωBW. Notice in figure 2 the representation of Mp by the red curve 
indicated by %OS; the Nichols curve must stay below this %OS curve. The frequency ωBW is 
denoted by the little red circle on the Nichols curve in figure 2; it must be above the green -
3dB line in order to fulfill the specification.  

4. Illustrative Examples 
 

4.1 First Order Plus Integrator and Time-Delay 
Given the challenging process (1), design a phase-lead controller so that the closed-loop will 

satisfy the specifications for overshoot % 5%OS  and settling time  0.8sT s .  Defining the 
system in the Matlab command window: 
 

sys=tf(2500,[1 25 0],'InputDelay',0.2)  
 
importing it in the FRtool P-block (as Process transfer function) and defining the given 
specifications, the Nichols curve will be the one shown in figure 2 (blue line), which 
represents the process and controller C=1. Suppose the user wants to design a phase-lead 
controller, whose transfer function is defined by: 
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where the condition p z  is satisfied. The optimal situation with the corresponding 
phase-lead controller design that satisfies the specifications is given in figure 6 along with 
the corresponding step response of the closed-loop. 
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Fig. 6. Optimal phase-lead controller design fulfilling the required specifications and its step 
response for first example.  
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4.2 Second Order System 
A second example is given to illustrate the robustness property of the designed controller. 
Consider a flight control system (angular) velocity control (it can be as well a servo-control 
system, antenna, disk drive, DVD, etc) represented by: 
 


 

32( )
( 4)( 16)

P s
s s  (10) 

 
and the following specifications for a PI-controller design: robustness Ro>0.7 (a reasonably 
high robustness specification on a scale 0…1); overshoot %OS<10% and a minimum settling 
time Ts. The optimal PI-controller design and its corresponding step response are given in 
figure 7. The robustness can be evaluated in case the process model changes (the controller 
is fixed). To illustrate this case, consider the following transfer function, assuming that (10) 
has changed: 
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As it can be observed from (11), the changes do not affect only the gain (+50%), but also 
change the dynamics of the process quite significantly. In figure 8 can be evaluated the 
performance of the same PI-controller designed as in figure 7, but applied on the process 
model (11). 
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Fig. 7. Optimal PI-controller design fulfilling the required specifications and its step 
response for second example. 
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Fig. 8. Robustness evaluation of the PI-controller. The continuous line represents the 
nominal process model, and the dashed line represents the changed process model.  
 
It can be concluded that the performance of the controller does not fulfill anymore the initial 
specifications (%OS>10%) but it has still a reasonably good behavior, taking into account the 
fairly large changes in the process transfer function. This is due to the fact that a relatively 
high robustness was asked in the specifications.  

 
4.3 High Order + Poorly Damped System 
Consider a mass-spring-damper system driven by an electrical motor, with two masses, 
three springs and one damper, given by the transfer function: 
 


   4 3 2

800( )
2.498 16.65 4473 14400 1360000

P s
s s s s  (12) 

 

This system has two poorly damped eigenfrequencies  1 20.8  rad/s and  2 39.1  rad/s, 

with damping factors  1 0.08  and  1 0.05 . Although this type of vibrational process 
should in practice be better controlled by a more sophisticated controller, it is possible to 
design with the CAD package, a suboptimal controller, of PID type. The result is then 
indicated in figure 9. 
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4.2 Second Order System 
A second example is given to illustrate the robustness property of the designed controller. 
Consider a flight control system (angular) velocity control (it can be as well a servo-control 
system, antenna, disk drive, DVD, etc) represented by: 
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and the following specifications for a PI-controller design: robustness Ro>0.7 (a reasonably 
high robustness specification on a scale 0…1); overshoot %OS<10% and a minimum settling 
time Ts. The optimal PI-controller design and its corresponding step response are given in 
figure 7. The robustness can be evaluated in case the process model changes (the controller 
is fixed). To illustrate this case, consider the following transfer function, assuming that (10) 
has changed: 
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As it can be observed from (11), the changes do not affect only the gain (+50%), but also 
change the dynamics of the process quite significantly. In figure 8 can be evaluated the 
performance of the same PI-controller designed as in figure 7, but applied on the process 
model (11). 
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Fig. 7. Optimal PI-controller design fulfilling the required specifications and its step 
response for second example. 
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Fig. 8. Robustness evaluation of the PI-controller. The continuous line represents the 
nominal process model, and the dashed line represents the changed process model.  
 
It can be concluded that the performance of the controller does not fulfill anymore the initial 
specifications (%OS>10%) but it has still a reasonably good behavior, taking into account the 
fairly large changes in the process transfer function. This is due to the fact that a relatively 
high robustness was asked in the specifications.  

 
4.3 High Order + Poorly Damped System 
Consider a mass-spring-damper system driven by an electrical motor, with two masses, 
three springs and one damper, given by the transfer function: 
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This system has two poorly damped eigenfrequencies  1 20.8  rad/s and  2 39.1  rad/s, 

with damping factors  1 0.08  and  1 0.05 . Although this type of vibrational process 
should in practice be better controlled by a more sophisticated controller, it is possible to 
design with the CAD package, a suboptimal controller, of PID type. The result is then 
indicated in figure 9. 
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Fig. 9. Optimal PID-controller design fulfilling the required specifications and its step 
response for the high order plus poorly damped example. 

 
4.4 High Order System 
Consider the high order system presented by: 
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and the specifications: phase margin PM=62°, overshoot %OS<20% and a the settling time Ts 

as small as possible. The PID controller design in FRTool is given in figure 10, along with the 
step response. 
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Fig. 10. Optimal PID-controller design fulfilling the required specifications and its step 
response for the high order example. 

 
5. Conclusions 
 

In this contribution, a novel controller design toolbox has been presented for the Matlab 
environment. It is based on the frequency response (Nichols chart) representation of systems 
and entitled FRtool – Frequency Response toolbox. The toolbox can perform controller 
design with given practical specifications such as overshoot, settling time, robustness (and 
also ‘classical’ gain and phase margins as an option). It can also deal with time-delay 
systems and it has been illustrated on four examples, of which two examples far from being 
second order systems (6th order, respectively, 4th order with poor damping).  
Notice that the design procedure is extremely simple and close-at-hand, given the highly 
interactive graphical user interface of FRtool. Insight in all details of the underlying control 
engineering principles is not really required in order to use the CAD tool. This makes the 
toolbox attractive to students and engineers who are not control experts, and it offers an 
elegant solution for obtaining satisfactory results. 
The CACSD tool has been used during five years by several hundreds of engineering 
students – not specializing in control engineering – in a basic control engineering course. The 
experience is that the majority of them are able to manage the tool and produce a good 
controller design within about fifteen minutes. 
The software package is a development of Ghent University EeSA department; it consists of 
a set of Matlab files and is freely provided by email request.  
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