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Abstract 
This chapter presents a robust fixed order H2 controller designed using Strengthened 
discrete optimal projection equations (SDOPEs), which approximate the first order 
necessary optimality condition. Also, the problem of robust performance analysis for a 
particular robust controller design application is addressed. The novelty of this work is the 
application of the robust H2 controller to a Micro Aerial Vehicle MAV, named Sarika2 
developed in house. The controller is designed in discrete domain for the longitudinal 
dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and 
high frequency sensor noise. The design specification includes simultaneous stabilization, 
disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. Six 
degrees of freedom nonlinear equations are linearized, and validated using nonlinear 
simulation model and is used for the controller design. The resulting controller performance 
is comprehensively analyzed by means of linear and nonlinear simulation. In addition, 
robust performance analyses based on LMI techniques are also carried out to strengthen the 
results. For this, parametric uncertainties due to modeling errors or due to operating point 
changes have been considered.  

 
1. Introduction 

Ever since mankind’s first powered flight was made, research efforts have continuously 
pushed the envelope to create flying machines that are faster and/or larger than ever before. 
Now however; there is an effort to design aircraft at the other end of largely unexplored 
spectrum, where the desire for low cost portable, low-altitude aerial surveillance has driven 
the development and testing of aircraft that are as small as possible — in other words, on the 
scale and in the operational range of small birds. Vehicles in this class of small-scale aircraft 
are known as Micro Air Vehicles or MAVs.  

Equipped with small video cameras and transmitters, MAVs have great potential for 
surveillance and monitoring tasks in areas either too remote or dangerous to send human 
scouts. Operational MAVs will enable a number of important missions which include 
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chemical/radiation spill monitoring, forest-fire reconnaissance, visual monitoring of 
volcanic activity, surveys of natural disaster areas, and even inexpensive traffic and accident 
monitoring [1, 2] etc. Additional on-board sensors can further augment MAV mission 
profiles to include, for example airborne chemical analysis. 
In military, one of the primary roles for MAVs will be as small-unit battlefield surveillance 
agents, where they act as an extended set of eyes in the sky. This use of MAV technology is 
intended to reduce the risk to military personnel. MAVs can penetrate potential opposite 
camps and other targets prior to any action against on those targets, which are virtually 
undetectable from the ground. This significantly raises the chance for overall mission 
success. 
Researchers at the Aerospace Engineering Department at the Indian Institute of Science 
(I.I.Sc) Bangalore, India have established a long track record in designing, building and test-
flying (remotely human-piloted) practical MAVs [3-4]. Fig. 1 shows one among few of the 
recently developed MAVs as well as small UAVs at I.I.Sc. While much progress has been 
made in the design of ever-smaller MAVs by researchers at I.I.Sc, India and others in the 
past five years, there is a significant scope for research on autonomous MAV so as to 
improve their utility to wide array of missions.  
 

 
Fig. 1 Micro Air Vehicle: Sarika-2 
 
The first challenging step in achieving such MAV autonomy is the design and development 
of a robust flight stabilization system because, the uncertainties in the mathematical model 
associated with the low Reynolds number flight are not fully understood and is high. MAVs 
have very low moments of inertial property; hence they are highly vulnerable to rapid 
angular accelerations. Another potential source of instability for MAV is the relative 
magnitudes of wind gusts, which are much higher at the MAV scale than for larger aircraft 
[1]. An average wind gust can immediately effect a dramatic change in the flight path of 
these vehicles. In addition, the pilot may find it difficult to control the aircraft based on 
visual cues,  if  its  dynamic  modes  are  of  high  frequency  and are  lightly damped. 
Therefore, the problem of controlling an uncertain system such as MAV has been the subject 
of extensive research in the area of systems and control.  

 

Generally, a well motivated control goal is to achieve a certain level of performance while 
controlling an uncertain system. i.e., when designing control system, it is often desirable to 
obtain guarantees of stability and performance against uncertainty on the physical 
parameters of the system. Examples of the physical parameters include stiffness, inertia, or 
viscosity coefficients and aero-dynamical coefficients in flight control. Hence, performance 
analysis of systems is obviously a very important problem in flight control theory. This 
problem is also referred to as the robust performance problem. A measure of performance 
which arises in several situations is given by the H2 norm of a system. For example, in 
optimal control design, the quadratic performance index of a system can be expressed as the 
system’s H2 norm equivalently [5]. Next, in the design of white noise attenuation, the 
variance of the output of the system’s error caused by white noise can also be represented in 
the form of H2 norm [6],[7]. In both cases, the purpose of the system design is to select a 
stabilizing compensator that make the  H2 norm of the system as small as possible or less 
than a given value γ > 0, i.e.,  
 
      ||F(s)||2 < γ            (1) 
 
Lower bounds on the achievable γ is depends on many constraints like finite bandwidth and 
non minimum phase zeros of the plant [8]. The design of the compensator is simpler when 
there are no uncertainties in the system. However, the design process becomes complex 
when there is uncertainties in the system and hence system becomes a set of family. 
Generally, in such a case we design a controller for the nominal system first and then check 
the robust stability and robust performance specifications for the whole system family.  
Thus, robust flight controller plays an important role to simplify the task of operating the 
MAV while enhancing the utility of MAVs for a wide range of missions. Reduced fixed 
order, robust H2 control is an attractive option among the several robust multivariable 
methods for controller design, as H2 norm is the more realistic measure of the performance 
[9]. This allows the direct incorporation of the multivariable robustness measures in to the 
optimization criterion. Reduced fixed order controller can be synthesized in one step in 
contrast to the other multivariable robust controller design methods involving two step 
designs, and hence, guarantees the robustness and stability [10].  
Therefore, to deal with the above mentioned challenges in MAV flight control, this chapter 
proposes the design of digital longitudinal stability augmentation system to improve the 
handling qualities of Sarika-2 and to achieve satisfactory closed loop disturbance rejection, 
sensor noise attenuation and robustness specifications [11]. Since Sarika-2 use non inertial 
quality sensors, and the velocity sensor is not available, a single controller is designed at the 
central operating point of the vehicle to achieve the desired specifications over the entire 
flight envelope. Controller is designed using linearized model [12, 13] and is validated using 
nonlinear simulation model of Sarika2, which is developed using simulation software [14]. 
Next, H2 performance and robustness analysis using LMI techniques is carried out to 
demonstrate the robustness of the designed system. H2 performance robustness analysis 
considered here is based on the quadratic Lyapunov function with affine dependence on the 
uncertain parameters. The resulting tests are less conservative than quadratic stability when 
the parameters are constant or slowly varying.  

The organization of this chapter is as follows. Section 2 briefly explains longitudinal 
dynamics of Sarika 2 and its verification using nonlinear simulation model. Next section 3 
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have very low moments of inertial property; hence they are highly vulnerable to rapid 
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Therefore, the problem of controlling an uncertain system such as MAV has been the subject 
of extensive research in the area of systems and control.  

 

Generally, a well motivated control goal is to achieve a certain level of performance while 
controlling an uncertain system. i.e., when designing control system, it is often desirable to 
obtain guarantees of stability and performance against uncertainty on the physical 
parameters of the system. Examples of the physical parameters include stiffness, inertia, or 
viscosity coefficients and aero-dynamical coefficients in flight control. Hence, performance 
analysis of systems is obviously a very important problem in flight control theory. This 
problem is also referred to as the robust performance problem. A measure of performance 
which arises in several situations is given by the H2 norm of a system. For example, in 
optimal control design, the quadratic performance index of a system can be expressed as the 
system’s H2 norm equivalently [5]. Next, in the design of white noise attenuation, the 
variance of the output of the system’s error caused by white noise can also be represented in 
the form of H2 norm [6],[7]. In both cases, the purpose of the system design is to select a 
stabilizing compensator that make the  H2 norm of the system as small as possible or less 
than a given value γ > 0, i.e.,  
 
      ||F(s)||2 < γ            (1) 
 
Lower bounds on the achievable γ is depends on many constraints like finite bandwidth and 
non minimum phase zeros of the plant [8]. The design of the compensator is simpler when 
there are no uncertainties in the system. However, the design process becomes complex 
when there is uncertainties in the system and hence system becomes a set of family. 
Generally, in such a case we design a controller for the nominal system first and then check 
the robust stability and robust performance specifications for the whole system family.  
Thus, robust flight controller plays an important role to simplify the task of operating the 
MAV while enhancing the utility of MAVs for a wide range of missions. Reduced fixed 
order, robust H2 control is an attractive option among the several robust multivariable 
methods for controller design, as H2 norm is the more realistic measure of the performance 
[9]. This allows the direct incorporation of the multivariable robustness measures in to the 
optimization criterion. Reduced fixed order controller can be synthesized in one step in 
contrast to the other multivariable robust controller design methods involving two step 
designs, and hence, guarantees the robustness and stability [10].  
Therefore, to deal with the above mentioned challenges in MAV flight control, this chapter 
proposes the design of digital longitudinal stability augmentation system to improve the 
handling qualities of Sarika-2 and to achieve satisfactory closed loop disturbance rejection, 
sensor noise attenuation and robustness specifications [11]. Since Sarika-2 use non inertial 
quality sensors, and the velocity sensor is not available, a single controller is designed at the 
central operating point of the vehicle to achieve the desired specifications over the entire 
flight envelope. Controller is designed using linearized model [12, 13] and is validated using 
nonlinear simulation model of Sarika2, which is developed using simulation software [14]. 
Next, H2 performance and robustness analysis using LMI techniques is carried out to 
demonstrate the robustness of the designed system. H2 performance robustness analysis 
considered here is based on the quadratic Lyapunov function with affine dependence on the 
uncertain parameters. The resulting tests are less conservative than quadratic stability when 
the parameters are constant or slowly varying.  

The organization of this chapter is as follows. Section 2 briefly explains longitudinal 
dynamics of Sarika 2 and its verification using nonlinear simulation model. Next section 3 
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presents briefly about the controller design methodology. Section 4 briefly explains the H2 
performance robustness analysis using LMI techniques. Section 5 describes the simulation 
results using linear and nonlinear simulation models. Also robust performance analysis 
results are highlighted in section 5. Finally conclusions are drawn in section 6.  

 
2. Longitudinal Dynamics of Sarika 2 

Sarika2 (Fig.1) is a remotely piloted small flying vehicle with a wing span of about 0.6m  and 
0.8m in length. The vehicle is weighting about 1.75k.g at its takeoff. The control surfaces are 
outboard elevators, inboard ailerons and rudder. The power plant is a 4cc propeller engine 
with methanol plus castor oil as fuel. Sarika2 can carry a payload comprising video camera, 
sensors, and transmission systems. Sarika2 has a swept-back delta wing without a 
horizontal tail. It has a planform area of 0.195sqm, and a constant area square section 
fuselage of width 0.06m.  
The nonlinear six degrees of freedom equations of the vehicle is given by the following force 
balance and moment balance equations: 
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The following two equations (eq. 2c and 2d) gives the kinematic and navigations equations 
of the aircraft, which is needed to develop the complete nonlinear simulation model of the 
aircraft.  
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For the purpose of controller design, the above set of nonlinear equations is decoupled using 
small perturbation theory and developed linearized equations, which represents the 
longitudinal and lateral dynamics of the vehicle. Linearized longitudinal state space 
equations (Eq. 3) are developed for a straight and level flight, trimmed at six operating 
points in the speed range of 16 - 26 m/s. The state variables are   x = [Δu    q   ] T where    
Δu is the forward speed (m/s),   is the angle of attack (radians), q (radians/s) is the pitch 
rate and  (radians) is the pitch angle.  
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where, 
g

g

U
w
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1

 is the angle of attack due to vertical wind gust wg. The elevator is actuated 

by electro-mechanical servo systems. The dynamics of the servo actuator measured 
experimentally, is given by, 

                               uee 37.65.9       (4) 
The measured variables are normal acceleration and pitch rate of the vehicle. The normal 
acceleration at the centre of gravity c.g. of the vehicle is given by, 

                              qUaz  1                     (5) 

The coefficients of the equations (3a – 3d), known as aerodynamic stability derivatives are 
computed using analytical approach [12,13]  and are refined using wind tunnel generated 
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data [3]. The computed values are again validated using nonlinear simulation model, named 
FAST [14]. Table 1 shows that the trim values calculated by analytical means match well 
with those obtained by means of nonlinear simulation. Table 2 gives the steady state 
coefficients for each trimmed flight condition calculated using the analytical relations. For 
comparison, Table 2 also lists the corresponding values obtained from nonlinear simulation 
[14].  

Speed 
m/s 

Trim Elevator e in 
Degrees Trim Alpha  in Degrees 

Analytical 
Approach 

Nonlinear 
Model 

Analytical 
Approach 

Nonlinear 
Model 

16   -16.02    -15.91 16.93 17.96 
18   -15.21   -15.17 13.24 13.26 
20   -14.68   -14.42 10.59 10.54 
22   -13.55 -13.36 8.64 8.67 
24   -12.69 -12.57 7.15 7.29 
26   -12.02     -11.96 5.99 6.23 

Table 1. Trim settings of alpha and elevator 

 

Speed 
m/s 

CL1 CD1 
Analytical 
Approach 

Nonlinear 
Model 

Analytical 
Approach 

Nonlinear 
Model 

16 0.56 0.5 0.14 0.104 
18 0.43 0.4 0.10 0.075 
20 0.36 0.33 0.08 0.06 
22 0.29 0.27 0.07 0.058 
24 0.23 0.21 0.06 0.055 
26 0.20 0.19 0.05 0.053 

Table 2. Trim values and Steady state Coefficients  
 
The continuous state space model is discretized at 50 Hz (to synchronize with the command 
PWM input received at the vehicle from radio/pilot command from ground station).The 
final linearized model used for the controller synthesis includes one sampling period delay 
to account for computational time requirements. Hence, the final model of the plant consists 
of six states (four for MAV airframe, one for actuator and one for delay), one control input, 
wind disturbance input and two sensor outputs from rate gyro and accelerometers.  

  
3. Fixed order H2 Controller Design 

Fixed reduced order H2 controller is designed to meet the following closed loop 
specifications. The main requirement of stability augmentation system (SAS) is towards 
improvement of handling qualities summarized as in S1. In addition, the disturbance 
rejection and robustness specifications related to the controller design are also summarized 
in S2, S3 and S4:  
 

 

S1: Level - 1-flying qualities of stable airframe dynamics: 
Short period damping ratio: 0.35≤ ξsp≤ 1.3 
Phugoid damping ratio: ξp ≥ 0. 5  
S2: Disturbance rejection Specification: 
Minimize the sensitivity function below 0 dB for  < 9 rad/s 
S3:  Sensor noise attenuation Specification:  
Obtain –40dB/decade roll off above  = 20rad/s 
S4: Robustness Specification: 
 

The controller should be robust to structured and unstructured uncertainty in plant models 
at all flight conditions. Apart from the above specifications, the closed loop system should 
also be robust to maximum expected time delays, which may arise due to computational 
complexity. In addition, the control surface deflection should not exceed its full-scale 
deflection of +16degrees.  
To meet the above closed loop requirements, robust fixed order H2 controller is designed 
[11] by considering the performance objective of minimization of  H2 norm of the closed 
loop transfer function Tzw  of the generalized plant given in  Fig. 2:  
 

 
 
 
 
 
 
 
 
 

Fig. 2. Standard representation for H2   Design and Analysis 

The configuration shown in Fig. 2 contains a generalized plant that is used for robust 
stability analysis and controller design. The signals 'w' and ‘z’ are exogenous inputs and 
performance variables respectively. 'y' is the measured variable, and 'u' is the control input. 
Pg is the generalized plant representing the actual plant and all weighting functions. K1 
represents the sensor dynamics including pre-amplifier gains and K is the controller to be 
designed. ∆ is the set of all possible uncertainties, grouped in to a single block-diagonal 
finite dimensional linear time invariant system. The diagram in Fig. 2 is also referred to as a 
standard LFT formulation with lower linear fractional transformation (LLFT) on K, where 
PgK1 is the coefficient matrix of the LLFT and upper linear fractional transformation (ULFT) 
on ∆ where Pg is the coefficient matrix of the ULFT. LLFT is used in the controller design 
stage and ULFT is used during the robust performance analysis stage.  
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data [3]. The computed values are again validated using nonlinear simulation model, named 
FAST [14]. Table 1 shows that the trim values calculated by analytical means match well 
with those obtained by means of nonlinear simulation. Table 2 gives the steady state 
coefficients for each trimmed flight condition calculated using the analytical relations. For 
comparison, Table 2 also lists the corresponding values obtained from nonlinear simulation 
[14].  

Speed 
m/s 

Trim Elevator e in 
Degrees Trim Alpha  in Degrees 

Analytical 
Approach 

Nonlinear 
Model 

Analytical 
Approach 

Nonlinear 
Model 
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Table 1. Trim settings of alpha and elevator 
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rejection and robustness specifications related to the controller design are also summarized 
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The generalized plant, Fig. 2 can be represented in frequency domain as follows: 
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where the closed-loop transfer matrix from w to z can be given by, 
 
                 z = Tzw. w                      (6b) 
 
 and  Tzw = Pg11 + Pg12K1K(I - Pg22K1K)-1        (6c) 
 
The minimization of the H2 norm of the transfer function from w to z i.e., Tzw over all 
realizable controllers K(z) constitutes the H2 control problem. The elements of the 
generalized plant Pg are obtained by augmenting the frequency dependent weighting 
functions and corresponding output vector z into lower LFT form. 
 
The transfer function, Tzw between the performance outputs, i.e output sensitivity S0 
(   1

1
 GKKISo  ) and control sensitivity SiK  (with   1

1
 GKKISi ) functions to the 

disturbance input, w is given by:  
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where,  K(z)  represents the controller transfer function. W1 and W2 are the weighting 
matrices used to minimize sensitivity and control sensitivity at low frequency and high 
frequency region, specified in the design specifications. Reduced fixed order controller, K(z), 
defined by:  
           xc(k+1) =  Ac xc(k) + Bcy(k)                                            (8a) 
 
              u (k)  =  Ccxc(k) + Dcy(k)              (8b) 

 
The controller parameters (Ac, Bc, Cc, Dc) which minimizes the objective function (Eq.7) are 
obtained by iteratively solving the set of four coupled modified Riccati and Lyaponv 
equations known as Strengthened Discrete Optimal Projection Equations (SDOPEs) [15, 11]  

 
4. H2 Performance Robustness Analysis   

Controllers are often designed for a simplified model of the physical plant that does not take 
into account all sources of uncertainty. Hence a posteriori robustness analysis is necessary to 
validate the design and obtain guarantees of stability and performance in the face of plant 
uncertainty. The plant uncertainty occurs due to the imperfect knowledge of the system 
parameters or because of the alteration of their behavior owing to changes in the operating 
conditions, aging etc. A feedback compensator is said to achieve robust performance if a 

 

certain level of closed-loop performance is achieved for all plants in a specified set or for all 
variations in the plant parameters. On the other hand, stability robustness is achieved if the 
closed loop remains stable in spite of modeling errors due to high frequency un-modeled 
dynamics and plant parameter variations. The following subsections explain the 
representation of the uncertainty and the conditions for robustness of the closed loop system 
in the face of the uncertainties. 

 
4.1 Representation of uncertainty 
Robust controller synthesis considers nominal model of the plant along with some 
assessment of its errors, called model uncertainties. A key assumption in the mathematical 
models of uncertainty, or errors, is that the uncertain part of the dynamics can be modeled 
separately from the known part as represented by a nominal model. The mechanism used to 
represent the uncertainties is called representation of uncertainty.  
 
In robust control literature, the mathematical representation of uncertainties caused by 
unintentional exclusion of high frequency dynamics, generally take many forms of which 
the most commonly used is the multiplicative and additive uncertainty model. The additive 
and multiplicative uncertainties can be mathematically represented as,  
 
                      Gp(s) = Gp0(s) + ∆a(s)                         (9) 
 
                      Gp(s) = Gp0(s) [I  +∆i(s)]                                   (10) 
 
                      Gp(s) = [I + ∆o(s)] Gp0(s)                      (11) 
 
where, ∆a represents an additive perturbation,  ∆i an input multiplicative perturbation and 
∆o  an output multiplicative perturbation. Gp0(s) is a nominal plant transfer function, which 
is a best estimate, in some sense, of the true plant behavior, and Gp(s) denote the true 
transfer function of the plant. 
 
In general, uncertainties are represented in two forms. i.e, uncertain state space model, 
which is relevant for systems described by dynamical equations with uncertain and/or 
time-varying coefficients and linear fractional representation where the uncertain system is 
described as an interconnection of known LTI systems with uncertain components called 
uncertain blocks. Each uncertain block ∆i (.) represents a family of systems of which only a 
few characteristics are known. 

 
4.1.1 Uncertain state space model  
Physical models of a system often lead to a state space description of its dynamical behavior. 
The resulting state space equations typically involve physical parameters whose value is 
only approximately known, as well as approximations of complex and possibly nonlinear 
phenomena. In other words, the system is described by an uncertain state space model, 
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where the closed-loop transfer matrix from w to z can be given by, 
 
                 z = Tzw. w                      (6b) 
 
 and  Tzw = Pg11 + Pg12K1K(I - Pg22K1K)-1        (6c) 
 
The minimization of the H2 norm of the transfer function from w to z i.e., Tzw over all 
realizable controllers K(z) constitutes the H2 control problem. The elements of the 
generalized plant Pg are obtained by augmenting the frequency dependent weighting 
functions and corresponding output vector z into lower LFT form. 
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where,  K(z)  represents the controller transfer function. W1 and W2 are the weighting 
matrices used to minimize sensitivity and control sensitivity at low frequency and high 
frequency region, specified in the design specifications. Reduced fixed order controller, K(z), 
defined by:  
           xc(k+1) =  Ac xc(k) + Bcy(k)                                            (8a) 
 
              u (k)  =  Ccxc(k) + Dcy(k)              (8b) 

 
The controller parameters (Ac, Bc, Cc, Dc) which minimizes the objective function (Eq.7) are 
obtained by iteratively solving the set of four coupled modified Riccati and Lyaponv 
equations known as Strengthened Discrete Optimal Projection Equations (SDOPEs) [15, 11]  

 
4. H2 Performance Robustness Analysis   

Controllers are often designed for a simplified model of the physical plant that does not take 
into account all sources of uncertainty. Hence a posteriori robustness analysis is necessary to 
validate the design and obtain guarantees of stability and performance in the face of plant 
uncertainty. The plant uncertainty occurs due to the imperfect knowledge of the system 
parameters or because of the alteration of their behavior owing to changes in the operating 
conditions, aging etc. A feedback compensator is said to achieve robust performance if a 

 

certain level of closed-loop performance is achieved for all plants in a specified set or for all 
variations in the plant parameters. On the other hand, stability robustness is achieved if the 
closed loop remains stable in spite of modeling errors due to high frequency un-modeled 
dynamics and plant parameter variations. The following subsections explain the 
representation of the uncertainty and the conditions for robustness of the closed loop system 
in the face of the uncertainties. 

 
4.1 Representation of uncertainty 
Robust controller synthesis considers nominal model of the plant along with some 
assessment of its errors, called model uncertainties. A key assumption in the mathematical 
models of uncertainty, or errors, is that the uncertain part of the dynamics can be modeled 
separately from the known part as represented by a nominal model. The mechanism used to 
represent the uncertainties is called representation of uncertainty.  
 
In robust control literature, the mathematical representation of uncertainties caused by 
unintentional exclusion of high frequency dynamics, generally take many forms of which 
the most commonly used is the multiplicative and additive uncertainty model. The additive 
and multiplicative uncertainties can be mathematically represented as,  
 
                      Gp(s) = Gp0(s) + ∆a(s)                         (9) 
 
                      Gp(s) = Gp0(s) [I  +∆i(s)]                                   (10) 
 
                      Gp(s) = [I + ∆o(s)] Gp0(s)                      (11) 
 
where, ∆a represents an additive perturbation,  ∆i an input multiplicative perturbation and 
∆o  an output multiplicative perturbation. Gp0(s) is a nominal plant transfer function, which 
is a best estimate, in some sense, of the true plant behavior, and Gp(s) denote the true 
transfer function of the plant. 
 
In general, uncertainties are represented in two forms. i.e, uncertain state space model, 
which is relevant for systems described by dynamical equations with uncertain and/or 
time-varying coefficients and linear fractional representation where the uncertain system is 
described as an interconnection of known LTI systems with uncertain components called 
uncertain blocks. Each uncertain block ∆i (.) represents a family of systems of which only a 
few characteristics are known. 

 
4.1.1 Uncertain state space model  
Physical models of a system often lead to a state space description of its dynamical behavior. 
The resulting state space equations typically involve physical parameters whose value is 
only approximately known, as well as approximations of complex and possibly nonlinear 
phenomena. In other words, the system is described by an uncertain state space model, 
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where the state space matrices A, B,C, D, E  ( E is nonsingular) depend on uncertain and/or 
time-varying parameters or vary in some bounded sets of space of matrices. Generally, these 
uncertain models are grouped in to two categories: i) Polytopic Models. ii) Affine Parameter 
dependent Models. 
 
i) Polytopic models   
A linear time varying system represented by, 
              utBxtAxtE            (13a)  
 
                                  utDxtCy                      (13b) 
whose system matrix,  
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varies within a fixed polytope of matrices, i.e.,  
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called a polytopic systems. S(t) is a convex combination of the system matrices S1,…….Sk. 
The nonnegative numbers k 1  are called the polytopic coordinates of S. These 
models also arises when the state space models depends affinely on time varying 
parameters.  
 
ii). Affine parameter dependent models 
When the equation of physics involves uncertain or time varying coefficients, the linear 
systems give rise to parameter dependent models (PDS) of the form, 
 

                                 uBxAxE                              (15a)  

                                        uDxCy                                       (15b) 
 
where A(.), B(.), C (.), D (.) and E (.) are known functions of some parameter vector, Θ =(θ1, 
θ2,….θ n). The state matrix A(θ) depends affinely on the parameters θi That is,  
 

               KK AAAA   110                           (16)   

           nnBBBB   110                                 (17) 

and so on where A0, A1…Ak B0, B1…Bk are known fixed matrices. Affine parameter 
dependent models are well suited for Lyapunov based analysis and synthesis and are easily 
converted to linear fractional uncertainty models for small gain based design.  

 

4.1.2 Linear fractional models of uncertainty 
This is the more general form of uncertainty representation of the system’s dynamical and 
parametric uncertainty. A standard Linear fractional form used for robustness analysis is 
depicted in Fig. 3 consisting of a nominal map Gp and a perturbation ∆ that enters the 
system in feedback fashion. The overall uncertain system will be denoted by (Gp, ∆). Gp is 
assumed to be finite dimensional, linear time invariant (LTI) stable system. Gp(s) includes 
all known LTI components like controller, nominal models of the system, sensor and 
actuators. The input u includes all external, actions on the system and output y consists of 
all output signals generated by the system. ∆ is a structured description of the uncertainty. 
Generally ∆ is  represented in  block diagonal form, ∆ =  (∆1…∆k) where each uncertainty 
block ∆i accounts for one particular source of uncertainty like, neglected dynamics, 
nonlinearity, uncertain parameter etc. In each case of ∆, there is a restricted class ∆ of 
allowed perturbations, which are usually assumed normalized to the ball of uncertainty:  B∆  
= { ∆ Є ∆ : || ∆ || < 1 } in some operator norm.  
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Fig. 3 LFT Formulation for Robust Analysis 

 
4.2 LFT Formulation for Robust Analysis 
Quantification of Parameter Uncertainty: 
Consider a linear time-invariant (closed loop) system ∑ (θ) = (A (θ), B (θ), C (θ)), where θЄΘ 
is a vector of real uncertain parameters. Let F (θ) denote the square of the H2 norm of  ∑(θ). 
The main problem is to compute the supremum of F (θ) as θ ranges in Θ. This is a rather 
difficult performance robustness analysis problem. One among the different methods of 
robust performance analysis, consists of the uncertain linear systems that can be described 
by state space equations of the form given in Eqs (15-17), where A0, A1…AK are known fixed 
matrices. It is also assumed that the lower and upper bounds of the parameter values and its 
rate variations is known. i.e,  
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where the state space matrices A, B,C, D, E  ( E is nonsingular) depend on uncertain and/or 
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called a polytopic systems. S(t) is a convex combination of the system matrices S1,…….Sk. 
The nonnegative numbers k 1  are called the polytopic coordinates of S. These 
models also arises when the state space models depends affinely on time varying 
parameters.  
 
ii). Affine parameter dependent models 
When the equation of physics involves uncertain or time varying coefficients, the linear 
systems give rise to parameter dependent models (PDS) of the form, 
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dependent models are well suited for Lyapunov based analysis and synthesis and are easily 
converted to linear fractional uncertainty models for small gain based design.  
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This is the more general form of uncertainty representation of the system’s dynamical and 
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              iii                                                 (19) 

where ii   0 are known as lower and upper bounds on i .  
The first assumption means that the parameter vector θ is valued in any hyper- rectangle 
called parameter box. In the sequel, 
 

                              iiiK www  ,:,,: 1          (20) 
 
denotes the set of the 2K vertices or corners of this parameter box. Similarly equation defines 
an hyper-rectangle of RK  with corners in 
 
                               iiiK  ,:: 1   .   (21) 
 
Note that 2) allows for more accurate modeling of the rate of variation than a mere bound 
on | i |. Also equation – encompasses time invariant parameters as the special 

case 0ii  . Though this model is somewhat restrictive, still it covers many relevant 
uncertain systems.  
 
It is essential to distinguish between time in variant and time varying parameters. Time 
invariant uncertain parameters have a fixed value that is known only approximately. In this 
case the state equation is time invariant. In the case of time varying uncertain parameters, 
the parameter values vary in the range  ii   during the operation. The system is then 
time varying.  
 
Generally, to accesses the robust performance, of the closed loop system, parametric 
uncertainty within the control bandwidth in the form of errors in frequency and model 
damping can be introduced.  

 
4.2.1 Robust Stability 
For an affine parameter dependent system given in Eq. 15,  if  a  positive definite Lyapunov 
functions of the form, 

     xQxxV t 1,       (22) 
 
   where,   nnQQQQ   110              (23) 
 
is exists, then the system is robustly stable. [7, 8] 

 
4.2.2 Quadratic stability 
A system, Eqn. 15, is said to be quadratically stable if there exists a positive-definite 
quadratic Lyapunov function V (ζ) = ζ TPζ  that decreases along every trajectory of the 
system. [7, 8]  

 

5. Results and Analysis 

Suitable weighing matrices are selected by trial and error method and minimum order 
controller is designed to meet the design specifications. It is found that a third order 
controller is sufficient to meet the closed loop requirements. The two elements of transfer 
function matrix of the third order controller K1×2 is given by, 

        008.1005.2036.09904.01614.00019.01 2 


 zzzzzK      (24) 

where,    9875.09397.03828.0  zzz . 
With this controller, at all flight conditions, short period and phugoid damping remains 
greater than 0.35 and 0.5 respectively, hence, the stringent level-one flying quality 
requirement is met.  

 
5.1 Nonlinear simulation results 
In practice, it is very difficult to fly the model continuously at constant altitude and to 
initiate control action from an equilibrium condition as assumed while designing the 
controller. The variation in altitude in real flight can give rise to variations in density, which 
in turn can affect the dynamics of the aircraft. Also, the effect of the coupling of longitudinal 
and lateral dynamics can play a major role on the aircraft performance. In order to assess the 
performance of the controller in the presence of such uncertainties, full scale closed loop 
nonlinear simulation with both longitudinal controller is presented in this section. The 
nonlinear program used for this purpose is the FAST package developed by NAL, Bangalore 
[14]. FAST is only an open loop simulation software package for the given aircraft. In order 
to simulate the closed loop response of Sarika-2, at first the input file is formulated in the 
standard format [14]. In order to simplify the controller implementation procedure in real 
time, controller is placed in the feedback path, in contrast to the cascade configuration used 
while designing the controller. This is because, in feedback configuration, initial conditions 
for controller can safely be set to zero.  
In order to assess the performance of the controller, two different conditions are considered. 
First the aircraft is trimmed for different cruise speeds at constant altitude and the closed 
loop response to doublet input is simulated. Next, the aircraft is trimmed at different 
altitudes and closed loop response to doublet input is simulated.  

 
5.1.1 Closed loop Response due to variation in Cruise Speed 
The closed loop nonlinear responses are simulated at 3 different nominal flight speeds, (16 
m/s, 20 m/s and 26 m/s) at constant altitude. After the aircraft is trimmed for straight and 
level flight, the simulation is started at t = 0 with a doublet input along the pitch axis. i.e., a 
positive 0.1 ms input is applied at t = 0 and held it for 2 s. Next, a -0.1 ms. input is applied 
and is zeroed after 2 s. The closed loop responses obtained from nonlinear simulation 
models, at different flight conditions, are given in Figs. 4 – 6. 
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Fig. 4a Closed Loop Responses from Nonlinear and Linear Models at 20m/s 

 
Fig. 4b Closed Loop Responses from Nonlinear and Linear Models at 20m/s 

 

 

 
Fig. 4c Closed Loop Responses from Nonlinear and Linear Models at 20m/s 

 
Fig. 5a Closed Loop Responses from Nonlinear and Linear Models at 16m/s 

www.intechopen.com



Longitudinal Robust Stability Augmentation for Micro air Vehicle - Design and Validation 239

 

 
Fig. 4a Closed Loop Responses from Nonlinear and Linear Models at 20m/s 

 
Fig. 4b Closed Loop Responses from Nonlinear and Linear Models at 20m/s 

 

 

 
Fig. 4c Closed Loop Responses from Nonlinear and Linear Models at 20m/s 

 
Fig. 5a Closed Loop Responses from Nonlinear and Linear Models at 16m/s 
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Fig. 5b Closed Loop Responses from Nonlinear and Linear Models at 16m/s 
 

 
Fig. 5c Closed Loop Responses from Nonlinear and Linear Models at 16m/s 
 

 

 
Fig. 6a Closed Loop Responses from Nonlinear and Linear Models at 26m/s 
 

 
Fig. 6b Closed Loop Responses from Nonlinear and Linear Models at 26m/s 
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Fig. 5b Closed Loop Responses from Nonlinear and Linear Models at 16m/s 
 

 
Fig. 5c Closed Loop Responses from Nonlinear and Linear Models at 16m/s 
 

 

 
Fig. 6a Closed Loop Responses from Nonlinear and Linear Models at 26m/s 
 

 
Fig. 6b Closed Loop Responses from Nonlinear and Linear Models at 26m/s 
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Fig. 6c Closed Loop Responses from Nonlinear and Linear Models at 26m/s 
 
Closed loop responses simulated using linear models are also included in the same figures 
for the sake of comparison. At 18 m/s, responses from the nonlinear simulation are more 
oscillatory compared to linear simulation responses. However, at 20 m/s and 26 m/s, the 
responses from nonlinear and linear simulations match well. Figures 4c, 5c and 6c show the 
trajectory of the height variation at different flight conditions. Responses indicates that, that 
straight and level flight is maintained at all flight speeds, since, the gain/loss of height is 
very small (at 20 m/s, 18 m/s and 26 m/s, the height increases by 31m, 9 m and 60 m 
respectively) 

 
5.1.2 Closed loop Response due to variation in Altitude 
The controller for Sarika-2 is designed based on the mathematical model derived at straight 
and level flight condition at an altitude of 1000m above the sea level. However, the altitude 
at which the controller operates might be very much different from that at which it is 
designed. In order to analyze the degradation in performance with altitude, the aircraft is 
trimmed for level flight at altitudes of 1000, 1100 and 1200 m above sea level and its closed 
loop response are simulated. Figures 7 a, b and c shows the response of the closed loop 
system after trimming the aircraft at 20m/s for a doublet command input. 
 
 
 
 
 
 

 

 
Fig. 7a Closed Loop Time Responses at different Altitude 
 

 
Fig. 7b Closed Loop Time Responses at different Altitude 
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Fig. 7a Closed Loop Time Responses at different Altitude 
 

 
Fig. 7b Closed Loop Time Responses at different Altitude 
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Fig. 7c Closed Loop Time Responses at different Altitude 
 
A pulse of -0.1 ms (corresponding to elevator deflection of 3.84º) and duration 2 seconds is 
applied at 0 seconds followed by a pulse of 0.1 milliseconds again of duration 2 seconds. 
However, this set of simulation does not include sensor noise and gust disturbances. 
Responses initiated from the trim speed of 20 m/s, shows that there is no much variation in 
responses due to the altitude variations. Thus, there will not be any performance 
degradation due to height variations in real flight. Hence, the controller is robust against the 
variations in altitude. 

 
5.2 Robust Performance Analysis with respect to real parametric uncertainty 
The affine parameter dependent uncertain model of the longitudinal dynamics is developed 
using the techniques mentioned before. The uncertainty levels considered in this analysis is 
given in the Table 3.  
 

Stability  Derivatives  Control Derivatives 
Xα = 20% 
Zα   = 25% 
Zq = 10% 
Mα = 50% 
Mq = 50% 

Zδe = 20% 
Mδe = 15% 
 

Table  3. Uncertainty Levels.  
 
The robust stability and performance of the closed-loop is analyzed using LMI based tests 
[7,8]. With H2 controller, (eq. 24) Quadratic stability is established on 313.4852% of the 

 

prescribed parameter box given in Table 3. This implies that the closed-loop system is 
capable of withstanding at least +156.74 % of plant uncertainty, without being destabilized. 
Similarly, testing for the existence of a parameter dependent Lyapunov function for 
establishing the robust stability over a given parameter range shows that tmin = -1.143×10-4 s 
(tmin should be negative for the existence of robust stability) [7, 8]. For the same uncertainty 
levels, µ- upper bound is 0.2608. Hence, largest amount of uncertainty factor ∆(jω) that can 
be tolerated without losing stability is 3.83, which is greater than required lower bound of 1. 

 
6. Conclusion 

This chapter describes design and validation of robust fixed order H2 controller for micro air 
vehicle named Sarika2. The controller performance is validated using linear as well as 
nonlinear simulation models. Simple methods to test for robust stability and performance of 
the closed loop system are performed using LMI based techniques. Results were proved that 
designed robust stability augmentation system is capable of providing the desired closed 
loop requirements.  
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