
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 155

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software
Project Development

Carla Ilane M. Bezerra, Adriano B. Albuquerque and Luiz Sérgio Plácido

X

MiniDMAIC: An Approach to Cause
and Analysis Resolution in

Software Project Development

Carla Ilane M. Bezerra, Adriano B. Albuquerque and Luiz Sérgio Plácido
Master Program in Applied Informatics, University of Fortaleza

Fortaleza, Brazil

1. Introduction

To achieve practices in CMMI a great amount of organizations are adopting Six Sigma as
strategy. This methodology does not support practices of high levels of maturity but also of
low levels (Siviy et al., 2005).
The Six Sigma and CMMI have compatible goals and the Six Sigma is, in most of the cases,
extremely compatible with others quality initiatives that can be already implemented on the
organization. The Six Sigma can be executed in macro and micro levels of the organization
and can be successful either with elementary graphical tools or with advanced statistical
tools (Dennis, 1994).
One of the fundamental aspects of the quality improvement is the analysis and resolution of
problems. For this, a formal method of solving problems can be used, that may bring a lot of
benefits, such as (Banas Qualidade, 2007):
 Prevent the problem solvers pass straight to the conclusion;
 Ensure the root-cause analysis;
 Demystify the process for solving problems;
 Establish analytical tools to use and determine when to use them.
In this context, the use of Six Sigma methodology’s tools such as DMAIC, has been
outstanding. Unlike other approaches to solve the problems, that focus only on eliminating
the problem itself, the DMAIC methodology (Rath and Strong 2005) used by the Six Sigma
comprises from the selection of issues that deserve a deeper treatment to the control of
results obtained in the course of time.
The DMAIC method presents step by step how the problems should be addressed, grouping
the aim quality tools, while establishing a standardized routine to solve problems with a
proved efficient implementation in software organizations.
Although appropriate for the organizational level, the formal methods to solve problems
can be not viable at projects level. A major challenge faced by companies that want the
CMMI level 5 is exactly the implementation of the process area “Causal and Analysis
Resolution - CAR” in the context of software projects, since they generally have very limited

9

www.intechopen.com

Quality Management and Six Sigma156

resources. Thus, immediate actions are taken only to resolve problems and, in most of the
cases, the same problems happen again.
Some works suggest approaches for analysis of causes focusing at the organizational level.
However, it is often necessary to perform analysis of causes within the projects, quick and
effective, attacking the root causes of the problem. In organizations that aim to achieve high
levels on maturity mode, such as CMMI, this practice is required within the project to
maintain adherence to the model.
Furthermore, none of the approaches investigated involving analysis and resolution of
causes, is based on DMAIC. The proposed approach in this paper aims to make effective the
root cause analysis in the context of projects providing a structured set of steps based on the
DMAIC method, to be run in a simple way.
Despite all the benefits of using Six Sigma methodology in conjunction with the CMMI, the
implementation of the process area “Causal Analysis and Resolution” in software projects
often becomes impractical for the following reasons:
 DMAIC projects have duration between 3 to 6 months. However, projects require

rapid resolution of their problems and cannot wait too long;
 Due to the great necessity of using statistical tools, the DMAIC can become excessively

expensive, the savings may be less than the cost to achieve improvements, and the
projects often have limited resources;

 The qualification level of the DMAIC team is quite strict, however, in the context of
software development projects, other attributes such as business domain and project
management can bring greater results than the fact of having a team with great
knowledge in statistics.

Given this background, this work aims at developing an approach based on the DMAIC (Six
Sigma), called MiniDMAIC, to address the process area “Causal an Analysis and
Resolution” from CMMI, in software development projects, looking for reducing the
disadvantages described above related to the use of DMAIC. It also aims to present the
application of the methodology in software development projects in an organization using a
workflow tool, which was implemented the practices of MiniDMAIC.
This work is organized into five sections, besides this introduction. In section 2, we present
the theoretical basis related to Six Sigma and, more specifically, the DMAIC methodology.
In Section 3, we discuss the CMMI process area “Causal Analysis and Resolution”
pertaining to the maturity level 5. In section 4, we present the proposed approach, called
MiniDMAIC. In sections 5 and 6, we present a mapping MiniDMAIC with the area of CAR
and the DMAIC process, respectively. Aspects concerning the use of MiniDMAIC on real
projects, and the obtained results are presented in section 7. In Section 8, contains papers
relating to the preparation of the approach. Finally, in section 9, we present the final
considerations and limitations of the proposed methodology.

2. The Six Sigma and the DMAIC Methodology

The Six Sigma é is a methodology that focuses on reducing or eliminating the incidence of
errors, defects and failures in a process. The Six Sigma methodology also aims to reduce the
process variability and can be applied in most of the sectors of the economic activity (Smith,
2000).

Achieving the Six Sigma means reducing defects, errors and failures1 to zero and to achieve
near the perfection in processes’ performance. The methodology combines a rigorous
statistical approach to an arsenal of tools that are employed in order to characterize the
sources of variability to demonstrate how this knowledge can control and optimize the
process results (Watson, 2001).
The Six Sigma methodology aims to define the obvious and not obvious cause that affect the
process in order to eliminate or improve them and controlling them (Rotondaro 2002).
The Six Sigma presents some techniques to address problems and improvements, such as
DMAIC (Define, Measure, Analyze, Improve and Control), DCOV (Define, Characterize,
Optimize, Verify) and DFSS (Design For Six Sigma). In this work, the DMAIC methodology
will be used.
The DMAIC methodology was created by General Electric and, according to Tayntor (2003),
is the most used in companies that implement the Six Sigma, and also more suitable for
software development.
The DMAIC methodology consists of five phases: define, measure, analyze, improve and
control. In the phase “define” is necessary to identify the problem and then to define the
existent opportunities to resolve it according to the customer requirements. In phase
"measure", the current situation should be verified through quantitative measurements of
the performance, so that subsequent decisions are based on facts. In phase "analyze", the
achieved performance and their causes should be identified and the existent opportunities
should be analyzed. After doing this analysis, it is possible to perceive points to improve the
performance and to implement improvements in phase "improve." In phase "control" the
improvement should be ensured, through the control of the deployed process performance.
Pande (2001) highlights that one cannot use the DMAIC for any improvement. A Six Sigma
improvement project, according to the author, must have three qualifications:
 There is a gap between current performance and required/expected performance;
 The cause of the problem is not understood clearly;
 The solution is not predetermined, nor is the optimal apparent solution.
Besides, the viability criteria should be observed, such as: the necessary resources, available
skills, the complexity, the probability of success and support and engagement of the team.

3. The CMMI and the Causal Analysis and Resolution

The Capability Maturity Model Integration (CMMI) (Chrissis, 2006) is a maturity model for
the development of products developed by the Software Engineering Institute (SEI), which
is increasingly being adopted by software organizations, since this model aims to guide
organizations in implementing continuous improvements in their development process.

3.1 The Maturity Level 5
The focus of the maturity level 5 is the continuous improvement of processes. While level 4
focuses on the special causes of variation in the organization’ process, level 5 tries to find
common causes and address them, resulting in many improvements, which are

1 On methodology Six Sigma, the defects, errors and failures are any deviation of a characteristic that
generate custome dissatisfaction (Blauth, 2003).

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 157

resources. Thus, immediate actions are taken only to resolve problems and, in most of the
cases, the same problems happen again.
Some works suggest approaches for analysis of causes focusing at the organizational level.
However, it is often necessary to perform analysis of causes within the projects, quick and
effective, attacking the root causes of the problem. In organizations that aim to achieve high
levels on maturity mode, such as CMMI, this practice is required within the project to
maintain adherence to the model.
Furthermore, none of the approaches investigated involving analysis and resolution of
causes, is based on DMAIC. The proposed approach in this paper aims to make effective the
root cause analysis in the context of projects providing a structured set of steps based on the
DMAIC method, to be run in a simple way.
Despite all the benefits of using Six Sigma methodology in conjunction with the CMMI, the
implementation of the process area “Causal Analysis and Resolution” in software projects
often becomes impractical for the following reasons:
 DMAIC projects have duration between 3 to 6 months. However, projects require

rapid resolution of their problems and cannot wait too long;
 Due to the great necessity of using statistical tools, the DMAIC can become excessively

expensive, the savings may be less than the cost to achieve improvements, and the
projects often have limited resources;

 The qualification level of the DMAIC team is quite strict, however, in the context of
software development projects, other attributes such as business domain and project
management can bring greater results than the fact of having a team with great
knowledge in statistics.

Given this background, this work aims at developing an approach based on the DMAIC (Six
Sigma), called MiniDMAIC, to address the process area “Causal an Analysis and
Resolution” from CMMI, in software development projects, looking for reducing the
disadvantages described above related to the use of DMAIC. It also aims to present the
application of the methodology in software development projects in an organization using a
workflow tool, which was implemented the practices of MiniDMAIC.
This work is organized into five sections, besides this introduction. In section 2, we present
the theoretical basis related to Six Sigma and, more specifically, the DMAIC methodology.
In Section 3, we discuss the CMMI process area “Causal Analysis and Resolution”
pertaining to the maturity level 5. In section 4, we present the proposed approach, called
MiniDMAIC. In sections 5 and 6, we present a mapping MiniDMAIC with the area of CAR
and the DMAIC process, respectively. Aspects concerning the use of MiniDMAIC on real
projects, and the obtained results are presented in section 7. In Section 8, contains papers
relating to the preparation of the approach. Finally, in section 9, we present the final
considerations and limitations of the proposed methodology.

2. The Six Sigma and the DMAIC Methodology

The Six Sigma é is a methodology that focuses on reducing or eliminating the incidence of
errors, defects and failures in a process. The Six Sigma methodology also aims to reduce the
process variability and can be applied in most of the sectors of the economic activity (Smith,
2000).

Achieving the Six Sigma means reducing defects, errors and failures1 to zero and to achieve
near the perfection in processes’ performance. The methodology combines a rigorous
statistical approach to an arsenal of tools that are employed in order to characterize the
sources of variability to demonstrate how this knowledge can control and optimize the
process results (Watson, 2001).
The Six Sigma methodology aims to define the obvious and not obvious cause that affect the
process in order to eliminate or improve them and controlling them (Rotondaro 2002).
The Six Sigma presents some techniques to address problems and improvements, such as
DMAIC (Define, Measure, Analyze, Improve and Control), DCOV (Define, Characterize,
Optimize, Verify) and DFSS (Design For Six Sigma). In this work, the DMAIC methodology
will be used.
The DMAIC methodology was created by General Electric and, according to Tayntor (2003),
is the most used in companies that implement the Six Sigma, and also more suitable for
software development.
The DMAIC methodology consists of five phases: define, measure, analyze, improve and
control. In the phase “define” is necessary to identify the problem and then to define the
existent opportunities to resolve it according to the customer requirements. In phase
"measure", the current situation should be verified through quantitative measurements of
the performance, so that subsequent decisions are based on facts. In phase "analyze", the
achieved performance and their causes should be identified and the existent opportunities
should be analyzed. After doing this analysis, it is possible to perceive points to improve the
performance and to implement improvements in phase "improve." In phase "control" the
improvement should be ensured, through the control of the deployed process performance.
Pande (2001) highlights that one cannot use the DMAIC for any improvement. A Six Sigma
improvement project, according to the author, must have three qualifications:
 There is a gap between current performance and required/expected performance;
 The cause of the problem is not understood clearly;
 The solution is not predetermined, nor is the optimal apparent solution.
Besides, the viability criteria should be observed, such as: the necessary resources, available
skills, the complexity, the probability of success and support and engagement of the team.

3. The CMMI and the Causal Analysis and Resolution

The Capability Maturity Model Integration (CMMI) (Chrissis, 2006) is a maturity model for
the development of products developed by the Software Engineering Institute (SEI), which
is increasingly being adopted by software organizations, since this model aims to guide
organizations in implementing continuous improvements in their development process.

3.1 The Maturity Level 5
The focus of the maturity level 5 is the continuous improvement of processes. While level 4
focuses on the special causes of variation in the organization’ process, level 5 tries to find
common causes and address them, resulting in many improvements, which are

1 On methodology Six Sigma, the defects, errors and failures are any deviation of a characteristic that
generate custome dissatisfaction (Blauth, 2003).

www.intechopen.com

Quality Management and Six Sigma158

implemented in a disciplined manner. Measurements are used to select the improvements
and estimate the costs and benefits to meet the proposed improvements. The same
measurements can be used to justify efforts for further improvements (Kulpa, 2003).
The CMMI level 5 consists of two process areas: Organizational Innovation and Deployment
- OID and Causal Analysis and Resolution – CAR. The latter is the focus of this work.
The goal of the Causal Analysis and Resolution - CAR is to identify causes of defects and
other problems and take actions to prevent their occurrence in the future.
Table 2 shows the relationship of specific goals (SG) with their respective specific practices
(SP) for this process area.

SG 1 Determine Causes of Defects
 SP 1.1 Select Defect Data for Analysis

SP 1.2 Analyze Causes
SG 2 Address Causes of Defects
 SP 2.1 Implement the Action Proposals

SP 2.2 Evaluate the Effect of Changes
SP 2.3 Record Data

Table 1. Causal Analysis and Resolution in CMMI (Chrissis, 2006)

4. MiniDMAIC

The MiniDMAIC is a strategy that aims to simplify the DMAIC method in order to address
the causes and resolution of problems in software development projects in a more practical
and faster manner, with less risk and cost, preventing future recurrences, implementing
improvements on the development process and thus, continually increasing the customer
satisfaction (Gonçalves et al., 2008 and Bezerra et al., 2009).
This approach was originally defined in Gonçalves (2008a) and was applied in pilot projects
in a software organization that was deploying the levels 4 and 5 of the CMMI model. During
the implementation of the approach in the pilot projects some improvements to the
approach were identified and so it was refined.
Based on the implemented improvements, the MiniDMAIC was executed in other software
development projects and a second work has been published with case studies of some
projects that implemented the refined approach (Bezerra et al., 2009). After this last work,
improvements were added to the approach and were validated in a CMMI level 5 official
assessment in the organization that was executed the MiniDMAIC. We can see that the
approach presented in this work underwent for several validations and was refined and
implemented in several software development projects, demonstrating effectiveness in the
analysis and resolution of causes in the context of these projects.
The great difference between MiniDMAIC and DMAIC is that the DMAIC, from the
analysis and resolution of the causes of the defined prolem defined, has the main objective
the improvement of one of the organization’s standard processes, implementing the
improvements in a controlled manner in the organization. The MiniDMAIC addresses the
causes only in the project level and aims to prevent and treat the defined problems through
the analysis and resolution of the problems root-causes. It can assist only in the
organizational processes improvement (Bezerra et al., 2009).

Moreover, the DMAIC requires a statistical proof of the problems causes and achieved
improvements, that is not required in MiniDMAIC, which identifies and prioritizes the
causes using simpler tools such as : Ishikawa diagram and Pareto Charts, and analyzes the
obtained improvements observing the progress of the project’s indicators (Bezerra et al.,
2009).
The main characteristics of MiniDMAIC are:
 Short duration;
 Need for basic knowledge of statistics;
 Linked to risks;
 Low cost when compared to DMAIC;
 Suitable for software development projects.
The problems that need to be addressed more careful by applying the MiniDMAIC
approach can be defined at the organizational level (ex.: control limits, number of defects,
etc.). However, it is important to clear that, to the project team, the difference between
problems that require only simple and immediate actions, and those that require the
treatment defined in MiniDMAIC. Simple actions are appropriate for treatment of simple
improvement items which can be typically performed by a person with little effort and
when the cause/solution is known or likely.
The execution of the MiniDMAIC in a software development project must also consider the
size of the project and the frequency of the indicators collection in an organization. For
organizations that collect monthly the indicators, the execution of the approach should
consider that the project must have at least one month in duration. If the project has short
iterations, the treatment of the problem by MiniDMAIC approach will be useful to prevent
the problem does not occur in later iterations. For month-long projects the action’s execution
can end up at the end of the project. Although the action does not address the problem in
time to present the effects of the improvements in the project, the execution of this action
may have benefits that will help other organization’s projects.
Examples of project’s problems that deserve treatment by MiniDMAIC approach are:
 Out of control project, where the results of the indicators of statistically controlled

processes do not satisfy the specification limits defined by the project or organizational
baseline boundaries (e.g., productivity, delivery deviation, defect density, etc.);

 Recorrent problems in the project;
 High number of defects found in systemic tests;
 High number of defects found by the customer.
When the cause and defect analysis is performed, the selection of defects for analysis must
take into account the following factors:
 Types of most common defects;
 Frequency of occurrence;
 Similarity between defects.
In this approach, defects are considered as failures, taking into account the defect, error and
failure definitions presented in the IEEE 610.12-1990. We chose to use these concepts in a
similar way, because the MiniDMAIC approach bases the phase “Measure” on the
orthogonal defect classification (Chillarege et al., 1992), which uses the same definition.
As support to the approach, tools like: spreadsheets, project management tools, among
others, may be used.

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 159

implemented in a disciplined manner. Measurements are used to select the improvements
and estimate the costs and benefits to meet the proposed improvements. The same
measurements can be used to justify efforts for further improvements (Kulpa, 2003).
The CMMI level 5 consists of two process areas: Organizational Innovation and Deployment
- OID and Causal Analysis and Resolution – CAR. The latter is the focus of this work.
The goal of the Causal Analysis and Resolution - CAR is to identify causes of defects and
other problems and take actions to prevent their occurrence in the future.
Table 2 shows the relationship of specific goals (SG) with their respective specific practices
(SP) for this process area.

SG 1 Determine Causes of Defects
 SP 1.1 Select Defect Data for Analysis

SP 1.2 Analyze Causes
SG 2 Address Causes of Defects
 SP 2.1 Implement the Action Proposals

SP 2.2 Evaluate the Effect of Changes
SP 2.3 Record Data

Table 1. Causal Analysis and Resolution in CMMI (Chrissis, 2006)

4. MiniDMAIC

The MiniDMAIC is a strategy that aims to simplify the DMAIC method in order to address
the causes and resolution of problems in software development projects in a more practical
and faster manner, with less risk and cost, preventing future recurrences, implementing
improvements on the development process and thus, continually increasing the customer
satisfaction (Gonçalves et al., 2008 and Bezerra et al., 2009).
This approach was originally defined in Gonçalves (2008a) and was applied in pilot projects
in a software organization that was deploying the levels 4 and 5 of the CMMI model. During
the implementation of the approach in the pilot projects some improvements to the
approach were identified and so it was refined.
Based on the implemented improvements, the MiniDMAIC was executed in other software
development projects and a second work has been published with case studies of some
projects that implemented the refined approach (Bezerra et al., 2009). After this last work,
improvements were added to the approach and were validated in a CMMI level 5 official
assessment in the organization that was executed the MiniDMAIC. We can see that the
approach presented in this work underwent for several validations and was refined and
implemented in several software development projects, demonstrating effectiveness in the
analysis and resolution of causes in the context of these projects.
The great difference between MiniDMAIC and DMAIC is that the DMAIC, from the
analysis and resolution of the causes of the defined prolem defined, has the main objective
the improvement of one of the organization’s standard processes, implementing the
improvements in a controlled manner in the organization. The MiniDMAIC addresses the
causes only in the project level and aims to prevent and treat the defined problems through
the analysis and resolution of the problems root-causes. It can assist only in the
organizational processes improvement (Bezerra et al., 2009).

Moreover, the DMAIC requires a statistical proof of the problems causes and achieved
improvements, that is not required in MiniDMAIC, which identifies and prioritizes the
causes using simpler tools such as : Ishikawa diagram and Pareto Charts, and analyzes the
obtained improvements observing the progress of the project’s indicators (Bezerra et al.,
2009).
The main characteristics of MiniDMAIC are:
 Short duration;
 Need for basic knowledge of statistics;
 Linked to risks;
 Low cost when compared to DMAIC;
 Suitable for software development projects.
The problems that need to be addressed more careful by applying the MiniDMAIC
approach can be defined at the organizational level (ex.: control limits, number of defects,
etc.). However, it is important to clear that, to the project team, the difference between
problems that require only simple and immediate actions, and those that require the
treatment defined in MiniDMAIC. Simple actions are appropriate for treatment of simple
improvement items which can be typically performed by a person with little effort and
when the cause/solution is known or likely.
The execution of the MiniDMAIC in a software development project must also consider the
size of the project and the frequency of the indicators collection in an organization. For
organizations that collect monthly the indicators, the execution of the approach should
consider that the project must have at least one month in duration. If the project has short
iterations, the treatment of the problem by MiniDMAIC approach will be useful to prevent
the problem does not occur in later iterations. For month-long projects the action’s execution
can end up at the end of the project. Although the action does not address the problem in
time to present the effects of the improvements in the project, the execution of this action
may have benefits that will help other organization’s projects.
Examples of project’s problems that deserve treatment by MiniDMAIC approach are:
 Out of control project, where the results of the indicators of statistically controlled

processes do not satisfy the specification limits defined by the project or organizational
baseline boundaries (e.g., productivity, delivery deviation, defect density, etc.);

 Recorrent problems in the project;
 High number of defects found in systemic tests;
 High number of defects found by the customer.
When the cause and defect analysis is performed, the selection of defects for analysis must
take into account the following factors:
 Types of most common defects;
 Frequency of occurrence;
 Similarity between defects.
In this approach, defects are considered as failures, taking into account the defect, error and
failure definitions presented in the IEEE 610.12-1990. We chose to use these concepts in a
similar way, because the MiniDMAIC approach bases the phase “Measure” on the
orthogonal defect classification (Chillarege et al., 1992), which uses the same definition.
As support to the approach, tools like: spreadsheets, project management tools, among
others, may be used.

www.intechopen.com

Quality Management and Six Sigma160

The items below describe the phases of MiniDMAIC, which uses the same phases of the
DMAIC method, and a final phase that was included to provide the improvement
opportunities, identified during the execution of the approach, to the organizational assets.
The Figure 1 shows the sequence of steps of the approach.

Fig. 1. Phases of MiniDMAIC

4.1 Phase: Define
The phase “Define” is a phase of action planning and encompasses the definition of the
problem, sources, impacted processes and subprocesses and expected results. Besides, the
formation of the team (Table 2).

D
ef

in
e

Step 1 – Define the
Problem

The problem trat will be adressed must be defined to be clear its
importance and defined its objectives. A search should be made on the
historical organizational base to look for similar problems that were
treated in other projects using a MiniDMAIC action to help in defining
and solving the problem’s root-causes. It is important to describe the
impact or consequences of the problem in the project. This description
should be focused only on symptoms rather than in causes or solutions.

Step 2 - Determine
the Source of the

Problem

This step should show what was the source who revealed the occurrence
of the problem. Examples of sources of problems in software
development projects are:
 Project’s indicators;
 Report of systemic tests;
 Results of integration tests;
 Client’s test report;
 Problems identified in technical review that affect the requirements or

the correct operation of the software;
 Customer Complaints.

Step 3 - Identify the
Affected Processes

Identify which processes and subprocesses were affected by the defined
problem. If the problem is the result of an out of control indicator, the
baseline associated to the process should be identified associated with
baseline. The process baselines selected by the project should consider the
client’s performance objectives.

Passo 4 - Identify
the Risks Related to
do not Address the

Problem

The risks related to do not address the problem can be identified by the
project manager in order to treat and monitor them according to process
defined to the process area Risk Management - RSKM of CMMI.

Passo 5 – Define the
Expected Results

In this step, the expected results to be achieved with the implementation
of MiniDMAIC approach are defined aiming to address the problem. The
expected results must be defined in a quantitative manner, and indicators
associated with the defined problem can be used.

Passo 6 – Forming
the team and

Estimating the Time
of Execution

In this step the team that will participate in each phase of MiniDMAIC is
formed and the time for implementing each one is estimated. In a
MiniDMAIC action is not necessary to have Black Belts as leader. As they
are simple and directly related to the project, the only need is a basic
knowledge in Six Sigma and training in MiniDMAIC approach. The most
important is the understanding of knowledge related to the project and
management techniques and it is important that the Project Manager
leads the MiniDMAIC. The MiniDMAIC team size may vary according to
the needs of the problem. In situations that we may have just the project
manager and a team member others collaborators can participate only in
certain steps, for example, the support of a Green Belt leader (especially
during the phases Measure and Analyze).

Table 2. Steps of the Phase “Define”

4.2 Phase: Measure
The phase "Measure" is the collection and analysis of measurements (existing or to be
defined) related to the problem aiming to know the current situation of the project and the
related processes, as shown in Table 3. This phase can be executed in parallel to the phase
"Define", supporting the definition of the problem. If the results of the measurements are

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 161

The items below describe the phases of MiniDMAIC, which uses the same phases of the
DMAIC method, and a final phase that was included to provide the improvement
opportunities, identified during the execution of the approach, to the organizational assets.
The Figure 1 shows the sequence of steps of the approach.

Fig. 1. Phases of MiniDMAIC

4.1 Phase: Define
The phase “Define” is a phase of action planning and encompasses the definition of the
problem, sources, impacted processes and subprocesses and expected results. Besides, the
formation of the team (Table 2).

D
ef

in
e

Step 1 – Define the
Problem

The problem trat will be adressed must be defined to be clear its
importance and defined its objectives. A search should be made on the
historical organizational base to look for similar problems that were
treated in other projects using a MiniDMAIC action to help in defining
and solving the problem’s root-causes. It is important to describe the
impact or consequences of the problem in the project. This description
should be focused only on symptoms rather than in causes or solutions.

Step 2 - Determine
the Source of the

Problem

This step should show what was the source who revealed the occurrence
of the problem. Examples of sources of problems in software
development projects are:
 Project’s indicators;
 Report of systemic tests;
 Results of integration tests;
 Client’s test report;
 Problems identified in technical review that affect the requirements or

the correct operation of the software;
 Customer Complaints.

Step 3 - Identify the
Affected Processes

Identify which processes and subprocesses were affected by the defined
problem. If the problem is the result of an out of control indicator, the
baseline associated to the process should be identified associated with
baseline. The process baselines selected by the project should consider the
client’s performance objectives.

Passo 4 - Identify
the Risks Related to
do not Address the

Problem

The risks related to do not address the problem can be identified by the
project manager in order to treat and monitor them according to process
defined to the process area Risk Management - RSKM of CMMI.

Passo 5 – Define the
Expected Results

In this step, the expected results to be achieved with the implementation
of MiniDMAIC approach are defined aiming to address the problem. The
expected results must be defined in a quantitative manner, and indicators
associated with the defined problem can be used.

Passo 6 – Forming
the team and

Estimating the Time
of Execution

In this step the team that will participate in each phase of MiniDMAIC is
formed and the time for implementing each one is estimated. In a
MiniDMAIC action is not necessary to have Black Belts as leader. As they
are simple and directly related to the project, the only need is a basic
knowledge in Six Sigma and training in MiniDMAIC approach. The most
important is the understanding of knowledge related to the project and
management techniques and it is important that the Project Manager
leads the MiniDMAIC. The MiniDMAIC team size may vary according to
the needs of the problem. In situations that we may have just the project
manager and a team member others collaborators can participate only in
certain steps, for example, the support of a Green Belt leader (especially
during the phases Measure and Analyze).

Table 2. Steps of the Phase “Define”

4.2 Phase: Measure
The phase "Measure" is the collection and analysis of measurements (existing or to be
defined) related to the problem aiming to know the current situation of the project and the
related processes, as shown in Table 3. This phase can be executed in parallel to the phase
"Define", supporting the definition of the problem. If the results of the measurements are

www.intechopen.com

Quality Management and Six Sigma162

analyzed at the project level, the analysis must be verified in the report that comprises the
collected data and the measurements’ analysis. If the defined measurement is within the
MiniDMAIC action, this should be collected and analyzed in the phase "Measure".

M
ea

su
re

Step 1 – Plan the
Measurements

In this step we should examine whether there is a need for a new
measurement that provides more evidences for the problem at hand. In
most situations, the measurements are already being conducted in
accordance with the defined process that addresses the process area
Measurement and Analysis - MA. A new measurement can also be
planned to provide more evidences to consolidate and enlarge the
understanding of the problem and its consequences.

Step 2 – Measure the
Current Situation

The measurements selected in the previous step must be executed
according to the plan. It is necessary to collect information and measure
the current situation of the project. Later, these same measures will be
used to measure the obtained improvement. In case of collection of
defects, it is recommended to use the template - Analysis of Causes
provided by Bezerra (2009b), in order to prioritize the defects that
deserve a more detailed analysis of the causes.

Table 3. Steps of the Phase “Measure”

4.3 Phase: Analyze
The phase "Analyze" encompasses the identification and prioritization of the problem’s root
causes using techniques to ensure that the root causes to be addressed are actually related to
the problem and to the definition of possible actions to solve the problem, as we can see on
Table 4.

A
na

ly
ze

Step 1 - Determine the
Problem’s Causes

This is one of the most important steps of MiniDMAIC, since its
purpose is to find out the problem’s root cause. If this step is not
done correctly, the result of MiniDMAIC may be compromised
because all of the following activities will be based on the outcome of
this step. So, it is important that the people who has knowledge
related to the problem and can contribute with information about
their causes. Examples of techniques to determine problem’s causes
are: brainstorming, five whys, cause and effect diagram (Ishikawa,
1985), among others. To execute this step the Template “Analysis of
causes“ provided by Bezerra (2009b) can be used. If defects are
analyzed, the classification of defects to determine where the defects
are more concentrated should be used as input for this phase.

Step 2 – Priorityze the
Problem’s Causes

The prioritization of the problem’s causes must be carried out in
accordance with the process defined to the area Decision Analysis and
Resolution - DAR. Another way to prioritize the causes is using the
Pareto chart (Juran, 1991), where 20% of the causes can contribute to
80% of defects. If the Pareto chart is adopted, the causes can be
grouped according to the level of criticism of the defects, the origin of
the defects and the type of them. To execute this step, the Template -
Analysis of causes provided by Bezerra (2009b) can be used.

Step 3 – Define
Candidate Actions

In this step, the possible actions to address the problem should be
identified with the project team using the brainstorming technique.
Every action should be linked to the related causes.

Table 4. Steps of the phase “Analyze”

4.4 Phase: Improve
The phase "Improve" comprises the definition and the analysis of feasibility of the proposed
the working up and implementing of the action plan and the monitoring the obtained
results (Table 5).

Im
pr

ov
e

Step 1 – Prioritize the
Actions

The candidates actions can be prioritized according to the process
defined to the process area Decision Analysis and Resolution - DAR. A
analysis of feasibility can also be carried out for the implementation of
each action. Any priorityzed cause may have one or more actions, as
well as an action can be addressing one or more causes prioritized in
phase "Analyze". Besides, they should be traceable. The analysis of
feasibility should verify aspects such as: complexity, time and cost to
implement the action within the project.

Step 2 – Prepare and
Execute the Action

Plan

An action plan for the implementation of the priority and approved
actions should be worked up by the project manager to address and
follow up the actions. This plan should contain the following
information:
 Tasks to be performed;
 Responsible for executing the task;
 Effort required to perform the task;
 Deadline to complete the task.
In the execution of the action plan, the tasks can be distributed to the
project team.

Step 3 – Monitor the
Actions

In this step, the tasks should be monitored in order to know the progress
of MiniDMAIC. These results should be followed up by the project
manager according to the process area Project Monitoring and Control -
PMC.

Table 5. Steps of the phase “Improve”

4.5 Phase: Control
The phase "Control" comprises the measurement, evaluation of obtained results and
dissemination of results and lessons learned (Table 6).

C
on

tr
ol

Step 1 – Measure the
Results

After the implementation of the actions in the project, the project
manager and its team should measure the results obtained in the period
using the same indicators selected in phase "Measure" in order to verify
if the quantitative result was achieved.

Step 2 – Evaluate the
Results

When the obtained results are evaluated, an analysis should ne carried
out by the project manager and its team to verify if the expected results
established in the phase "Control" have been achieved and whether there
was an improvement when compared to what was collected in the phase
"Measure" before of the problem’s treatment . This comparison will be
useful as a basis to confirm if there was an improvement on the project
and to verify if the problem was actually addressed.

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 163

analyzed at the project level, the analysis must be verified in the report that comprises the
collected data and the measurements’ analysis. If the defined measurement is within the
MiniDMAIC action, this should be collected and analyzed in the phase "Measure".

M
ea

su
re

Step 1 – Plan the
Measurements

In this step we should examine whether there is a need for a new
measurement that provides more evidences for the problem at hand. In
most situations, the measurements are already being conducted in
accordance with the defined process that addresses the process area
Measurement and Analysis - MA. A new measurement can also be
planned to provide more evidences to consolidate and enlarge the
understanding of the problem and its consequences.

Step 2 – Measure the
Current Situation

The measurements selected in the previous step must be executed
according to the plan. It is necessary to collect information and measure
the current situation of the project. Later, these same measures will be
used to measure the obtained improvement. In case of collection of
defects, it is recommended to use the template - Analysis of Causes
provided by Bezerra (2009b), in order to prioritize the defects that
deserve a more detailed analysis of the causes.

Table 3. Steps of the Phase “Measure”

4.3 Phase: Analyze
The phase "Analyze" encompasses the identification and prioritization of the problem’s root
causes using techniques to ensure that the root causes to be addressed are actually related to
the problem and to the definition of possible actions to solve the problem, as we can see on
Table 4.

A
na

ly
ze

Step 1 - Determine the
Problem’s Causes

This is one of the most important steps of MiniDMAIC, since its
purpose is to find out the problem’s root cause. If this step is not
done correctly, the result of MiniDMAIC may be compromised
because all of the following activities will be based on the outcome of
this step. So, it is important that the people who has knowledge
related to the problem and can contribute with information about
their causes. Examples of techniques to determine problem’s causes
are: brainstorming, five whys, cause and effect diagram (Ishikawa,
1985), among others. To execute this step the Template “Analysis of
causes“ provided by Bezerra (2009b) can be used. If defects are
analyzed, the classification of defects to determine where the defects
are more concentrated should be used as input for this phase.

Step 2 – Priorityze the
Problem’s Causes

The prioritization of the problem’s causes must be carried out in
accordance with the process defined to the area Decision Analysis and
Resolution - DAR. Another way to prioritize the causes is using the
Pareto chart (Juran, 1991), where 20% of the causes can contribute to
80% of defects. If the Pareto chart is adopted, the causes can be
grouped according to the level of criticism of the defects, the origin of
the defects and the type of them. To execute this step, the Template -
Analysis of causes provided by Bezerra (2009b) can be used.

Step 3 – Define
Candidate Actions

In this step, the possible actions to address the problem should be
identified with the project team using the brainstorming technique.
Every action should be linked to the related causes.

Table 4. Steps of the phase “Analyze”

4.4 Phase: Improve
The phase "Improve" comprises the definition and the analysis of feasibility of the proposed
the working up and implementing of the action plan and the monitoring the obtained
results (Table 5).

Im
pr

ov
e

Step 1 – Prioritize the
Actions

The candidates actions can be prioritized according to the process
defined to the process area Decision Analysis and Resolution - DAR. A
analysis of feasibility can also be carried out for the implementation of
each action. Any priorityzed cause may have one or more actions, as
well as an action can be addressing one or more causes prioritized in
phase "Analyze". Besides, they should be traceable. The analysis of
feasibility should verify aspects such as: complexity, time and cost to
implement the action within the project.

Step 2 – Prepare and
Execute the Action

Plan

An action plan for the implementation of the priority and approved
actions should be worked up by the project manager to address and
follow up the actions. This plan should contain the following
information:
 Tasks to be performed;
 Responsible for executing the task;
 Effort required to perform the task;
 Deadline to complete the task.
In the execution of the action plan, the tasks can be distributed to the
project team.

Step 3 – Monitor the
Actions

In this step, the tasks should be monitored in order to know the progress
of MiniDMAIC. These results should be followed up by the project
manager according to the process area Project Monitoring and Control -
PMC.

Table 5. Steps of the phase “Improve”

4.5 Phase: Control
The phase "Control" comprises the measurement, evaluation of obtained results and
dissemination of results and lessons learned (Table 6).

C
on

tr
ol

Step 1 – Measure the
Results

After the implementation of the actions in the project, the project
manager and its team should measure the results obtained in the period
using the same indicators selected in phase "Measure" in order to verify
if the quantitative result was achieved.

Step 2 – Evaluate the
Results

When the obtained results are evaluated, an analysis should ne carried
out by the project manager and its team to verify if the expected results
established in the phase "Control" have been achieved and whether there
was an improvement when compared to what was collected in the phase
"Measure" before of the problem’s treatment . This comparison will be
useful as a basis to confirm if there was an improvement on the project
and to verify if the problem was actually addressed.

www.intechopen.com

Quality Management and Six Sigma164

Step 3 – Publicize the
Main Results and
Lessons Learned

After the execution of MiniDMAIC, the results should be shared by the
project throughout the organization, recording them in an
organizational repository, accessible to all projects. Sharing this
information can be useful to address similar problems in other projects,
as well to improve the process at the organizational level. The way to
publicize should follow the process defined to the process area
Organizational Process Focus - OPF, which defines how the lessons
learned must be shared by the organization. If possible improvements to
organizational processes were identified, they should be sent to the
Engineering Process Group - EPG to be analyzed and properly
addressed.

Table 6. Steps to phase “Control”

4.6 Providing Improvement Opportunities for the Organizational Assets
The organizational historical base should include much information from the execution of
MiniDMAICs projects. Considering data from more than one project, the engineering
process group can analyze more data aiming to identify trends of problems in order to
define improvements to be implemented in the processes and their assets at the
organizational level. If the problem has already a known cause, or causes have just been
identified within the projects, a single action organization must be defined.
Besides the MiniDMAIC, according to Albuquerque (2008), the following data sources may
also help to identify recurrent problems in the organizational process assets: (i) evaluation of
process suitability, (ii) evaluation process adherence; (iii) evaluation of the work products to
the standards established in the organization, (iv) post-mortem analysis, (v) indicators for
monitoring the processes, (vi) lessons learned (vii) request for exemption the execution of
activities, (viii) guidelines, (ix) rationales to addapt the process and (x) requests to change
the process.
It is important to highlight that some of these sources can be useful, also, in the context of
the defects and problems.
Some information should be registered in the organizational historical base as: type of
problem, problem’s causes, actions taken to treat the causes and obtained improvements.
These information are important to organize the problems identified in the projects using
the approach MiniDMAIC in order to enable the identification of problems at the
organizational level.

5. Dmaic x minidmaic

The MiniDMAIC is based on the steps of the DMAIC method defined by Tayntor (2003).
Some steps have been suppressed due to the complexity of the used statistical techniques,
for example, the step "Calculating the Current Sigma Level". And the steps related to
customer requirements and changes in the standard processes were also removed, as
illustrated in Table 7. The main goal of MiniDMAIC is to analyze and solve the causes of
software development projects and does not focus on changes in the organization's standard
process, which is the main goal of DMAIC.

Phase DMAIC (Steps) MiniDMAIC (Steps) Rationales to Suppress the
Steps

D
ef

in
e

Define the Problem - Define the Problem -
Forming the team - Forming the team and

Estimating the Time of
Execution

-

Establish a Project Charter - Determine the Source of the
Problem
- Identify the Risks Related to
do not Address the Problem
- Identify the Affected
Processes
- Define the Expected Results

-

Prepare the Project Plan - - There is no need to have a
lot of plans to analyze the
causes in projects

Identify the Customers - - The customer must be
identified in the software
project plan.

Identify the Resulting
Artifacts

- Throughout the
implementation of
MiniDMAIC

-

Identify e Prioritize the
Customer Requirements

- - Customer requirements
are not identified directly.
They can be related to the
step “Identify Affected
Processes“.

M
ea

su
re

Define the Measurements - Plan the Measurements -
Conduct Measurements - Measure the Current

Situation
-

Calculate the Current Sigma
Level

- - A high knowledge in
statistical techniques is
necessary, which may be
impractical in the context
of projects.

Determine the Process
Capability

- - A high knowledge in
statistical techniques is
necessary, which may be
impractical in the context
of projects.

Carry out the Process Leaders
Benchmark

- - This Benchmark should
be carried out at the
organizational level, since
there are no changes in the
process executed at the
project level.

A
na

ly
ze

 Determine the Causes of
Variation

- Determine the Problem’s
Causes - Priorityze the
Problem’s Causes

-

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 165

Step 3 – Publicize the
Main Results and
Lessons Learned

After the execution of MiniDMAIC, the results should be shared by the
project throughout the organization, recording them in an
organizational repository, accessible to all projects. Sharing this
information can be useful to address similar problems in other projects,
as well to improve the process at the organizational level. The way to
publicize should follow the process defined to the process area
Organizational Process Focus - OPF, which defines how the lessons
learned must be shared by the organization. If possible improvements to
organizational processes were identified, they should be sent to the
Engineering Process Group - EPG to be analyzed and properly
addressed.

Table 6. Steps to phase “Control”

4.6 Providing Improvement Opportunities for the Organizational Assets
The organizational historical base should include much information from the execution of
MiniDMAICs projects. Considering data from more than one project, the engineering
process group can analyze more data aiming to identify trends of problems in order to
define improvements to be implemented in the processes and their assets at the
organizational level. If the problem has already a known cause, or causes have just been
identified within the projects, a single action organization must be defined.
Besides the MiniDMAIC, according to Albuquerque (2008), the following data sources may
also help to identify recurrent problems in the organizational process assets: (i) evaluation of
process suitability, (ii) evaluation process adherence; (iii) evaluation of the work products to
the standards established in the organization, (iv) post-mortem analysis, (v) indicators for
monitoring the processes, (vi) lessons learned (vii) request for exemption the execution of
activities, (viii) guidelines, (ix) rationales to addapt the process and (x) requests to change
the process.
It is important to highlight that some of these sources can be useful, also, in the context of
the defects and problems.
Some information should be registered in the organizational historical base as: type of
problem, problem’s causes, actions taken to treat the causes and obtained improvements.
These information are important to organize the problems identified in the projects using
the approach MiniDMAIC in order to enable the identification of problems at the
organizational level.

5. Dmaic x minidmaic

The MiniDMAIC is based on the steps of the DMAIC method defined by Tayntor (2003).
Some steps have been suppressed due to the complexity of the used statistical techniques,
for example, the step "Calculating the Current Sigma Level". And the steps related to
customer requirements and changes in the standard processes were also removed, as
illustrated in Table 7. The main goal of MiniDMAIC is to analyze and solve the causes of
software development projects and does not focus on changes in the organization's standard
process, which is the main goal of DMAIC.

Phase DMAIC (Steps) MiniDMAIC (Steps) Rationales to Suppress the
Steps

D
ef

in
e

Define the Problem - Define the Problem -
Forming the team - Forming the team and

Estimating the Time of
Execution

-

Establish a Project Charter - Determine the Source of the
Problem
- Identify the Risks Related to
do not Address the Problem
- Identify the Affected
Processes
- Define the Expected Results

-

Prepare the Project Plan - - There is no need to have a
lot of plans to analyze the
causes in projects

Identify the Customers - - The customer must be
identified in the software
project plan.

Identify the Resulting
Artifacts

- Throughout the
implementation of
MiniDMAIC

-

Identify e Prioritize the
Customer Requirements

- - Customer requirements
are not identified directly.
They can be related to the
step “Identify Affected
Processes“.

M
ea

su
re

Define the Measurements - Plan the Measurements -
Conduct Measurements - Measure the Current

Situation
-

Calculate the Current Sigma
Level

- - A high knowledge in
statistical techniques is
necessary, which may be
impractical in the context
of projects.

Determine the Process
Capability

- - A high knowledge in
statistical techniques is
necessary, which may be
impractical in the context
of projects.

Carry out the Process Leaders
Benchmark

- - This Benchmark should
be carried out at the
organizational level, since
there are no changes in the
process executed at the
project level.

A
na

ly
ze

 Determine the Causes of
Variation

- Determine the Problem’s
Causes - Priorityze the
Problem’s Causes

-

www.intechopen.com

Quality Management and Six Sigma166

Carry out the Process
Improvement Ideas
Brainstorming

- Define Candidate Actions -

Determine the Improvements
that have Major Impact on
Customer Requirements

- Define Candidate Actions -

Prepare the Proposed process
Map

- - There is no need to
provide changes in the
process executed at the
project level at the project
level.

Evaluate the Risks Associated
with the Reviewd Process

- - There is no need to
provide changes in the
process executed at the
project level at the project
level, because the risks can
be addresses at
organizational level.

Im
pr

ov
e

Obtain the Approval of the
Proposed Changes

- Prioritize the Actions -

Finalize the Implementation
Plan

- Prepare and Execute the
Action Plan

-

Implement the Approved
Changes

- Prepare and Execute the
Action Plan
- Monitor the Actions

-

C
on

tr
ol

Establish the Key Metrics - Measure the Results
- Evaluate the Results

-

Develop the control Strategy - - There is no need to
provide changes in the
process executed at the
project level at the project
level.

Celebrate and Communicate
the Success

- Publicize the Main Results
and Lessons Learned

-

Implement the Control Plan - - There is no need to
provide changes in the
process executed at the
project level at the project
level.

Measure and Communicate
the Improvements

- Measure the Results
- Evaluate the Results
- Publicize the Main Results
and Lessons Learned

-

Table 7. Comparison of DMAIC Steps Defined by Tayntor (2003) and MiniDMAIC
Approach Steps.

6. Minidmaic x CAR

For a better understanding of the relationship between MiniDMAIC and the Causal
Analysis and Resolution (CAR) process area, a mapping was prepared to represent the
relationship between the MiniDMAIC steps and the specific practices of CAR as we can see
in Table 8. It is important to emphasize that such relationship does imply that the approach
is covering the entire practice, since the process area is not related only to projects, but also
has subpractices to the organizational level.

Phase MiniDMAIC (Steps) CAR (Specific Practices) Observations

D
ef

in
e

Step 1 - Define the Problem
-

Related to Quantitative
Project Management –
QPM PA

Step 2 - Determine the Source of
the Problem
 -

 Related to Quantitative
Project Management –
QPM PA

Step 3 - Identify the Affected
Processes -

Related to Quantitative
Project Management –
QPM PA

Step 4 - Identify the Risks Related
to do not Address the Problem -

Related to Risk
Management – RSKM
PA

Step 5 - Define the Expected
Results
 -

Related to Quantitative
Project Management –
QPM PA

Step 6 - Forming the team and
Estimating the Time of Execution

-

Relaletd to Project
Monitoring and
Control – PMC PA and
GP 2.7 - Identify and
Involve Relevant
Stakeholders

M
ea

su
re

Step 1 – Plan the Measurements SP 1.1 - Select Defect Data for
Analysis

-

Step 2 – Measure the Current
Situation

SP 1.1 - Select Defect Data for
Analysis

-

A
na

ly
ze

Step 1 - Determine the Problem’s
Causes SP 1.2 - Analyze Causes

-

Step 2 - Prioritize the Problem’s
Causes SP 1.2 - Analyze Causes

-

Step 3 - Define Candidate Actions SP 1.2 - Analyze Causes

-
Im

pr
ov

e Step 1 – Prioritize the Actions SP 2.1 - Implement the Action
Proposals

Related to GP 2.10 -
Review Status with
Higher Level
Management

Step 2 - Prepare and Execute the
Action Plan

SP 2.1 - Implement the Action
Proposals

-

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 167

Carry out the Process
Improvement Ideas
Brainstorming

- Define Candidate Actions -

Determine the Improvements
that have Major Impact on
Customer Requirements

- Define Candidate Actions -

Prepare the Proposed process
Map

- - There is no need to
provide changes in the
process executed at the
project level at the project
level.

Evaluate the Risks Associated
with the Reviewd Process

- - There is no need to
provide changes in the
process executed at the
project level at the project
level, because the risks can
be addresses at
organizational level.

Im
pr

ov
e

Obtain the Approval of the
Proposed Changes

- Prioritize the Actions -

Finalize the Implementation
Plan

- Prepare and Execute the
Action Plan

-

Implement the Approved
Changes

- Prepare and Execute the
Action Plan
- Monitor the Actions

-

C
on

tr
ol

Establish the Key Metrics - Measure the Results
- Evaluate the Results

-

Develop the control Strategy - - There is no need to
provide changes in the
process executed at the
project level at the project
level.

Celebrate and Communicate
the Success

- Publicize the Main Results
and Lessons Learned

-

Implement the Control Plan - - There is no need to
provide changes in the
process executed at the
project level at the project
level.

Measure and Communicate
the Improvements

- Measure the Results
- Evaluate the Results
- Publicize the Main Results
and Lessons Learned

-

Table 7. Comparison of DMAIC Steps Defined by Tayntor (2003) and MiniDMAIC
Approach Steps.

6. Minidmaic x CAR

For a better understanding of the relationship between MiniDMAIC and the Causal
Analysis and Resolution (CAR) process area, a mapping was prepared to represent the
relationship between the MiniDMAIC steps and the specific practices of CAR as we can see
in Table 8. It is important to emphasize that such relationship does imply that the approach
is covering the entire practice, since the process area is not related only to projects, but also
has subpractices to the organizational level.

Phase MiniDMAIC (Steps) CAR (Specific Practices) Observations

D
ef

in
e

Step 1 - Define the Problem
-

Related to Quantitative
Project Management –
QPM PA

Step 2 - Determine the Source of
the Problem
 -

 Related to Quantitative
Project Management –
QPM PA

Step 3 - Identify the Affected
Processes -

Related to Quantitative
Project Management –
QPM PA

Step 4 - Identify the Risks Related
to do not Address the Problem -

Related to Risk
Management – RSKM
PA

Step 5 - Define the Expected
Results
 -

Related to Quantitative
Project Management –
QPM PA

Step 6 - Forming the team and
Estimating the Time of Execution

-

Relaletd to Project
Monitoring and
Control – PMC PA and
GP 2.7 - Identify and
Involve Relevant
Stakeholders

M
ea

su
re

Step 1 – Plan the Measurements SP 1.1 - Select Defect Data for
Analysis

-

Step 2 – Measure the Current
Situation

SP 1.1 - Select Defect Data for
Analysis

-

A
na

ly
ze

Step 1 - Determine the Problem’s
Causes SP 1.2 - Analyze Causes

-

Step 2 - Prioritize the Problem’s
Causes SP 1.2 - Analyze Causes

-

Step 3 - Define Candidate Actions SP 1.2 - Analyze Causes

-

Im
pr

ov
e Step 1 – Prioritize the Actions SP 2.1 - Implement the Action

Proposals

Related to GP 2.10 -
Review Status with
Higher Level
Management

Step 2 - Prepare and Execute the
Action Plan

SP 2.1 - Implement the Action
Proposals

-

www.intechopen.com

Quality Management and Six Sigma168

Step 3 - Monitor the Actions
-

Related to Project
Monitoring and
Control – PMC PA

C
on

tr
ol

Step 1 - Measure the Results

SP 2.2 - Evaluate the Effect of
Changes

-

Step 2 - Evaluate the Results SP 2.2 - Evaluate the Effect of
Changes

-

Step 3 - Publicize the Main
Results and Lessons Learned SP 2.3 - Record Data

-

Table 8. Relationship between the MiniDMAIC Steps and Specific Practices of CAR

As can be observed, to be attend the process area Causal Analysis and Resolution – CAR,
several steps defined in DMAIC were not necessary. The analysis of the DMAIC phases was
the basis for defining the proposed approach.

7. Minidmaic Execution

The MiniDMAIC was and is still being executed in software development projects of
Atlantic Institute, a software organization assessed at CMMI level 5 in August 2009 that
achieved the highest level of maturity of this model. One of the factors that helped to be
adherent to CMMI level 5 in relation to the process area Causal Analysis and Resolution,
was the implementation of MiniDMAIC in the context of software projects. Four projects
were assessed and all of them executed the MiniDMAIC approach for the analysis of causes
and no weaknesses were found in any process area from levels 4 and 5 of CMMI during the
official assessment.
During the execution of MiniDMAICs in the Atlantic’s software development projects, the
approach was being refined and better adequate to an analysis of causes more effectively
and efficiently in the context of projects. Nevertheless, as the intent of the organization was
to continuously improve their processes, the approach is being constantly improved for use
in projects.
All the MiniDMAIC steps were implemented in the Jira, a commercial tool for workflow
management that can be easily customized. The tool is already used in the organization to
issue tracking, and other actions, and made possible to implement actions to causal analysis
in projects in a simplest manner. Figure 2 shows the initial screen to create a MiniDMAIC
action in the Jira tool.

Fig. 2. Initial Screen to Create a MiniDMAIC Action in Jira

7.1 Characterization of Organization to MiniDMAIC
Following the practices of the process area Causal Analysis and Resolution of CMMI, some
criteria and conditions were defined by the organization to initialize a MiniDMAIC action
on projects. The MiniDMAICs could be initialized for analyzing the causes of
defects/problems or deviation in the indicators. In the management meetings, the project
coordinator should analyze together with the manager the need to carry out a MiniDMAIC
to the presented situation. The collaborator responsible for planning and monitoring a
MiniDMAIC action should be the project coordinator.
The organization defined the following typical sources of defects/problems:
 Indicators of the project;
 Report of systemic tests;
 Results of integration tests;
 Report from the client tests;
 Problems found in the technical review that affect requirements or the proper

execution of the application;
 Customer Complaints.
Moreover, the situations listed below may required the analysis of cause and defect using
the MiniDMAIC:
 High value on the systemic tests indicators. For example, indicator above the project

goal or out of the specified limits;
 Out of control project, where the results of the indicators with statistically controlled

processes do not meet the limits defined by the project or the organizational baseline
limits (e.g., productivity, deviation on delivery, defect density, etc.);

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 169

Step 3 - Monitor the Actions
-

Related to Project
Monitoring and
Control – PMC PA

C
on

tr
ol

Step 1 - Measure the Results

SP 2.2 - Evaluate the Effect of
Changes

-

Step 2 - Evaluate the Results SP 2.2 - Evaluate the Effect of
Changes

-

Step 3 - Publicize the Main
Results and Lessons Learned SP 2.3 - Record Data

-

Table 8. Relationship between the MiniDMAIC Steps and Specific Practices of CAR

As can be observed, to be attend the process area Causal Analysis and Resolution – CAR,
several steps defined in DMAIC were not necessary. The analysis of the DMAIC phases was
the basis for defining the proposed approach.

7. Minidmaic Execution

The MiniDMAIC was and is still being executed in software development projects of
Atlantic Institute, a software organization assessed at CMMI level 5 in August 2009 that
achieved the highest level of maturity of this model. One of the factors that helped to be
adherent to CMMI level 5 in relation to the process area Causal Analysis and Resolution,
was the implementation of MiniDMAIC in the context of software projects. Four projects
were assessed and all of them executed the MiniDMAIC approach for the analysis of causes
and no weaknesses were found in any process area from levels 4 and 5 of CMMI during the
official assessment.
During the execution of MiniDMAICs in the Atlantic’s software development projects, the
approach was being refined and better adequate to an analysis of causes more effectively
and efficiently in the context of projects. Nevertheless, as the intent of the organization was
to continuously improve their processes, the approach is being constantly improved for use
in projects.
All the MiniDMAIC steps were implemented in the Jira, a commercial tool for workflow
management that can be easily customized. The tool is already used in the organization to
issue tracking, and other actions, and made possible to implement actions to causal analysis
in projects in a simplest manner. Figure 2 shows the initial screen to create a MiniDMAIC
action in the Jira tool.

Fig. 2. Initial Screen to Create a MiniDMAIC Action in Jira

7.1 Characterization of Organization to MiniDMAIC
Following the practices of the process area Causal Analysis and Resolution of CMMI, some
criteria and conditions were defined by the organization to initialize a MiniDMAIC action
on projects. The MiniDMAICs could be initialized for analyzing the causes of
defects/problems or deviation in the indicators. In the management meetings, the project
coordinator should analyze together with the manager the need to carry out a MiniDMAIC
to the presented situation. The collaborator responsible for planning and monitoring a
MiniDMAIC action should be the project coordinator.
The organization defined the following typical sources of defects/problems:
 Indicators of the project;
 Report of systemic tests;
 Results of integration tests;
 Report from the client tests;
 Problems found in the technical review that affect requirements or the proper

execution of the application;
 Customer Complaints.
Moreover, the situations listed below may required the analysis of cause and defect using
the MiniDMAIC:
 High value on the systemic tests indicators. For example, indicator above the project

goal or out of the specified limits;
 Out of control project, where the results of the indicators with statistically controlled

processes do not meet the limits defined by the project or the organizational baseline
limits (e.g., productivity, deviation on delivery, defect density, etc.);

www.intechopen.com

Quality Management and Six Sigma170

 High number of defects classified as critical and blocker in the systemic tests
(according to the coordinator analysis);

 High number of defects found by the client (according to the coordinator analysis).
 Defects found in the first project’s set of tests;
 Need to analyze the most common types of defects;
 Errors that occur so frequently in the various set of test.
When the analysis of cause and defect is performed, the selection of defects for analysis
should consider the following factors:
 Types of the most common defects;
 Frequency of occurrence;
 Similarity between defects.
The organization has a well-defined testing process and to classify the defects should be
considered: (i) criticality, (ii) the types of defects and (iii) the sources of defects in relation to
the software development life cycle phases.
The level of criticality of the defects was based on the IEEE 1044 (1994) and has the
following classification:
 Blocker: failure that causes the block of the main tested functionality or application,

preventing the running of the tests. The cases that prevent the execution of other
requirements are also considered;

 Critical: failure where the test case steps might be performed, however, they had a
disastrous outcome. The cases where a secondary functionality could not be performed
successfully are considered;

 Major: failure that has an incorrect results, but do not bring a high impact to the
customer;

 Minor: failure in not essential requirements points;
 Trivial: Problems considered cosmetics / accessories that do not affect the functionality

of the system.
The organization’s types of defects were based on Orthogonal Defect Classification
(Chillarege et al., 1992) that comprises the following types of defects:
 Interface;
 Function (functionality);
 Assembling / packaging / integration;
 Attribution;
 Documentation;
 Verification (field validation);
 Algorithm (internal logic);
 Time / serialization / performance.
The defects’ sources also were based on Orthogonal Defect Classification (Chillarege et al.,
1992), comprising the following sources:
 Requirements;
 A & D – Architecture;
 A & D – Design;
 Implementation;
 Testing.

7.2 Pilot Project Characterization
The organization’s software development project selected as a pilot project was considered
large, had short iterations and used the Scrum methodology (Schwaber, 2004). This project
corresponded to the development of various sub-projects of experimental applications to
mobile devices (cell phones). The general characterization of the sub-projects within the
context of the project can be seen in Table 9.

Type Embedded Software

Restrictions Limited fixed price + Deadline + Flexible
Scope

Duration
2 or 3 months. Sprints lasting 4 weeks

Estimate Story Points + Use Case Points

Team Size Small (up to 6 employees)

Product Line Mobile

Stability Requirements Small (Very volatile requirements)

Customer Engagement Average

Design Complexity Large
Table 9. Characterization of the Pilot Project’s Sub-projects

In the next sections will show the execution of each phase of MiniDMAIC approach in the
selected pilot project.

7.3 Performing the Phases "Define" and "Measure" of MiniDMAIC
All of the organization’s software development projects collect and analyze, monthly, the
project’s indicators in the Project Performance Report. One of the indicators of the
organization that has statistically managed processes and subprocesses is the indicator
“Defect density”.
In the project that MiniDMAIC was executed to this experience report, a great number of
defects in systemic tests were identified and it was verified that the values of defect density
in systemic tests indicator were above of the organizational baseline limits, as shown in the
control chart (Figure 3).

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 171

 High number of defects classified as critical and blocker in the systemic tests
(according to the coordinator analysis);

 High number of defects found by the client (according to the coordinator analysis).
 Defects found in the first project’s set of tests;
 Need to analyze the most common types of defects;
 Errors that occur so frequently in the various set of test.
When the analysis of cause and defect is performed, the selection of defects for analysis
should consider the following factors:
 Types of the most common defects;
 Frequency of occurrence;
 Similarity between defects.
The organization has a well-defined testing process and to classify the defects should be
considered: (i) criticality, (ii) the types of defects and (iii) the sources of defects in relation to
the software development life cycle phases.
The level of criticality of the defects was based on the IEEE 1044 (1994) and has the
following classification:
 Blocker: failure that causes the block of the main tested functionality or application,

preventing the running of the tests. The cases that prevent the execution of other
requirements are also considered;

 Critical: failure where the test case steps might be performed, however, they had a
disastrous outcome. The cases where a secondary functionality could not be performed
successfully are considered;

 Major: failure that has an incorrect results, but do not bring a high impact to the
customer;

 Minor: failure in not essential requirements points;
 Trivial: Problems considered cosmetics / accessories that do not affect the functionality

of the system.
The organization’s types of defects were based on Orthogonal Defect Classification
(Chillarege et al., 1992) that comprises the following types of defects:
 Interface;
 Function (functionality);
 Assembling / packaging / integration;
 Attribution;
 Documentation;
 Verification (field validation);
 Algorithm (internal logic);
 Time / serialization / performance.
The defects’ sources also were based on Orthogonal Defect Classification (Chillarege et al.,
1992), comprising the following sources:
 Requirements;
 A & D – Architecture;
 A & D – Design;
 Implementation;
 Testing.

7.2 Pilot Project Characterization
The organization’s software development project selected as a pilot project was considered
large, had short iterations and used the Scrum methodology (Schwaber, 2004). This project
corresponded to the development of various sub-projects of experimental applications to
mobile devices (cell phones). The general characterization of the sub-projects within the
context of the project can be seen in Table 9.

Type Embedded Software

Restrictions Limited fixed price + Deadline + Flexible
Scope

Duration
2 or 3 months. Sprints lasting 4 weeks

Estimate Story Points + Use Case Points

Team Size Small (up to 6 employees)

Product Line Mobile

Stability Requirements Small (Very volatile requirements)

Customer Engagement Average

Design Complexity Large
Table 9. Characterization of the Pilot Project’s Sub-projects

In the next sections will show the execution of each phase of MiniDMAIC approach in the
selected pilot project.

7.3 Performing the Phases "Define" and "Measure" of MiniDMAIC
All of the organization’s software development projects collect and analyze, monthly, the
project’s indicators in the Project Performance Report. One of the indicators of the
organization that has statistically managed processes and subprocesses is the indicator
“Defect density”.
In the project that MiniDMAIC was executed to this experience report, a great number of
defects in systemic tests were identified and it was verified that the values of defect density
in systemic tests indicator were above of the organizational baseline limits, as shown in the
control chart (Figure 3).

www.intechopen.com

Quality Management and Six Sigma172

Fig. 3. Project’s Control Chart for the Defect Density in Systemic Tests Baseline

Thus, we identified the need to open a MiniDMAIC action for the project in order to analyze
the root cause of the project’s defects.
The organization has a historical projects base located in a knowledge management tool,
accessible to all employees of the organization. This historical base contains: general
information from the projects, projects’ indicators, lessons learned, risks and MiniDMAICs
opened by the projects.
Initially, the organization’s historical basis was analyzed to find MiniDMAICs related to the
density of defects that have been executed in other projects. There were two MiniDMAICs
related to this problem that were considered as a basis for a better execution and analysis of
project’ causes.
Analyzing the organization’s performance baseline of the defect density in systemic tests
was defined as the goal of the project, remain within the specified limits of the project
(upper and lower target), reducing the density of defects in 81% to achieve the goal of defect
density in systemic tests that had been established.
There was no need to identify a new measurement to measure the problem, since the
problem was already characterized in the defect density in systemic tests indicator, which
was already considered in the projects of the organization and that is statistically controlled.
In a spreadsheet, all defects related to the release’s scope were collected and these defects
were classified by criticality, source and type of defect, as shown in Figure 4. This
classification helps to know the source of the defects according to its classification and to
know which are the most recurrent. In the project’s context, the largest number of defects
was classified as major critical, the source in the implementation and the types of defects
were: functionality and algorithm.

Fig. 4. Classification of the Defects Found in the Project’s Systemic Tests

At this phase it was established the following:
 Goal: reduce the defect density in systemic tests in 81%, remaining within the specified

limits of the project;
 Affected process (es): Implementation;
 Risks: No risks were identified related to the problem;
 Organizational Performance Baseline: defect density in systemic tests;
 Responsible for the phase: project coordinator, technical leader and Quality Assurance;
 Duration: 1 day.
During the execution of these two phases in parallel, there was only difficulty for classifying
the defects, which required a great effort from the team to analyze them.

7.4 Performing the Phase "Analyze" of MiniDMAIC
At this stage, experts were allocated aiming to analyze the defects. In the case of the MiniDMAIC
action on the pilot project, were allocated the following specialists: project coordinator, technical
leader, Quality Assurance, developers, requirements analyst and test analyst.
Based on the defect classification of the phase “Measure” and grouping of the recurrent
defects, a brainstorming meeting was held with the project team in order to find the root
cause of defects. The brainstorming was organized in two meetings to identify and prioritize
the causes of the problem. At the first meeting, the team had as input the defects collected in
the phase “Measure” and their classification, and ideas of possible causes were collected
without worrying whether those causes were actually the problem’s root causes.
After identifying the causes, each defect were analyzed to know what the causes it was
related. So, the most recurrent causes when they were consolidated by defects. Based on that
consolidation, a second meeting was held with the project team and shown the consolidated
causes to prioritize problem’s root causes. The following causes were identified and
prioritized by the team, with the help of Pareto charts:

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 173

Fig. 3. Project’s Control Chart for the Defect Density in Systemic Tests Baseline

Thus, we identified the need to open a MiniDMAIC action for the project in order to analyze
the root cause of the project’s defects.
The organization has a historical projects base located in a knowledge management tool,
accessible to all employees of the organization. This historical base contains: general
information from the projects, projects’ indicators, lessons learned, risks and MiniDMAICs
opened by the projects.
Initially, the organization’s historical basis was analyzed to find MiniDMAICs related to the
density of defects that have been executed in other projects. There were two MiniDMAICs
related to this problem that were considered as a basis for a better execution and analysis of
project’ causes.
Analyzing the organization’s performance baseline of the defect density in systemic tests
was defined as the goal of the project, remain within the specified limits of the project
(upper and lower target), reducing the density of defects in 81% to achieve the goal of defect
density in systemic tests that had been established.
There was no need to identify a new measurement to measure the problem, since the
problem was already characterized in the defect density in systemic tests indicator, which
was already considered in the projects of the organization and that is statistically controlled.
In a spreadsheet, all defects related to the release’s scope were collected and these defects
were classified by criticality, source and type of defect, as shown in Figure 4. This
classification helps to know the source of the defects according to its classification and to
know which are the most recurrent. In the project’s context, the largest number of defects
was classified as major critical, the source in the implementation and the types of defects
were: functionality and algorithm.

Fig. 4. Classification of the Defects Found in the Project’s Systemic Tests

At this phase it was established the following:
 Goal: reduce the defect density in systemic tests in 81%, remaining within the specified

limits of the project;
 Affected process (es): Implementation;
 Risks: No risks were identified related to the problem;
 Organizational Performance Baseline: defect density in systemic tests;
 Responsible for the phase: project coordinator, technical leader and Quality Assurance;
 Duration: 1 day.
During the execution of these two phases in parallel, there was only difficulty for classifying
the defects, which required a great effort from the team to analyze them.

7.4 Performing the Phase "Analyze" of MiniDMAIC
At this stage, experts were allocated aiming to analyze the defects. In the case of the MiniDMAIC
action on the pilot project, were allocated the following specialists: project coordinator, technical
leader, Quality Assurance, developers, requirements analyst and test analyst.
Based on the defect classification of the phase “Measure” and grouping of the recurrent
defects, a brainstorming meeting was held with the project team in order to find the root
cause of defects. The brainstorming was organized in two meetings to identify and prioritize
the causes of the problem. At the first meeting, the team had as input the defects collected in
the phase “Measure” and their classification, and ideas of possible causes were collected
without worrying whether those causes were actually the problem’s root causes.
After identifying the causes, each defect were analyzed to know what the causes it was
related. So, the most recurrent causes when they were consolidated by defects. Based on that
consolidation, a second meeting was held with the project team and shown the consolidated
causes to prioritize problem’s root causes. The following causes were identified and
prioritized by the team, with the help of Pareto charts:

www.intechopen.com

Quality Management and Six Sigma174

 Cause 1: architectural components developed in parallel with use cases;
 Cause 2: baseline generated without testing in an environment similar to production;
 Cause 3: lack of understanding of requirements by developers;
 Cause 4: Sprint’s scope badly estimated (estimation and sequence of the use cases

development);
 Cause 5: architecture is not suitable for the concurrent development of the team.
Analyzing the identified and prioritized causes related to the found problems in the
iteration was observed that:
 The planning was badly estimated. Many use cases were planned for a short time

(fixed time of 4 weeks). Aiming to achieve the scope defined for the iteration, some
activities essential to the quality of the final product were not performed in accordance
to the planned estimation. Among them, the integration test and the testing on mobile
device can be cited;

 The team did not have a full knowledge of the project requirements. It was the first
sprint of the project and meetings or workshop were not held with the developers for
sharing and discussing the requirements. The artifacts to define the requirements were
defined, but they were not followed;

 The initial architecture was not mature, resulting in various problems and additional
efforts for the development.

Then, a brainstorming was performed at a meeting to identify possible actions for
addressing the causes. The following actions were identified:
 Action 1: perform integration tests before systemic tests;
 Action 2: held a requirement workshop for improving the understanding of the use

cases by the project team;
 Action 3: carry out use case tests in an environment similar to the production

environment;
 Action 4: define and communicate the concept of "done" to complete the

implementation of the use case;
 Action 5: improve the planning to the next iterations, with the participation of the team

(the planning should include the development and integration of architectural
components before the development of the use cases);

 Action 6: perform the refactoring of architectural components.
In Table 10 we can observe the relationship between the identified causes and the prioritized
actions for their treatment.

Causes Action

Cause 1 Action 1, Action 3, Action 4

Cause 2 Action 1, Action 3, Action 4

Cause 3 Action 2

Cause 4 Action 5

Cause 5 Action 6
Table 10. Relationship Between the Causes and Actions Identified to Address the Defects’
Causes

The phase "Analyze" of MiniDMAIC on the project was very detailed and all defects found
to improve the effectiveness of the action were analyzed. In addition, we focus in the
defects’ root causes in order to do address wrong causes. The phase lasted two days.
Nevertheless, the project team has difficult to understand what really was the defects’ root
cause, requiring the support of the Quality Assurance to guide the team and to focus on the
causes of the problem.

7.5 Performing the Phase "Improve" of MiniDMAIC
All actions identified in the brainstorming were considered important to be implemented
and were easy to implement. An action plan to implement the actions was defined on Jira
and each action was inserted in MiniDMAIC action in the Jira MiniDMAIC as a sub-task of
MiniDMAIC. For each action were assigned responsible to execute the action and defined a
deadline to the action within the project. At this phase, all experts assigned on the phase
“Analyze” played a role. Below are described the execution of the actions:
 Action 1: The team performed the integration tests in the sprints 2 and 3 before the

systemic test. It was found that the development team identified virtually the same
amount of problems that the systemic test team, proving the effectiveness of action.;

 Action 2: A requirements workshop was held in sprints 2 and 3 with the participation
of requirements, IHC, testing and development teams. During the implementation of
the action the understanding of the requirements was transferred by the requirements
team for the rest of the team. The practice contributed a lot for leveling the
understanding of the requirements and necessary changes in the requirements that had
not previously been thought were highlighted;

 Action 3: In the first execution of this action there was an impediment. Because the use
case tests had not been executed in an environment similar to the production
environment, we found a bug that prevented the test. Moreover, some test team’s
members did not have mobile phones to execute the tests, which limited the execution
of the action. The error that prevented the test was corrected and the use case tests
began to be executed in sprints 2 and 3;

 Action 4: In the planning meeting of project’s sprint 2, the concept of "done" has been
defined together with the team and shared to all, through minutes and posters
attached in the project’s room. This practice was used during sprints 2 and 3. The
concepts of "done" that were defined:

o Requirements: use cases completed and reviewed with adjustments.
o Analysis and Design: class diagram completed and reviewed with

adjustments.
o Coding: code generated and reviewed with adjustments and unit tests

coded and documents with 75% of coverage.
 Action 5: Improve the planning of the next iterations with the participation of the team

(the planning should include the development and integration of architectural
components before the development of use cases). The planning improvements started
in sprint 2 of the project. For this sprint was held a planning meeting with the project
team, that was recorded in the minutes. In the planning, the development and
integration of architectural components were planned to begin before the development
of use cases. Furthermore, both the use cases refactoring activities as the activities for

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 175

 Cause 1: architectural components developed in parallel with use cases;
 Cause 2: baseline generated without testing in an environment similar to production;
 Cause 3: lack of understanding of requirements by developers;
 Cause 4: Sprint’s scope badly estimated (estimation and sequence of the use cases

development);
 Cause 5: architecture is not suitable for the concurrent development of the team.
Analyzing the identified and prioritized causes related to the found problems in the
iteration was observed that:
 The planning was badly estimated. Many use cases were planned for a short time

(fixed time of 4 weeks). Aiming to achieve the scope defined for the iteration, some
activities essential to the quality of the final product were not performed in accordance
to the planned estimation. Among them, the integration test and the testing on mobile
device can be cited;

 The team did not have a full knowledge of the project requirements. It was the first
sprint of the project and meetings or workshop were not held with the developers for
sharing and discussing the requirements. The artifacts to define the requirements were
defined, but they were not followed;

 The initial architecture was not mature, resulting in various problems and additional
efforts for the development.

Then, a brainstorming was performed at a meeting to identify possible actions for
addressing the causes. The following actions were identified:
 Action 1: perform integration tests before systemic tests;
 Action 2: held a requirement workshop for improving the understanding of the use

cases by the project team;
 Action 3: carry out use case tests in an environment similar to the production

environment;
 Action 4: define and communicate the concept of "done" to complete the

implementation of the use case;
 Action 5: improve the planning to the next iterations, with the participation of the team

(the planning should include the development and integration of architectural
components before the development of the use cases);

 Action 6: perform the refactoring of architectural components.
In Table 10 we can observe the relationship between the identified causes and the prioritized
actions for their treatment.

Causes Action

Cause 1 Action 1, Action 3, Action 4

Cause 2 Action 1, Action 3, Action 4

Cause 3 Action 2

Cause 4 Action 5

Cause 5 Action 6
Table 10. Relationship Between the Causes and Actions Identified to Address the Defects’
Causes

The phase "Analyze" of MiniDMAIC on the project was very detailed and all defects found
to improve the effectiveness of the action were analyzed. In addition, we focus in the
defects’ root causes in order to do address wrong causes. The phase lasted two days.
Nevertheless, the project team has difficult to understand what really was the defects’ root
cause, requiring the support of the Quality Assurance to guide the team and to focus on the
causes of the problem.

7.5 Performing the Phase "Improve" of MiniDMAIC
All actions identified in the brainstorming were considered important to be implemented
and were easy to implement. An action plan to implement the actions was defined on Jira
and each action was inserted in MiniDMAIC action in the Jira MiniDMAIC as a sub-task of
MiniDMAIC. For each action were assigned responsible to execute the action and defined a
deadline to the action within the project. At this phase, all experts assigned on the phase
“Analyze” played a role. Below are described the execution of the actions:
 Action 1: The team performed the integration tests in the sprints 2 and 3 before the

systemic test. It was found that the development team identified virtually the same
amount of problems that the systemic test team, proving the effectiveness of action.;

 Action 2: A requirements workshop was held in sprints 2 and 3 with the participation
of requirements, IHC, testing and development teams. During the implementation of
the action the understanding of the requirements was transferred by the requirements
team for the rest of the team. The practice contributed a lot for leveling the
understanding of the requirements and necessary changes in the requirements that had
not previously been thought were highlighted;

 Action 3: In the first execution of this action there was an impediment. Because the use
case tests had not been executed in an environment similar to the production
environment, we found a bug that prevented the test. Moreover, some test team’s
members did not have mobile phones to execute the tests, which limited the execution
of the action. The error that prevented the test was corrected and the use case tests
began to be executed in sprints 2 and 3;

 Action 4: In the planning meeting of project’s sprint 2, the concept of "done" has been
defined together with the team and shared to all, through minutes and posters
attached in the project’s room. This practice was used during sprints 2 and 3. The
concepts of "done" that were defined:

o Requirements: use cases completed and reviewed with adjustments.
o Analysis and Design: class diagram completed and reviewed with

adjustments.
o Coding: code generated and reviewed with adjustments and unit tests

coded and documents with 75% of coverage.
 Action 5: Improve the planning of the next iterations with the participation of the team

(the planning should include the development and integration of architectural
components before the development of use cases). The planning improvements started
in sprint 2 of the project. For this sprint was held a planning meeting with the project
team, that was recorded in the minutes. In the planning, the development and
integration of architectural components were planned to begin before the development
of use cases. Furthermore, both the use cases refactoring activities as the activities for

www.intechopen.com

Quality Management and Six Sigma176

understanding the implemented requirements in accordance with Action 3 were
planned to be held initially. During the sprint 3, the same action was performed again;

 Action 6: this action was planned in the execution of Action 5 and the architectural
component refactoring was performed by the project team, improving the application‘s
maintainability.

The team had difficulty in deploying the action 3 due to the unavailability of an
environment identical to the production environment for the whole team. The other actions
were implemented more easily by the project team. On average, the implementation of the
actions lasted two weeks.

7.6 Performing Phase "Control" of MiniDMAIC
After the implementation of the actions for addressing the causes of defects, the results were
measured to analyze the achieved degree of effectiveness. In the project’s second sprint the
result was measured and we identified 38% of improvement in the systemic tests defect
density indicator and that the result satisfied the project’s limits. Nevertheless, the
established of 81% was not achieved. So we decided to execute the phase “Improvement”,
implementing the same actions in the sprint 3, and measuring the results again to verify if
the actions actually eliminated the root causes of defects.
In the sprint 3 was measured again the defect density in systemic tests indicator and was
found a greater improvement, coming very close to the target defined to the project. Despite
the goal was not achieved in sprint 3, the expected results were considered satisfactory and
we could observe in two later sprints of the projects that the causes of defects were actually
addressed. The improvement in the third sprint was 51%. The Figure 5 shows a control chart
illustrating the improvement achieved by the project over the sprints.

Fig. 5. Project’s Control Chart for Defect Density in Systemic Tests Baseline with Final
Results after the Execution of the MiniDMAIC Action

After the evidence of the implemented improvements, a meeting was held with the team to
collect lessons learned and to close the action with the collected results. As the main lesson
learned from the execution of cause analysis on the project, it was observed the importance,
in the first sprint, to establish a minimum scope that would allow the architecture
development and the knowledge of the team about application’s business domain that was
being developed.

After closing the action, the project coordinator sent the entire MiniDMAIC action
execution‘s input for the organization’s historical basis, through an action in Jira.
Due to the project has being returned to the phase "Improve" to perform the actions in
project’s sprint 3, the MiniDMAIC on the project had a longer duration, approximately 6
weeks. The strategy of re-performing the phase "Improve" on the next sprint of the project
was chosen by the team to check if the actions were really effective and to eliminate the
problem’s root causes. If the project had obtained, actually, an improvement at the first
moment, the duration of the MiniDMAIC action would be, on average, from two to three
weeks.

7.7 Providing Improvement Opportunities for the Organizational Assets
All organization’s MiniDMAIC actions are reviewed and consolidated by the process group
and measurement and analysis group of the organization. The Jira tool generates a
document, in Word format, for every execution of MiniDMAIC action that is sent to the
historical basis by the project and published in a knowledge management tool, becoming
able to be searched by all organization’s projects.
To facilitate the monitoring of all MiniDMAIC actions by the process group, some
information considered most important are consolidated into a spreadsheet. Table 11
presents the consolidated information including the MiniDMAIC executed on the project
illustrated in this work.

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 177

understanding the implemented requirements in accordance with Action 3 were
planned to be held initially. During the sprint 3, the same action was performed again;

 Action 6: this action was planned in the execution of Action 5 and the architectural
component refactoring was performed by the project team, improving the application‘s
maintainability.

The team had difficulty in deploying the action 3 due to the unavailability of an
environment identical to the production environment for the whole team. The other actions
were implemented more easily by the project team. On average, the implementation of the
actions lasted two weeks.

7.6 Performing Phase "Control" of MiniDMAIC
After the implementation of the actions for addressing the causes of defects, the results were
measured to analyze the achieved degree of effectiveness. In the project’s second sprint the
result was measured and we identified 38% of improvement in the systemic tests defect
density indicator and that the result satisfied the project’s limits. Nevertheless, the
established of 81% was not achieved. So we decided to execute the phase “Improvement”,
implementing the same actions in the sprint 3, and measuring the results again to verify if
the actions actually eliminated the root causes of defects.
In the sprint 3 was measured again the defect density in systemic tests indicator and was
found a greater improvement, coming very close to the target defined to the project. Despite
the goal was not achieved in sprint 3, the expected results were considered satisfactory and
we could observe in two later sprints of the projects that the causes of defects were actually
addressed. The improvement in the third sprint was 51%. The Figure 5 shows a control chart
illustrating the improvement achieved by the project over the sprints.

Fig. 5. Project’s Control Chart for Defect Density in Systemic Tests Baseline with Final
Results after the Execution of the MiniDMAIC Action

After the evidence of the implemented improvements, a meeting was held with the team to
collect lessons learned and to close the action with the collected results. As the main lesson
learned from the execution of cause analysis on the project, it was observed the importance,
in the first sprint, to establish a minimum scope that would allow the architecture
development and the knowledge of the team about application’s business domain that was
being developed.

After closing the action, the project coordinator sent the entire MiniDMAIC action
execution‘s input for the organization’s historical basis, through an action in Jira.
Due to the project has being returned to the phase "Improve" to perform the actions in
project’s sprint 3, the MiniDMAIC on the project had a longer duration, approximately 6
weeks. The strategy of re-performing the phase "Improve" on the next sprint of the project
was chosen by the team to check if the actions were really effective and to eliminate the
problem’s root causes. If the project had obtained, actually, an improvement at the first
moment, the duration of the MiniDMAIC action would be, on average, from two to three
weeks.

7.7 Providing Improvement Opportunities for the Organizational Assets
All organization’s MiniDMAIC actions are reviewed and consolidated by the process group
and measurement and analysis group of the organization. The Jira tool generates a
document, in Word format, for every execution of MiniDMAIC action that is sent to the
historical basis by the project and published in a knowledge management tool, becoming
able to be searched by all organization’s projects.
To facilitate the monitoring of all MiniDMAIC actions by the process group, some
information considered most important are consolidated into a spreadsheet. Table 11
presents the consolidated information including the MiniDMAIC executed on the project
illustrated in this work.

www.intechopen.com

Quality Management and Six Sigma178

Type of
Problem

Problem’s Causes Actions Executed for
Addressing the Cause

Achieved
Improvement

High Defect
Density in

Systemic Tests

- Cause 1: architectural
components developed in
parallel with use cases.

- Cause 2: baseline
generated without testing
in an environment similar
to production
environment.

- Cause 3: lack of
understanding of
requirements by
developers.

- Cause 4: Sprint’s scope
badly estimated
(estimation and sequence
of use cases
development).

- Cause 5: architecture is
not suitable for the
concurrent development
of the team.

- Action 1: perform
integration tests before
systemic tests.

- Action 2: held a requirement
workshop for improving the
understanding of the use
cases by the project team.

- Action 3: carry out use case
tests in an environment
similar to the production
environment.

- Action 4: define and
communicate the concept of
"done" to complete the
implementation of the use
case.

- Action 5: improve the
planning to the next
iterations, with the
participation of the team (the
planning should include the
development and integration
of architectural components
before the development of the
use cases).

- Action 6: perform the
refactoring of architectural
components.

Defect density
reduction in 51%

Table 11. Consolidated Information from MiniDMAICs

7.8 Benefits of the MiniDMAIC Approach
Some of the main benefits identified during the execution of MiniDMAIC actions in
software development projects were:
 The execution of MiniDMAIC in the organization, reduced considerably, on the

projects context, the defect density in systemic tests, as reported in Bezerra (2009b) and
increased the productivity as described in Bezerra (2009a);

 The classification of defects used on the approach and adapted by the organization was
essential for helping the projects to understanding the defects and to identify of root
causes;

 The analysis of many MiniDMAIC is fundamental to identify improvement
opportunities for the processes at the organizational level. Thus, we observed that,
according to the organization’s maturity level, new data sources can aggregate greatly

to the processes improvements. These new sources can be added to the list of data that
can be analyzed, defined in Albuquerque (2008);

 The approach implemented in the Jira tool facilitated the use and increased the speed
of MiniDMAIC execution, because this tool already contains all the required fields to
perform each phase;

 Intensifying the use of the action in the projects an improvement was implemented, the
execution of MiniDMAIC in the first set of tests of the projects to analyze the causes of
defects. If the project has none actions to be executed to address the defects, the
MiniDMAIC could be completed in phase "Analyze";

 The template for analyzing the causes of defects in systemic tests, available from the
approach, was of great importance in facilitating the process of analysis and
prioritization of the problem’s root causes addressed in the projects;

 Integration of MiniDMAIC approach to the processes that deal with identifying and
implementing process improvements at the organizational level.

8. Related Works

According to Kalinowski (2009), the first approach to analysis of causes found was
described by Endres (1975), in IBM. This approach deals with individual analysis of
software defects so that they can be categorized and their causes identified, allowing taking
actions to prevent its occurrence in future projects, or at least ensuring its detection in these
projects. The analysis of defects in this approach occurs occasionally, as well as corrective
actions.
The technique RCA (Root Cause Analysis) (Ammerman, 1998), which is one of the
techniques used to analyze the root cause of a problem, aims at formulating
recommendations to eliminate or reduce the incidence of the most recurrent errors and hose
with higher cost in organization’s software development projects. According to Robitaille
(2004), the RCA has the purpose of investigating the factors that are not so visible that has
contributed to the identification of nonconformities or potential problems.
Triz (Altshuller, 1999) is another methodology developed for analysing causes. It is a
systematic human-oriented approach and based on knowledge. His theory defines the
problems where the solution raises new problems.
Card (2005) presents an approach for causal analysis of defects that is summarized in six
steps: (i) select a sample of the defects, (ii) classify the selected defects, (iii) identify
systematic errors, (iv) identify the main causes (V) develop action items, and (vi) record the
results of the causal analysis meeting.
Kalinovski (2009) also describes an approach called DBPI (Defect Based Process
Improvement), and is based on a rich systematic review for elaboration of the approach to
organizational analysis of causes.
Gonçalves (2008b) proposes a causal analysis approach, developed based on the PDCA
method, that applies the multicriteria decision support methodology, aiming to assist the
analysis of causes form complex problems in the context of software organizations.
ISO / IEC 12207 (2008) describes a framework for problem-solving process to analyze and
solve problems (including nonconformances) of any nature or source, that are discovered
during the execution of the development, operation, maintenance or other processes.

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 179

Type of
Problem

Problem’s Causes Actions Executed for
Addressing the Cause

Achieved
Improvement

High Defect
Density in

Systemic Tests

- Cause 1: architectural
components developed in
parallel with use cases.

- Cause 2: baseline
generated without testing
in an environment similar
to production
environment.

- Cause 3: lack of
understanding of
requirements by
developers.

- Cause 4: Sprint’s scope
badly estimated
(estimation and sequence
of use cases
development).

- Cause 5: architecture is
not suitable for the
concurrent development
of the team.

- Action 1: perform
integration tests before
systemic tests.

- Action 2: held a requirement
workshop for improving the
understanding of the use
cases by the project team.

- Action 3: carry out use case
tests in an environment
similar to the production
environment.

- Action 4: define and
communicate the concept of
"done" to complete the
implementation of the use
case.

- Action 5: improve the
planning to the next
iterations, with the
participation of the team (the
planning should include the
development and integration
of architectural components
before the development of the
use cases).

- Action 6: perform the
refactoring of architectural
components.

Defect density
reduction in 51%

Table 11. Consolidated Information from MiniDMAICs

7.8 Benefits of the MiniDMAIC Approach
Some of the main benefits identified during the execution of MiniDMAIC actions in
software development projects were:
 The execution of MiniDMAIC in the organization, reduced considerably, on the

projects context, the defect density in systemic tests, as reported in Bezerra (2009b) and
increased the productivity as described in Bezerra (2009a);

 The classification of defects used on the approach and adapted by the organization was
essential for helping the projects to understanding the defects and to identify of root
causes;

 The analysis of many MiniDMAIC is fundamental to identify improvement
opportunities for the processes at the organizational level. Thus, we observed that,
according to the organization’s maturity level, new data sources can aggregate greatly

to the processes improvements. These new sources can be added to the list of data that
can be analyzed, defined in Albuquerque (2008);

 The approach implemented in the Jira tool facilitated the use and increased the speed
of MiniDMAIC execution, because this tool already contains all the required fields to
perform each phase;

 Intensifying the use of the action in the projects an improvement was implemented, the
execution of MiniDMAIC in the first set of tests of the projects to analyze the causes of
defects. If the project has none actions to be executed to address the defects, the
MiniDMAIC could be completed in phase "Analyze";

 The template for analyzing the causes of defects in systemic tests, available from the
approach, was of great importance in facilitating the process of analysis and
prioritization of the problem’s root causes addressed in the projects;

 Integration of MiniDMAIC approach to the processes that deal with identifying and
implementing process improvements at the organizational level.

8. Related Works

According to Kalinowski (2009), the first approach to analysis of causes found was
described by Endres (1975), in IBM. This approach deals with individual analysis of
software defects so that they can be categorized and their causes identified, allowing taking
actions to prevent its occurrence in future projects, or at least ensuring its detection in these
projects. The analysis of defects in this approach occurs occasionally, as well as corrective
actions.
The technique RCA (Root Cause Analysis) (Ammerman, 1998), which is one of the
techniques used to analyze the root cause of a problem, aims at formulating
recommendations to eliminate or reduce the incidence of the most recurrent errors and hose
with higher cost in organization’s software development projects. According to Robitaille
(2004), the RCA has the purpose of investigating the factors that are not so visible that has
contributed to the identification of nonconformities or potential problems.
Triz (Altshuller, 1999) is another methodology developed for analysing causes. It is a
systematic human-oriented approach and based on knowledge. His theory defines the
problems where the solution raises new problems.
Card (2005) presents an approach for causal analysis of defects that is summarized in six
steps: (i) select a sample of the defects, (ii) classify the selected defects, (iii) identify
systematic errors, (iv) identify the main causes (V) develop action items, and (vi) record the
results of the causal analysis meeting.
Kalinovski (2009) also describes an approach called DBPI (Defect Based Process
Improvement), and is based on a rich systematic review for elaboration of the approach to
organizational analysis of causes.
Gonçalves (2008b) proposes a causal analysis approach, developed based on the PDCA
method, that applies the multicriteria decision support methodology, aiming to assist the
analysis of causes form complex problems in the context of software organizations.
ISO / IEC 12207 (2008) describes a framework for problem-solving process to analyze and
solve problems (including nonconformances) of any nature or source, that are discovered
during the execution of the development, operation, maintenance or other processes.

www.intechopen.com

Quality Management and Six Sigma180

Most of the research cited in this work proposes approaches for analysis of causes focusing
on the organizational level. However, it is often necessary to perform analysis of causes
within the projects that must be quick and effective. In organizations seeking high levels of
maturity models of process improvement like CMMI, this practice has to be executed within
the project to maintain the adherence to the model. Furthermore, from the investigated
approaches involving analysis and resolution of causes, none is based on DMAIC method.
The approach presented in this work has the main difference from other approaches the
focus of causal analysis in the context of projects, providing a structured set of steps based
on the DMAIC method, that are simple to execute.

9. Conclusion

The treatment of problems and defects found in software projects is still deficient in most
organizations. The analysis, commonly, do not focus sufficiently on the problem and its
possible sources, leading to wrong decisions, which will ultimately not solve the problem. It
is also difficult to implement a causal analysis and resolution process (CAR) in projects, as
prescribed by the CMMI level 5, due to limited resources which they have to work.
The approach presented in the work aims to minimize these difficulties by proposing a
consistent approach to analysis and resolution of causes based on the DMAIC method, that
is already consolidated in the market. This proposed approach is also adherent to the
process area Causal Analysis and Resolution – CAR of CMMI. Moreover, the approach was
implemented in a workflow tool, and has been executed in several software development
projects in an organization assessed in level 5 of CMMI.
As the main limitation of the approach we have that the MiniDMAIC was defined in the
context of organizations that are at least level 4 of CMMI maturity model, since the
MiniDMAIC actions will have even better results, because several parameters to measure
the projects’ results will be already defined, and the use of statistical analysis tools will
already be a common practice in the organization. However, it can be executed in less
mature organizations, adapting the approach to the organization’s reality, but some steps
may not get the expected results.

10. References

Albuquerque, A. B. (2008). Evaluation and improvement of Organizational Processes Assets
in Software Development Environment. D.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro,
RJ, Brazil.

Altshuller, G. (1999). Innovation Algorithm: TRIZ, systematic innovation and technical
creativity. Technical Innovation Ctr.

Ammerman, M. (1998). The Root Cause Analysis Handbook: A Simplified Approach to
Identifying, Correcting, and Reporting Workplace Errors. Productivity Press.

Banas Qualidade. (2007). “Continuous improvement – Soluctions to Problems”, Quality
News. São Paulo. Accessible in

 http://www.estatbrasil.com.br/PgQtN20030003.htm. Acessed in: 2007, Feb 22.

Bezerra, C. I. M.; Coelho, C.; Gonçalves, F. M.; Giovano, C.; Albuquerque, A. B. (2009a).
MiniDMAIC: An Approach to Causal Analysis and Resolution in Software
Development Projects. VIII Brazilian Simposium on Software Quality, Ouro Preto.
Proceedings of the VIII Brazilian Simposium on Software Quality.

Bezerra, C. I. M. (2009b). MiniDMAIC: An Approach to Causal Analysis and Resolution in
Software Development Projects. Master Dissertation, University of Fortaleza
(UNIFOR), Fortaleza, Ceará, Brazil.

Blauth, Regis. (2003). Six Sigma: a strategy for improving results, FAE Business Journal, nº 5.
Card, D. N. (2005). Defect Analysis: Basic Techniques for Management and Learning,

Advances in Computers 65.
Chillarege, R. et al. (1992). Orthogonal Defect Classification: a Concept for in-Process

Measurements. IEEE Transactions on SE, v.18, n. 11, pp 943-956.
Chrissis, Mary B.; Konrad, Mike; Shrum, Sandy. (2006). CMMI: Guidelines for Process

Integration and Product Improvement, 2nd edition, Boston, Addison Wesley.
Dennis, M. (1994). The Chaos Study, The Standish Group International.
Endres, A. (1975). An Analysis of Errors and Their Causes in Systems Programs, IEEE

Transactions on Software Engineering, SE-1, 2, June 1975, pp. 140-149.
Gonçalves, F., Bezerra, C., Belchior, A., Coelho, C., Pires, C. (2008a). Implementing Causal

Analysis and Resolution in Software Development Projects: The MiniDMAIC
Approach, 19th Australian Conference on Software Engineering, pp. 112-119.

Gonçalves, F. (2008b) An Approach to Causal Analysis and Resolution of Problems Using
Multicriteria. Master Dissertation, University of Fortaleza (UNIFOR), Fortaleza,
Ceará, Brazil.

IEEE standard classification for software anomalies (1944). IEEE Std 1044-1993. 2 Jun 1994.
ISO/IEC 12207:1995/Amd 2:2008, (2008). Information Technology - Software Life Cycle

Process, Amendment 2. Genebra: ISO.
Ishikawa, K. (1985). What is Total Quality Control? The Japanese Way. Prentice Hall.
Juran, J. M. (1991). Qualtiy Control, Handbook. J. M. Juran, Frank M. Gryna - São Paulo -

Makron, McGraw-Hill.
Kalinowski, M. (2009) “DBPI: Approach to Prevent Defects in Software to Support the

Improvement in Processes and Organizational Learning”. Qualifying Exam,
COPPE/UFRJ, Rio de Janeiro, RJ, Brazil.

Kulpa, Margaret K.; Johnson, Kent A. (2003). Interpreting the CMMI: a process improvent
approach. Florida, Auerbach.

Pande, S. (2001). Six Sigma Strategy: how the GE, the Motorola and others big comnpanies
are sharpening their performance. Rio de Janeiro, Qualitymark.

Rath and Strong. (2005). Six Sigma/DMAIC Road Map, 2nd edition.
Robitaille, D. (2004). Root Cause Analysis: Basic Tools and Techniques. Chico, CA: Paton

Press.
Rotondaro, G. R; Ramos, A. W.; Ribeiro, C. O.; Miyake, D. I.; Nakano, D.; Laurindo, F. J. B;

Ho, L. L.; Carvalho, M. M.; Braz, A. A.; Balestrassi, P. P. (2002). Six Sigma:
Management Strategy for Improving Processes, Products and Services, São Paulo,
Atlas.

Smith, B.; Adams, E. (2000). LeanSigma: advanced quality, Proc. 54th Annual Quality
Congress of the American Society for Quality, Indianapolis, Indiana.

www.intechopen.com

MiniDMAIC: An Approach to Cause and Analysis Resolution in Software Project Development 181

Most of the research cited in this work proposes approaches for analysis of causes focusing
on the organizational level. However, it is often necessary to perform analysis of causes
within the projects that must be quick and effective. In organizations seeking high levels of
maturity models of process improvement like CMMI, this practice has to be executed within
the project to maintain the adherence to the model. Furthermore, from the investigated
approaches involving analysis and resolution of causes, none is based on DMAIC method.
The approach presented in this work has the main difference from other approaches the
focus of causal analysis in the context of projects, providing a structured set of steps based
on the DMAIC method, that are simple to execute.

9. Conclusion

The treatment of problems and defects found in software projects is still deficient in most
organizations. The analysis, commonly, do not focus sufficiently on the problem and its
possible sources, leading to wrong decisions, which will ultimately not solve the problem. It
is also difficult to implement a causal analysis and resolution process (CAR) in projects, as
prescribed by the CMMI level 5, due to limited resources which they have to work.
The approach presented in the work aims to minimize these difficulties by proposing a
consistent approach to analysis and resolution of causes based on the DMAIC method, that
is already consolidated in the market. This proposed approach is also adherent to the
process area Causal Analysis and Resolution – CAR of CMMI. Moreover, the approach was
implemented in a workflow tool, and has been executed in several software development
projects in an organization assessed in level 5 of CMMI.
As the main limitation of the approach we have that the MiniDMAIC was defined in the
context of organizations that are at least level 4 of CMMI maturity model, since the
MiniDMAIC actions will have even better results, because several parameters to measure
the projects’ results will be already defined, and the use of statistical analysis tools will
already be a common practice in the organization. However, it can be executed in less
mature organizations, adapting the approach to the organization’s reality, but some steps
may not get the expected results.

10. References

Albuquerque, A. B. (2008). Evaluation and improvement of Organizational Processes Assets
in Software Development Environment. D.Sc. Thesis, COPPE/UFRJ, Rio de Janeiro,
RJ, Brazil.

Altshuller, G. (1999). Innovation Algorithm: TRIZ, systematic innovation and technical
creativity. Technical Innovation Ctr.

Ammerman, M. (1998). The Root Cause Analysis Handbook: A Simplified Approach to
Identifying, Correcting, and Reporting Workplace Errors. Productivity Press.

Banas Qualidade. (2007). “Continuous improvement – Soluctions to Problems”, Quality
News. São Paulo. Accessible in

 http://www.estatbrasil.com.br/PgQtN20030003.htm. Acessed in: 2007, Feb 22.

Bezerra, C. I. M.; Coelho, C.; Gonçalves, F. M.; Giovano, C.; Albuquerque, A. B. (2009a).
MiniDMAIC: An Approach to Causal Analysis and Resolution in Software
Development Projects. VIII Brazilian Simposium on Software Quality, Ouro Preto.
Proceedings of the VIII Brazilian Simposium on Software Quality.

Bezerra, C. I. M. (2009b). MiniDMAIC: An Approach to Causal Analysis and Resolution in
Software Development Projects. Master Dissertation, University of Fortaleza
(UNIFOR), Fortaleza, Ceará, Brazil.

Blauth, Regis. (2003). Six Sigma: a strategy for improving results, FAE Business Journal, nº 5.
Card, D. N. (2005). Defect Analysis: Basic Techniques for Management and Learning,

Advances in Computers 65.
Chillarege, R. et al. (1992). Orthogonal Defect Classification: a Concept for in-Process

Measurements. IEEE Transactions on SE, v.18, n. 11, pp 943-956.
Chrissis, Mary B.; Konrad, Mike; Shrum, Sandy. (2006). CMMI: Guidelines for Process

Integration and Product Improvement, 2nd edition, Boston, Addison Wesley.
Dennis, M. (1994). The Chaos Study, The Standish Group International.
Endres, A. (1975). An Analysis of Errors and Their Causes in Systems Programs, IEEE

Transactions on Software Engineering, SE-1, 2, June 1975, pp. 140-149.
Gonçalves, F., Bezerra, C., Belchior, A., Coelho, C., Pires, C. (2008a). Implementing Causal

Analysis and Resolution in Software Development Projects: The MiniDMAIC
Approach, 19th Australian Conference on Software Engineering, pp. 112-119.

Gonçalves, F. (2008b) An Approach to Causal Analysis and Resolution of Problems Using
Multicriteria. Master Dissertation, University of Fortaleza (UNIFOR), Fortaleza,
Ceará, Brazil.

IEEE standard classification for software anomalies (1944). IEEE Std 1044-1993. 2 Jun 1994.
ISO/IEC 12207:1995/Amd 2:2008, (2008). Information Technology - Software Life Cycle

Process, Amendment 2. Genebra: ISO.
Ishikawa, K. (1985). What is Total Quality Control? The Japanese Way. Prentice Hall.
Juran, J. M. (1991). Qualtiy Control, Handbook. J. M. Juran, Frank M. Gryna - São Paulo -

Makron, McGraw-Hill.
Kalinowski, M. (2009) “DBPI: Approach to Prevent Defects in Software to Support the

Improvement in Processes and Organizational Learning”. Qualifying Exam,
COPPE/UFRJ, Rio de Janeiro, RJ, Brazil.

Kulpa, Margaret K.; Johnson, Kent A. (2003). Interpreting the CMMI: a process improvent
approach. Florida, Auerbach.

Pande, S. (2001). Six Sigma Strategy: how the GE, the Motorola and others big comnpanies
are sharpening their performance. Rio de Janeiro, Qualitymark.

Rath and Strong. (2005). Six Sigma/DMAIC Road Map, 2nd edition.
Robitaille, D. (2004). Root Cause Analysis: Basic Tools and Techniques. Chico, CA: Paton

Press.
Rotondaro, G. R; Ramos, A. W.; Ribeiro, C. O.; Miyake, D. I.; Nakano, D.; Laurindo, F. J. B;

Ho, L. L.; Carvalho, M. M.; Braz, A. A.; Balestrassi, P. P. (2002). Six Sigma:
Management Strategy for Improving Processes, Products and Services, São Paulo,
Atlas.

Smith, B.; Adams, E. (2000). LeanSigma: advanced quality, Proc. 54th Annual Quality
Congress of the American Society for Quality, Indianapolis, Indiana.

www.intechopen.com

Quality Management and Six Sigma182

Siviy, J. M.; Penn, L. M.; Happer, E. (2005). Relationship Between CMMI and Six Sigma.
Techical Note, CMU / SEI -2005-TN-005.

Tayntor, Christine B. (2003). Six Sigma Software Development, Flórida, Auerbach.
Watson, G. H. (2001). Cycles of learning: observations of Jack Welch, ASQ Publication.

www.intechopen.com

Quality Management and Six Sigma

Edited by Abdurrahman Coskun

ISBN 978-953-307-130-5

Hard cover, 276 pages

Publisher Sciyo

Published online 16, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

If you do not measure, you do not know, and if you do not know, you cannot manage. Modern Quality

Management and Six Sigma shows us how to measure and, consequently, how to manage the companies in

business and industries. Six Sigma provides principles and tools that can be applied to any process as a

means used to measure defects and/or error rates. In the new millennium thousands of people work in various

companies that use Modern Quality Management and Six Sigma to reduce the cost of products and eliminate

the defects. This book provides the necessary guidance for selecting, performing and evaluating various

procedures of Quality Management and particularly Six Sigma. In the book you will see how to use data, i.e.

plot, interpret and validate it for Six Sigma projects in business, industry and even in medical laboratories.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carla Ilane Moreira Bezerra Carla, Adriano Bessa Albuquerque Adriano, Luiz Sergio Placido Sergio and

Marcia G. S. Goncalves Marcia (2010). MiniDMAIC: an Approach to Causal Analysis and Resolution in

Software Development Projects, Quality Management and Six Sigma, Abdurrahman Coskun (Ed.), ISBN: 978-

953-307-130-5, InTech, Available from: http://www.intechopen.com/books/quality-management-and-six-

sigma/minidmaic-an-approach-to-causal-analysis-and-resolution-in-software-development-projects

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

