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1. Introduction    

With the abilities of handling constraints and performance of optimization, model based 
predictive control (MPC), especially linear MPC, has been extensively researched in theory 
and applied in practice since it was firstly proposed in 1970s (Qin & Badgwell, 2003). 
However, when used in systems with heavy nonlinearities, nonlinear MPC (NMPC) results 
often in problems of high computational cost or closed loop instability due to their 
complicated structure. This is the reason why the gaps between NMPC theory and its 
applications in reality are larger and larger, and why researches on NMPC theory absorbs 
numerous scholars (Chen & Shaw, 1982; Henson, 1998 ; Mayne, et al., 2000 ; Rawlings, 2000). 
When the closed loop stability of NMPC is concerned, some extra strategies is necessary, 
such as increasing the length of the predictive horizon, superinducing state constraints, or 
introducing Control Lyapunov Functions (CLF).  
That infinite predictive/control horizon (in this chapter, predictive horizon is assumed 
equal to control horizon) can guarantee the closed loop stability is natural with the 
assumption of feasibility because it implicates zero terminal state, which is a sufficient 
stability condition in many NMPC algorithm (Chen and Shaw, 1982). In spite of the 
inapplicability of infinite predictive horizon in real plants, a useful proposition originated 
from it makes great senses during the development of NMPC theory, i.e., a long enough 
predictive horizon can guarantee the closed loop stability for most systems (Costa & do Val, 
2003; Primbs & Nevistic, 2000). Many existing NMPC algorithm is on the basis of this result, 
such as Chen & Allgower (1998), Magni et al. (2001). Although long predictive horizon 
scheme is convenient to be realized, the difficulty to obtain the corresponding threshold 
value makes this scheme improper in many plants, especially in systems with complicated 
structure. For these cases, another strategy, superinducing state constraints or terminal 
constraints, is a good substitue. A typical predictive control algorithm using this strategy is 
the so called dual mode predictive control(Scokaert et al., 1999 ; Wesselowske and Fierro, 
2003 ; Zou et al., 2006), which is originated from the predictive control with zero terminal 
state constrains and can increase its the stability region greatly. CLF is a new introduced 
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concept to design nonlinear controller. It is firstly used in NMPC by Primbs et al. in 1999 to 
obtain two typical predictive control algorithm with guaranteed stability.  
Unfortunately, each approach above will result in huge computational burden 
simultaneously since they bring either more constraints or more optimizing variables. It is 
well known that the high computational burden of NMPC mainly comes from the online 
optimization algorithm, and it can be alleviated by decreasing the number of optimized 
variables. But this often deteriorates the closed loop stability due to the changed structure of 
optimal control problem at each time step.  
In a word, the most important problem during designing NMPC algorithm is that the 
stability and computational burden are deteriorated by each other. Another problem, 
seldom referred to but top important, is that the stability can only be guarangteed under the 
condition of perfect optimization algorithm that is impossible in reality. Thus, how to design 
a robustly stable and fast NMPC algorithm has been one of the most difficult problems that 
many researchers are pursued.  
In this chapter, we attempt to design a new stable NMPC which can partially solve the 
problems referred to above. CLF, as a new introduced concept to design nonlinear controller 
by directly using the idea of Lyapunov stability analysis, is used in this chapter to ensure the 
stability. Firstly, a generalized pointwise min-norm (GPMN) controller (a stable controller 
design method) based on the concept of CLF is designed. Secondly, a new stable NMPC 
algorithm, called GPMN enhanced NMPC (GPMN-ENMPC), is given through 
parameterized GPMN controller. The new algorithm has the following two advantages, 1) it 
can not only ensure the closed loop stability but also decrease the computational cost 
flexibly at the price of sacrificing the optimality in a certain extent; 2) a new tool of guide 
function is introduced by which some extra control strategy can be considered implicitly. 
Subsequently, the GPMN-ENMPC algorithm is generalized to obtain a robust NMPC 
algorithm with respect to the feedback linearizable system. Finally, extensive simulations 
are conducted and the results show the feasibility and validity of the proposed algorithm. 

 
2. Concept of CLF 

The nonlinear system under consideration in this chapter is in the form as: 
 

 
( ) ( )

m

x f x g x u
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where nx R  is state vector, mu R  is input vector, f(*) and g(*) are nonlinear smooth 
functions with f(0) = 0. U is the control constraint. 
 
Definition I: 

For system (1), if there exists a C1 function V(x): x RnR+ {0}, such that 
1) V(0) = 0, V(x) > 0 if x ≠0; 
2) a1(||x||) < V(x) < a2(||x||), where a1(*) and a2(*) are class K∞ functions; 
3) cinf [ ( ) ( ) ( ) ( ) ] 0, {0}
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then V(x) is called a CLF of system (1). Moreover, if x can be chosen as Rn and V(x) satisfies 
the following condition, 

 

V(x)∞ ==> ||x||∞ 
 

then V(x) is called a global CLF of system (1).                                                                                 █ 
If system (1) has uncertainty terms, i.e., 
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where ω  Rq is external disturbance; l(*) and h(*) are pre-defined nonlinear smooth 
functions; y is the interested output. We have the following concept of robust version CLF – 
called H∞CLF, 
 
Definition II, 

For system (2), if there exists a C1 function V(x): x RnR+ {0}, such that 
1) V(0) = 0, V(x) > 0 if x ≠0; 
2) a1(||x||) < V(x) < a2(||x||), where a1(*) and a2(*) are class K∞ functions; 
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then V(x) is called a local H∞CLF of system (2) in 
1 2c c  . Furthermore, V(x) is called a 

global H∞CLF if c1 can be chosen +∞ with V(x)∞ as |x|∞.  █ 
 
Definition I and II indicate that if we can obtain a CLF or H∞CLF of system (1) or (2), a 
‘permitted’ control set can be found at every ‘feasible’ state, and the control action inside the 
set can guarantee the closed loop stability of system (1) or input output finite gain L2 
stability of system (2). Subsequently, in order to complete the controller design, what one 
needs to do is just to find an approach to select a sequence of control actions from the 
‘permitted control set’, see Fig. 1.  
 

 
Fig. 1. Sketch of CLF, the shadow indicates the ‘permitted’ set of (x, u) ( , )V x u  along system (1)  
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algorithm with respect to the feedback linearizable system. Finally, extensive simulations 
are conducted and the results show the feasibility and validity of the proposed algorithm. 
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set can guarantee the closed loop stability of system (1) or input output finite gain L2 
stability of system (2). Subsequently, in order to complete the controller design, what one 
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Fig. 1. Sketch of CLF, the shadow indicates the ‘permitted’ set of (x, u) ( , )V x u  along system (1)  

Input 

State

www.intechopen.com



Model Predictive Control62

 

CLF based nonlinear controller design method is also called direct method of Lyapunov 
function based controller design, and its difficulty is how to ensure the controller’s 
continuousness. Thus, most recently, researchers mainly pay their attentions to designing 
continuous CLF based controller, and several universal formulas have been revealed. 
Sontag’s formula (Sontag, 1989), for example, originated from the root calculation of 2nd-
order equation, can be written as Eq. (3) through slightly modification by Freeman (Freeman 
& Kokotovic, 1996b), 
 

 

2( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )
0

0 0

T T
x x x x

xT T
x x

x

x x x x x x x
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V f V f q x V g g V
V g

u V g g V

V g

          


 (3) 

 
where q(x) is a pre-designed positive definite function.  
Pointwise Min-Norm (PMN) control is another well known CLF-based approach proposed 
by Freeman (Freeman & Kokotovic, 1996a), 
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u U
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where σ(x) is a pre-selected positive definite function. Controller (4) can also be explicitly 
denoted as (5) if the constraint set U can be selected big enough. 
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(3) and (5) provide two different methods on how to design continuous and stable controller 
based on CLF with respect to system (1). H∞CLF with respect to system (2) is a new given 
concept, and there are no methods can be used to designed robust controller based on it. 
Although the closed loop stability can be guaranteed using controller (3) or controller (5), 
selection of parameters q(x) or σ(x) is too difficult to be used in real applications. This is 
mainly because these parameters heavily influence some inconsistent closed loop 
performance simultaneously. Furthermore, if the known CLF is not global, the selection of 
q(x) and σ(x) will also influence stability margin of the closed loop systems, which makes 
them more difficult to be selected (Sontag, 1989; Freeman & Kokotovic, 1996a). In this 
chapter, we will firstly give a new CLF based controller design strategy, which is superior 
compared to the existing CLF based controller design methods referred to above.  
Furthermore, the most important is that this new strategy can be used in designing robustly 
stable and fast NMPC algorithm.  

 

 

3. GPMN-ENMPC 

3.1 CLF based GPMN controller 
Since q(x) and σ(x) in controller (3) and controller (5) are difficult to select, a guide function is 
proposed in this subsection into the PMN controller to obtain a new CLF based nonlinear 
controller with respect to system (1), in the following section, this controller will be 
generated with respect to system (2). In the new controller, σ(x) is only used to ensure the 
stability of the closed loop, while the other desired performance of the controller, for 
example tracking performance, can be guaranteed by the guide function, which, as new 
controller parameters, can be designed without deteriorating the stability. The following 
proposition is the main result of this subsection.  
 
Proposition I: 
If V(x) is a CLF of system (1) in Ωc and ξ(x): RnRm is a continuous guide function such that 
ξ(0) = 0, then, the following controller can stabilize system (1), 
 

 ( )
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Vu K x

V x x

u x u x

K x y V x f x V x g x y x y U
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where σ(x) is a positive definite function of state, and ξ(x), called guide function, is a 
continuous state function. 
Proof of Proposition I: 
Let V(x) be a Lyapunov function candidate for system (1), then we have 
 
 ( ) ( ) ( ) ( ) ( )x xV x V x f x V x g x u   (7) 
 
Substitute Eq. (6) into (7), it is not difficult to obtain the following inequality, 
 

( ) ( ) ( ) ( ) ( ) ( )x xV x V x f x V x g x u x     
 

Because σ(x) is a positive definite function, proposition I is proved.                                           █ 
 
Controller (6) is called Generalized Pointwise Min-Norm (GPMN) controller. The difference 
between the proposed GPMN controller and the normal PMN controller of Eq. (4) can be 
illustrated in Fig.2: for the normal PMN algorithm (Fig. 2a), the controller output in each 
state point has the minimum ‘permitted’ norm (close to the state-axis as much as possible), 
while the GPMN controller’s output has nearest distance from the guide function ξ(x) (Fig. 
2b). Thus, ξ(x) in GPMN controller is actual a performance criterion which the controller is 
expected to pursue, while σ(x) dedicates only on providing the ‘permitted’ stable control 
input sets.  
Up to now, the design of new GPMN controller has been completed. However, in order to 
use a GPMN controller in reality or in NMPC algorithm, analytical form of the solution of 
Eq. (6) is necessary to be studied. 
Firstly, if there are no input constraints (or the input constraint sets are big enough), the 
analytical form of controller (6) can be obtained as follows, based on the projection theory, 
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chapter, we will firstly give a new CLF based controller design strategy, which is superior 
compared to the existing CLF based controller design methods referred to above.  
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2b). Thus, ξ(x) in GPMN controller is actual a performance criterion which the controller is 
expected to pursue, while σ(x) dedicates only on providing the ‘permitted’ stable control 
input sets.  
Up to now, the design of new GPMN controller has been completed. However, in order to 
use a GPMN controller in reality or in NMPC algorithm, analytical form of the solution of 
Eq. (6) is necessary to be studied. 
Firstly, if there are no input constraints (or the input constraint sets are big enough), the 
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Secondly, if there exist input constraints, the analytical expression of controller (6) might be 
very complicated or even inexistent. Thus in this subsection, only analytical form of 
controller (6) with a typical super ball input constraint is researched, i.e., input constraints is 
as  
 2 2 2

1 1{( , , ) | }m mU u u u u r       (9) 
 

where (u1, … ,um) is the input vector, and r is the radius of the super ball. 
In order to obtain the analytical expression of Eq. (6) with input constraint as Eq. (9), we 
propose the following 4 steps (For a general control input constraint U, one can always find 
a maximal inscribed super ball B of it, and then use B replacing U before continuing the 
following processes):  
 

 
Fig. 2a. the sketch of PMN  

 
Fig. 2b. the sketch of GPMN 
* the dashed line is the PMN controller in a) and the GPMN control in b); the solid line 
denotes the guide function of ξ(x). 
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Step1: For each state x, the following equation denotes a super plane in Rm (uRm). 
 

 ( ) ( ) ( ) 0x xV f x x V g x u     (10) 
 
Let d be the distance from zero to the super plane (10), we have, 
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* Sketch of the process to build the analytic GPMN controller 
 
Step2: From Eq. (11), the ‘permitted’ stable control input set KV(x) in controller (6) can be 
denoted as Fig. 3a, where the right figure (left figure) is the case that the super plane of (10) 
intersects (does not intersect) with the super ball (9), and the region filled by the dotted line 
is the ‘permitted’ stable control input set. For the case denoted by the left figure of Fig. 3a, it 
is easy to obtain a minimal distance from any point p to KV(x), and the corresponding point, 
i.e., the controller’s output, in KV(x) with minimal distance from p can also be obtained (the 
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Secondly, if there exist input constraints, the analytical expression of controller (6) might be 
very complicated or even inexistent. Thus in this subsection, only analytical form of 
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as  
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point of intersection of the super ball (9) and the beeline connecting the centre of it and p). 
With respect to the case of the right figure, the maximally inscribed super ball B’ is used to 
replace KV(x) (see Fig. 3b). Thus, the same processes as above can be used to obtain the 
output of controller (6).  
Step 3: A new ‘permitted’ stable control input sets ( )VK x  is defined, 
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It is obvious that ( ) ( )V VK x K x , thus the stability of the closed loop can be ensured from 
Proposition I. 
Step 4: The analytical expression of GPMN controller with super-ball input constraint can 
thus be described as 
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where ξ(x) is the guide function of controller (6).                                                                           █ 
From the preceding procedure, it is evidently that Eq. (13) is the solution of Eq. (6) with 
KV(x) being placed by ( )VK x . 

 
3.2 GPMN-ENMPC 
In order to achieve a stable NMPC with reduced computational burden, we propose to use 
the GPMN to parameterize the control input sequence in NMPC. Assuming that ( , )x   is a 
function of state x, where θ is the vector of unknown parameters, the following NMPC can 
be formulated, 
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NMPC algorithm of (14) is different from the normal NMPC in the following aspect: in 
normal NMPC algorithm, one tries to optimize the continuous control profile of u (Mayne et 
al., 2000), while controller (14) tries to achieve good performance by optimizing the 
parameter vector θ. Thus, the computational cost of controller (14) dependents mainly on 
dimension of θ instead of that of control input profile in normal NMPC algorithm. The most 
important problem of the latter algorithm is that its computational cost increases rapidly 
with the control horizon. Based on (14), our new designed NMPC controller is introduced in 
the following proposition. 
 
Proposition II: 
Assuming V(x) is a known CLF of system (1), Ωc is the stability region of V(x), then 
controller (14) with the following GPMN controller ( , )x  , 
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(u(x,θ) is the GPMN control and ξ(x,θ) the guide function in Eq. (6)), is stable in Ωc. 
Furthermore, if V(x) is a global CLF, controller of (14) combined with (15) is stable over Rn. 
(14), combined with (15), is called GPMN-Enhanced NMPC (GPMN-ENMPC). 
Proof of Proposition II: 
At any time instant t, by assuming that θ* is the optimal parameters at t, control input at t 
can be represented as u(x,θ*). From Proposition I, we can conclude that the control inputs 
u(x,θ*) can guarantee a negative definite ( )V x . Due to the randomicity of t, GPMN-ENMPC 

actually makes the ( )V x  negative in any time instant, which means that the closed loop 
stability of controller (14) and (15) is guaranteed.                                                                          █ 

 
3.3 Selection of ξ(x,θ) 
Theoretically, ξ(x,θ) in (15) can be selected in any forms since it does not influence the closed 
loop stability, which is guaranteed by GPMN. However, it is natural that ξ(x,θ) will 
influence other closed loop performances of the GPMN-ENMPC except the stability.  
Since optimality is the main concern in designing NMPC algorithm, the Bellman’s 
Optimization Principle (BOP, Lewis & Syrmos, 1995) is used to design ξ(x,θ) in this sub-
section. 
In BOP, with the following quadratic cost function, 
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and J*(x0,θ) denoting the optimal value function of J(x0,θ) in state x0, the following controller 
of system (1) is optimal, 
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Unfortunately, in most applications, it is impossible to obtain J*(x*,θ).  
Based on the Stone-Weierstrass theorem (Brinkhuis & Tikhomirov, 2005), any continuous 
function defined in a bounded set can be uniformly approximated by a polynomial function, 
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Thus, take the coefficients of the Bernstein polynomial as the parameters θ, and select θ 
optimally using the NMPC algorithm, a ‘quasi-optimal’ function closed to J*(x*,θ) can be 
obtained. That means we can complete the design of GPMN-ENMPC algorithm by taking 
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where 

1 ,..., nv v , 1,..., nv v ≥ 0 and 1 ... nv v  ≤ k are the parameters to be optimized, k is the 

order of the Bernstein polynomial, and  
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It should be noted that the order of the Bernstein polynomial determines the consequent 
optimization cost, i.e., the higher the order is, the higher the computational cost is. About 
the GPMN-ENMPC, we have the following remarks: 
Remark-1: Selection of ξ(x,θ) as Eq. (21) provides a feasible way to complete the GPMN-
ENMPC of (20) and (21). By this way, the computation cost is controllable, namely, one can 
select the order of k to meet the CPU capability of a specific real system. This makes the 
GPMN-ENMPC feasible to be implemented.  

 

 

Remark-2: The selection of k does not influence the closed loop stability, which has already 
guaranteed by the GPMN scheme. But there still exist trade-offs between computation cost 
and the optimal performance which is determined by ξ(x,θ).  
 
Remark-3: Compared to nominal NMPC algorithm, the huge computational burden 
problem of GPMN-ENMPC algorithm is improved due to the following two reasons: 1) the 
dimension of optimizing variables is one of key elements which increase the computational 
burden of NMPC, while that of GPMN-ENMPC algorithm is independent of the predictive 
horizon; 2) online considerations of control input constraints are not necessary in GPMN-
ENMPC algorithm since it can be dealt with offline during designing GPMN controller.     

 
3.4 The Feasibility of GPMN-ENMPC 
Another important problem, normally called the feasibility problem of NMPC, is that 
general NMPC algorithm may not guarantee that a control set always exists to meet all of 
the input and state constraints, while the proposed GPMN-ENMPC can guarantee such a 
control sequence always exists. This is because for any θ, from the proposition-I, one can 
always obtain a stable GPMN controller, i.e., u(x,θ) of (6) meeting all input and state 
constraints. Therefore, by Eq. (14) and (15), there will always exist a feasible control  
u = ( , )x  , and the task left is just to find an optimal parameter set of θ to minimize the cost 
function of J(x,θ) in Eq. (14). 

 
4. H∞ GPMN-ENMPC  

In section 3, GPMN-ENMPC algorithm is introduced with respect to system (1). In this 
section, it will be generalized to deal with the disturbed system as Eq. (2). Firstly, an H∞ 
controller with partially known disturbances is given, and then it is used to design 
H∞GPMN controller, which followed by the designing process of H∞GPMN-ENMPC. 

 
4.1 H∞ Control With Partially Known Disturbances 
Suppose the following two assumptions are satisfied with respect to system (2), 
 
Assumption I:  
System (2) is static feedback linearizable, i.e., there exists a state feedback controller u = k(x) 
such that (2) can be transformed into a linear system without considering ω. 

 
Assumption II: 
The disturbances of system (2) are partially obtainable, i.e., the variables ω can be used to 
construct controller.          
 
Assumption II is reasonable because the uncertainty information ω can often be measured or 
estimated in reality (He & Han, 2007; Chen, 2004). Moreover, the tracking problem of 
general nonlinear system, where ω is composed of known desired trajectory, can also be 
modeled as Eq. (2). However, the higher order derivative of the disturbances with respective 
to time is often difficult to be obtained due to the heavy additive noise. Thus, the 
disturbances are often ‘partially obtainable’.  
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function of J(x,θ) in Eq. (14). 

 
4. H∞ GPMN-ENMPC  

In section 3, GPMN-ENMPC algorithm is introduced with respect to system (1). In this 
section, it will be generalized to deal with the disturbed system as Eq. (2). Firstly, an H∞ 
controller with partially known disturbances is given, and then it is used to design 
H∞GPMN controller, which followed by the designing process of H∞GPMN-ENMPC. 

 
4.1 H∞ Control With Partially Known Disturbances 
Suppose the following two assumptions are satisfied with respect to system (2), 
 
Assumption I:  
System (2) is static feedback linearizable, i.e., there exists a state feedback controller u = k(x) 
such that (2) can be transformed into a linear system without considering ω. 

 
Assumption II: 
The disturbances of system (2) are partially obtainable, i.e., the variables ω can be used to 
construct controller.          
 
Assumption II is reasonable because the uncertainty information ω can often be measured or 
estimated in reality (He & Han, 2007; Chen, 2004). Moreover, the tracking problem of 
general nonlinear system, where ω is composed of known desired trajectory, can also be 
modeled as Eq. (2). However, the higher order derivative of the disturbances with respective 
to time is often difficult to be obtained due to the heavy additive noise. Thus, the 
disturbances are often ‘partially obtainable’.  
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Based on assumption I, system (2) can be changed into the following equations through 
some coordination transformation,  
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where z = [z1,z2,…,zn]T is the new state variable. 
An H∞ robust controller for system (23) can be designed based on the following Theorem, 
 
Theorem I: 
Consider system (23), if there exists a control u = u1(z) and a radially unbounded function 
V(x) to satisfy the following inequality, 
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Then, controller      
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can make the system (23) finite gain L2 stable from Δ+ρ to y, and the gain is less than or 
equal to γ. ρ is a new defined signal to further attenuate the disturbances.                                 
Proof of Theorem I: 
Define new variables, 
 

 

1 1

2 2 1

1
( )

1

( )

( )
n

n i
n n i

i

z z
z z F z

z z F z











 

 

   (26) 

 
Then, system (23) can be written as 
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where  T1 2 nz = z z z . Computing the HJI equation (Khalil, 2002) of system (27) 

with respect to ( )V z , we have, 
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Thus, combine controller (25) and Eq. (29), we have, 
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Based on theorem 5.5 in reference (Khalil, 2002), controller (25) can make system (23) finite 
gain L2 stable from Δ+ρ to y, and the L2 gain is less than or equal to γ.                                       █ 
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Based on assumption I, system (2) can be changed into the following equations through 
some coordination transformation,  
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where z = [z1,z2,…,zn]T is the new state variable. 
An H∞ robust controller for system (23) can be designed based on the following Theorem, 
 
Theorem I: 
Consider system (23), if there exists a control u = u1(z) and a radially unbounded function 
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can make the system (23) finite gain L2 stable from Δ+ρ to y, and the gain is less than or 
equal to γ. ρ is a new defined signal to further attenuate the disturbances.                                 
Proof of Theorem I: 
Define new variables, 
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Thus, combine controller (25) and Eq. (29), we have, 
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Based on theorem 5.5 in reference (Khalil, 2002), controller (25) can make system (23) finite 
gain L2 stable from Δ+ρ to y, and the L2 gain is less than or equal to γ.                                       █ 
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Furthermore, ρ can be used to further attenuate the disturbances which are partially 
obtainable from assumption II by the following equation, 
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where s is the Laplace operator. Thus, the new external disturbances Δ+ρ can be denoted as, 
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From Eq. (32), proper A(s) and B(s) is effective for attenuating the influence of external 
disturbances on the closed loop system. Thus, we have designed an H∞ controller (25) and 
(31) with partially known uncertainty information. 

 
4.2 H∞ GPMN Controller Based on Control Lyapunov Functions 
In this sub-section, by using the concept of H∞CLF, H∞ GPMN controller is designed as 
following proposition,  
 
Proposition III: 
If V(x) is a local H∞CLF of system (23), and ξ(x): RnRm is a continuous guide function such 
that ξ(0) = 0, then, the following controller, called H∞GPMN, can make system (23) finite 
gain L2 stable from    to output y, 
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█ 
Proof of Proposition III can be easily done based on the definition of finite gain L2 stability 
and H∞CLF. The analytical form of controller (33) can also be obtained as steps in section 3. 
Here only the analytical form of controller without input constraints is given, 
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It is not difficult to show that H∞GPMN satisfies inequality (24) of Theorem I, thus, it can be 
used as u1(z) in controller (25) to bring the advantages of H∞GPMN controller to the robust 
controller in section 4.1. 

 
4.3 H∞GPMN-ENMPC 
As far as the external disturbances are concerned, nominal model based NMPC, where the 
prediction is made through a nominal certain system model, is an often used strategy in 
reality. And the formulation of it is very similar to non-robust NMPC, so dose the GPMN-
ENMPC.  
 

 
Fig. 4. Structure of new designed RNRHC controller 
 
However, for disturbed nonlinear system like Eq. (23), GPMN-ENMPC algorithm can 
hardly be used in real applications due to weak robustness. Thus, in this subsection, we will 
combine it to the robust controller from sub-section 4.1 and sub-section 4.2 to overcome the 
drawbacks originated from both GPMN-ENMPC algorithm and the robust controller (25) 
and (35). The structure of the new parameterized H∞GPMN-ENMPC algorithm based on 
controller (25) and (35) is as Fig. 4.  
Eq. (36) is the new designed H∞GPMN-ENMPC algorithm. Compared to Eq. (14), it is easy 
to find out that the control input in the H∞GPMN-ENMPC algorithm has a pre-defined 
structure given in section 4.1 and 4.2.  
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Furthermore, ρ can be used to further attenuate the disturbances which are partially 
obtainable from assumption II by the following equation, 
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Proof of Proposition III can be easily done based on the definition of finite gain L2 stability 
and H∞CLF. The analytical form of controller (33) can also be obtained as steps in section 3. 
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It is not difficult to show that H∞GPMN satisfies inequality (24) of Theorem I, thus, it can be 
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controller in section 4.1. 
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controller (25) and (35) is as Fig. 4.  
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5. Practical Considering  

Both GPMN-ENMPC algorithm and H∞GPMN-ENMPC algorithm can be divided into two 
processes, including the implementation process and the optimization process as Fig.5. 
 

 
Fig. 5. The process of (H∞)GPMN-ENMPC 
 
The implementation process and the optimization process in Fig. 5 are independent.  In 
implementation process, the (H∞)GPMN scheme is used to ensure the closed loop (L2) 
stability, and in the optimization process, the optimization algorithm is responsible to 
improving the optimality of the controller. And the interaction of the two processes is 
realized through the optimized parameter θ* (from optimization process to implementation 
process) and the measured states (form implementation process to optimization process). 

 
5.1 Time Interval Between Two Neighboring Optimizing Process 
Sample time in controller implemented using computer is often very short, especially in 
mechatronic system. This is very challenging to implement complicated algorithm, such as 
GPMN-ENMPC in this chapter. Fortunately, the optimization process of the new designed 
controller will end up with a group of parameters which are used to form a stable 
(H∞)GPMN controller, and the optimization process itself does not influence the closed loop 
stability at all. Thus, theoretically, any group of optimized parameters can be used for 
several sample intervals without destroying the closed loop stability. 

Computing control input 
based on (H∞)GPMN scheme 

Computing the optimal 
parameter θ* by solving an 
optimal control problem 

Optimized parameter θ* 

Implementation process 

Current state xt 
 

Optimization process 

 

Fig.6 denotes the scheduling of (H∞)GPMN-ENMPC algorithm. In Fig.6, t is the current time 
instant; T is the prediction horizon; TS is the sample time of the (H∞)GPMN controller; and TI 
is the duration of every optimal parameter θ*(t), i.e., the same parameter θ* is used to 
implement the (H∞)GPMN controller from time t to time t+TI. 
 

 
Fig. 6. Scheduling of ERNRHC 

 
5.2 Numerical Integrator 
How to predict the future’s behavior is very important during the implementation of any 
kind of MPC algorithms. In most applications, the NMPC algorithm is realized by 
computers. Thus, for the continuous systems, it will be difficult and time consuming if some 
accurate but complicated numerical integration methods are used, such as Newton-Cotes 
integration and Gaussian quadratures, etc. In this chapter, we will discretize the continuous 
system (1) as follows (take system (1) as an example), 
 
 ( ) ( ( )) ( ( )) ( )O O O O O O Ox kT T f x kT T g x kT u kT T     (37) 
 
where To is the discrete sample time. Thus, the numerical integrator can be approached by 
the operation of cumulative addition. 

 
5.3 Index Function 
Replace x(kTo) with x(k), the index function can be designed as follows, 
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where k0 denotes the current time instant; N is the predictive horizon with N=Int(T/To) (here 
Int(*) is the operator to obtain a integer nearest to *); θc is the parameter vector to be 
optimized at current time instant; and θl* is the last optimization result; Q, Z, R are constant 
matrix with Q>0, Z>0, and R≥0. 
The new designed item θlT*Zθl* is used to reduce the difference between two neighboring 
optimized parameter vector, and improve the smoothness of the optimized control inputs u. 
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kind of MPC algorithms. In most applications, the NMPC algorithm is realized by 
computers. Thus, for the continuous systems, it will be difficult and time consuming if some 
accurate but complicated numerical integration methods are used, such as Newton-Cotes 
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where k0 denotes the current time instant; N is the predictive horizon with N=Int(T/To) (here 
Int(*) is the operator to obtain a integer nearest to *); θc is the parameter vector to be 
optimized at current time instant; and θl* is the last optimization result; Q, Z, R are constant 
matrix with Q>0, Z>0, and R≥0. 
The new designed item θlT*Zθl* is used to reduce the difference between two neighboring 
optimized parameter vector, and improve the smoothness of the optimized control inputs u. 
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6. Numerical Examples 

6.1 Example1 (GPMN-ENMPC without control input constrains) 
Consider the following pendulum equation (Costa & do Va, 2003), 
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A local CLF of system (39) can be given as, 
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The normal PMN control can be designed according to (5) as, 
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Given initial state x0 = [x1,x2]T = [-1,2]T, and desired state xd = [0,0]T, time response of the 
closed loop for PMN controller is shown in Fig. 7 in solid line. It can be seen that the closed 
loop with PMN controller (42) has a very low convergence rate for state x1. This is mainly 
because the only regulable parameter to change the closed loop performance is σ(x), which is 
difficult to be properly selected due to its great influence on the stability region.  
To design GPMN-ENMPC, two different guide functions are selected based on Eq. (21),  
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CLF V(x) and σ(x) are given in Eq. (40) and Eq. (41), and others conditions in GPMN-
ENMPC are designed as follows, 
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Integral time interval To in Eq. (37) is 0.1s. Genetic algorithm (GA) in MATLAB toolbox is 
used to solve the online optimization problem. Time response of GPMN-ENMPC algorithm 
with different predictive horizon T and approaching order are presented in Fig. 7, where the 
dotted line denotes the case of T = 0.6s with guide function (43), and the dashed line is the 
case of T = 1.5s with guide function (44). From Fig. 7, it can be seen that the convergence 
performance of the proposed NMPC algorithm is better than PMN controller, and both the 
prediction horizon and the guide function will result in the change of the closed loop 
performance.  
The improvement of the optimality is the main advantage of MPC compared with others 
controller. In view of this, we propose to estimate the optimality by the following index 
function,  
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Fig. 7. Time response of different controller, where the (a,b) indicates that the order of 
( , )x   is a, and the predictive horizon b 

 
The comparison results are summarized in Table 1, from which the following conclusions 
can be obtained, 1) GPMN-ENMPC has better optimizing performance than PMN controller 
in terms of optimization. 2) In most cases, GPMN-ENMPC with higher order ξ(x,θ) will 
usually result in a smaller cost than that with lower order ξ(x,θ). This is mainly because 
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6. Numerical Examples 

6.1 Example1 (GPMN-ENMPC without control input constrains) 
Consider the following pendulum equation (Costa & do Va, 2003), 
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loop with PMN controller (42) has a very low convergence rate for state x1. This is mainly 
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Integral time interval To in Eq. (37) is 0.1s. Genetic algorithm (GA) in MATLAB toolbox is 
used to solve the online optimization problem. Time response of GPMN-ENMPC algorithm 
with different predictive horizon T and approaching order are presented in Fig. 7, where the 
dotted line denotes the case of T = 0.6s with guide function (43), and the dashed line is the 
case of T = 1.5s with guide function (44). From Fig. 7, it can be seen that the convergence 
performance of the proposed NMPC algorithm is better than PMN controller, and both the 
prediction horizon and the guide function will result in the change of the closed loop 
performance.  
The improvement of the optimality is the main advantage of MPC compared with others 
controller. In view of this, we propose to estimate the optimality by the following index 
function,  
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The comparison results are summarized in Table 1, from which the following conclusions 
can be obtained, 1) GPMN-ENMPC has better optimizing performance than PMN controller 
in terms of optimization. 2) In most cases, GPMN-ENMPC with higher order ξ(x,θ) will 
usually result in a smaller cost than that with lower order ξ(x,θ). This is mainly because 
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higher order ξ(x,θ) indicates larger inherent optimizing parameter space. 3) A longer 
prediction horizon will usually be followed by a better optimal performance. 
 

           J 

ENMPC PMN 

x0 = (-1,2) x0 = (0.5,1) x0 = (-
1,2) 

x0 = 
(0.5,1) 

k = 1 k = 2 K = 
1 

k = 
2 

---- 

T=0.6 29.39 28.87 6.54 6.26 +∞ +∞ 
T=0.8 23.97 23.83 5.02 4.96 +∞ +∞ 
T=1.0 24.08 24.07 4.96 4.90 +∞ +∞ 
T=1.5 26.31 24.79 5.11 5.28 +∞ +∞ 

Table 1. the cost value of different controller 
* k is the order of Bernstein polynomial used to approach the optimal value function; T is the 
predictive horizon; x0 is the initial state 
 
Another advantage of the GPMN-ENMPC algorithm is the flexibility of the trade offs 
between the optimality and the computational time. The computational time is influenced 
by the dimension of optimizing parameters and the parameters of the optimizing algorithm, 
such as the maximum number of iterations and the size of the population (the smaller these 
values are selected, the less the computational cost is). However, it will be natural that the 
optimality maybe deteriorated to some extent with the decreasing of the computational 
burden. In preceding paragraphs, we have researched the optimality of GPMN-ENMPC 
algorithm with different optimizing parameters, and now the optimality comparisons 
among the closed loop systems with different GA parameters will be done. And the results 
are listed in Table 2, from which the certain of the optimality loss with the changing of the 
optimizing algorithm’s parameters can be observed. This can be used as the criterion to 
determine the trade-off between the closed loop performance and the computational 
efficiency of the algorithm. 
 

OP G=100 
PS=50 

G=50 
PS=50 

G=50 
PS=30 

G=50 
PS=20 

G=50 
PS=10 

cost 26.2 28.1 30.8 43.5 45.7 
Table 2. The relation between the computational cost and the optimality 
*x0 = (-1,2), T=1.5, k = 1, OP means Optimization Prameters, G means Generations, PS means 
Population Size 
 
Finally, in order to verify that the new designed algorithm is improved in the computational 
burden, simulations comparing the performance of the new designed algorithm and 
algorithm in (Primbs, 1999) are conducted with the same optimizing algorithm. Time 
interval of two neighboured optimization (TI in Table 3) in Primbs’ algorithm is important 
since control input is assumed to be constant at every time slice. Generally, large time 
interval will result in poor stability. 
While our new GPMN-ENMPC results in a group of controller parameter, and the closed loop 
stability is independent of TI. Thus different TI is considered in these simulations of Primbs’ 

 

algorithm and Table 3 lists the results. From Table 3, the following items can be concluded: 1) 
with same GA parameters, Primbs’ algorithm is more time-consuming and poorer in optimality 
than GPMN-ENMPC. This is easy to be obtained through comparing results of Ex-2 and Ex-5; 2) 
in order to obtain similar optimality, GPMN-ENMPC takes much less time than Primbs’ 
algorithm. This can be obtained by comparing results of Ex-1/Ex-4 and Ex-6, as well as Ex-3 and 
Ex-5. The reasons for these phenomena have been introduced in Remark 3. 
 

 
Algorithm in (Primbs, 1999) GPMN-ENMPC 

Ex-1 Ex-2 Ex-3 Ex-4 Ex-5 Ex-6 
TI 0.1 0.05 0.1 

OP G=100 
PS=50 

G=50 
PS=50 

G=100 
PS=50 

G=50 
PS=50 

G=50 
PS=50 

G=50 
PS=30 

Average Time 
Consumption 2.2075 1.8027 2.9910 2.2463 1.3961 0.8557 

Cost 31.2896 35.7534 27.7303 31.8055 28.1 31.1043 
Table 3. Performance comparison of GPMN-ENMPC and Primbs’ algorithm 
*x0 = (-1,2), TI means time interval of two neighbored optimization; OP means Optimization 
Prameters; G means Generations, PS means Population Size. Other parameters of GPMN-
ENMPC are T=1.5, k = 1 

 
6.2 Example 2 (GPMN-ENMPC with control input constraint) 
In order to show the performance of the GPMN-ENMPC in handling input constraints, we 
give another simulation using the dynamics of a mobile robot with orthogonal wheel 
assemblies (Song, 2007). The dynamics can be denoted as Eq. (48), 
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higher order ξ(x,θ) indicates larger inherent optimizing parameter space. 3) A longer 
prediction horizon will usually be followed by a better optimal performance. 
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T=1.5 26.31 24.79 5.11 5.28 +∞ +∞ 

Table 1. the cost value of different controller 
* k is the order of Bernstein polynomial used to approach the optimal value function; T is the 
predictive horizon; x0 is the initial state 
 
Another advantage of the GPMN-ENMPC algorithm is the flexibility of the trade offs 
between the optimality and the computational time. The computational time is influenced 
by the dimension of optimizing parameters and the parameters of the optimizing algorithm, 
such as the maximum number of iterations and the size of the population (the smaller these 
values are selected, the less the computational cost is). However, it will be natural that the 
optimality maybe deteriorated to some extent with the decreasing of the computational 
burden. In preceding paragraphs, we have researched the optimality of GPMN-ENMPC 
algorithm with different optimizing parameters, and now the optimality comparisons 
among the closed loop systems with different GA parameters will be done. And the results 
are listed in Table 2, from which the certain of the optimality loss with the changing of the 
optimizing algorithm’s parameters can be observed. This can be used as the criterion to 
determine the trade-off between the closed loop performance and the computational 
efficiency of the algorithm. 
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Table 2. The relation between the computational cost and the optimality 
*x0 = (-1,2), T=1.5, k = 1, OP means Optimization Prameters, G means Generations, PS means 
Population Size 
 
Finally, in order to verify that the new designed algorithm is improved in the computational 
burden, simulations comparing the performance of the new designed algorithm and 
algorithm in (Primbs, 1999) are conducted with the same optimizing algorithm. Time 
interval of two neighboured optimization (TI in Table 3) in Primbs’ algorithm is important 
since control input is assumed to be constant at every time slice. Generally, large time 
interval will result in poor stability. 
While our new GPMN-ENMPC results in a group of controller parameter, and the closed loop 
stability is independent of TI. Thus different TI is considered in these simulations of Primbs’ 

 

algorithm and Table 3 lists the results. From Table 3, the following items can be concluded: 1) 
with same GA parameters, Primbs’ algorithm is more time-consuming and poorer in optimality 
than GPMN-ENMPC. This is easy to be obtained through comparing results of Ex-2 and Ex-5; 2) 
in order to obtain similar optimality, GPMN-ENMPC takes much less time than Primbs’ 
algorithm. This can be obtained by comparing results of Ex-1/Ex-4 and Ex-6, as well as Ex-3 and 
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*x0 = (-1,2), TI means time interval of two neighbored optimization; OP means Optimization 
Prameters; G means Generations, PS means Population Size. Other parameters of GPMN-
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6.2 Example 2 (GPMN-ENMPC with control input constraint) 
In order to show the performance of the GPMN-ENMPC in handling input constraints, we 
give another simulation using the dynamics of a mobile robot with orthogonal wheel 
assemblies (Song, 2007). The dynamics can be denoted as Eq. (48), 
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1 2 3 4 5 6; ; ; ; ;w w w w w wx x x x x y x y x x         ; xw, yw, φw are respective the x-y  positions 
and yaw angle; u1, u2, u3 are motor torques.  
Suppose that control input is limited in the following closed set, 
 
 U  =  {( u1, u2, u3)|( u12+ u22+ u32)1/2≤20}  (49) 
 
System (48) is feedback linearizable, and by which we can obtain a CLF of system (48) as 
follows, 
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where 
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The cost function J(x) and σ(x) are designed as, 
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System (48) has 6 states and 3 inputs, which will introduce large computational burden if 
using the GPMN-ENMPC method. Fortunately, one of the advantages of GPMN-ENMPC is 
that the optimization does not destroy the closed loop stability. Thus, in order to reduce the 
computation burden, we reduce the frequency of the optimization in this simulation, i.e., 
one optimization process is conducted every 0.1s while the controller of (13) is calculated 
every 0.002s, i.e., TI = 0.1s, Ts = 0.002s. 
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a) states response                                               b) control input u1 
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Fig. 8. GPMN-ENMPC controller simulation results on the mobile robot with input 
constraints 
 

Initial States 
(x1; x2; x3; x4; x5; x6) 

Feedback 
linearization 

controller 
GPMN-NMPC 

(10; 5; 10; 5; 1; 0) 2661.7 1377.0 
(10; 5; 10; 5; -1; 0) 3619.5 1345.5 
(-10; -5; 10; 5; 1; 0) 2784.9 1388.5 
(-10; -5; 10; 5; -1; 0) 8429.2 1412.0 
(-10; -5; -10; -5; 1; 0) 394970.0 1349.9 
(-10; -5; -10; -5; -1; 0) 4181.6 1370.9 

(10; 5; -10; -5; 1; 0) 3322 1406 
(10; 5; -10; -5; -1; 0) 1574500000 1452.1 
(-5; -2; -10; -5; 1; 0) 1411.2 856.1 
(-10; -5; -5; -2; 1; 0) 1547.5 850.9 

Table 4. The comparison of the optimality 
 
Simulation results are shown in Fig.8 with the initial state (10; 5; -10; -5; 1; 0), From Fig.8, it is 
clear that GPMN-ENMPC controller has the ability to handling input constraints. 
In order to evaluate the optimal performance of the GPMN-ENMPC, we proposed the 
following cost function according to Eq. (51), 
 

 2 2 2 2 2 2 2 2 2
1 3 5 2 4 6 1 2 30

cos t lim (3 3 3 5 5 5 )x x x x x x u u u dt



           (52) 

 
Table 4 lists the costs by feedback linearization controller and GPMN-ENMPC for several 
different initial states, from which it can be seen that the cost of GPMN-ENMPC is less than 
the half of the cost of feedback linearization controller when the initial is (10; 5; -10; -5; 1; 0). 
And in most cases listed in Table 4, the cost of GPMN-ENMPC is about one second of that of 
feedback linearization controller. Actually, in some special cases, such as the initial of (10; 5; 
-10; -5; -1; 0), the cost ratio of feedback linearization controller to GPMN-ENMPC is more 
than 1000000. 
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System (48) has 6 states and 3 inputs, which will introduce large computational burden if 
using the GPMN-ENMPC method. Fortunately, one of the advantages of GPMN-ENMPC is 
that the optimization does not destroy the closed loop stability. Thus, in order to reduce the 
computation burden, we reduce the frequency of the optimization in this simulation, i.e., 
one optimization process is conducted every 0.1s while the controller of (13) is calculated 
every 0.002s, i.e., TI = 0.1s, Ts = 0.002s. 
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Fig. 8. GPMN-ENMPC controller simulation results on the mobile robot with input 
constraints 
 

Initial States 
(x1; x2; x3; x4; x5; x6) 

Feedback 
linearization 

controller 
GPMN-NMPC 

(10; 5; 10; 5; 1; 0) 2661.7 1377.0 
(10; 5; 10; 5; -1; 0) 3619.5 1345.5 
(-10; -5; 10; 5; 1; 0) 2784.9 1388.5 
(-10; -5; 10; 5; -1; 0) 8429.2 1412.0 
(-10; -5; -10; -5; 1; 0) 394970.0 1349.9 
(-10; -5; -10; -5; -1; 0) 4181.6 1370.9 

(10; 5; -10; -5; 1; 0) 3322 1406 
(10; 5; -10; -5; -1; 0) 1574500000 1452.1 
(-5; -2; -10; -5; 1; 0) 1411.2 856.1 
(-10; -5; -5; -2; 1; 0) 1547.5 850.9 

Table 4. The comparison of the optimality 
 
Simulation results are shown in Fig.8 with the initial state (10; 5; -10; -5; 1; 0), From Fig.8, it is 
clear that GPMN-ENMPC controller has the ability to handling input constraints. 
In order to evaluate the optimal performance of the GPMN-ENMPC, we proposed the 
following cost function according to Eq. (51), 
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Table 4 lists the costs by feedback linearization controller and GPMN-ENMPC for several 
different initial states, from which it can be seen that the cost of GPMN-ENMPC is less than 
the half of the cost of feedback linearization controller when the initial is (10; 5; -10; -5; 1; 0). 
And in most cases listed in Table 4, the cost of GPMN-ENMPC is about one second of that of 
feedback linearization controller. Actually, in some special cases, such as the initial of (10; 5; 
-10; -5; -1; 0), the cost ratio of feedback linearization controller to GPMN-ENMPC is more 
than 1000000. 
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6.3 Example 3 (H∞GPMN-ENMPC) 
In this section, a simulation will be given to verify the feasibility of the proposed H∞GPMN-
ENMPC algorithm with respect to the following planar dynamic model of helicopter, 
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where Δ1, Δ2, Δ3, Δ4 are all the external disturbances, and are selected as following values, 
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Firstly, design an H∞CLF of system (53) by using the feedback linearization method, 
 
 TV X PX   (54) 
 
where,  
 

[ , , , , , , , ]
14.48 11.45 3.99 0.74 0 0 0 0
11.45 9.77 3.44 0.66 0 0 0 0
3.99 3.44 1.28 0.24 0 0 0 0
0.74 0.66 0.24 0.05 0 0 0 0
0 0 0 0 14.48 11.45 3.99 0.74
0 0 0 0 11.45 9.77 3.44 0.66
0 0 0 0 3.99 3.44 1.28 0.24
0 0 0 0 0.74 0.66 0.24 0.05

TX x x x x y y y y

P





     

 
 
 
 
 
 
 
 
 
 
 
  

 

 
Thus, the robust predictive controller can be designed as Eq. (25), (35) and (36) with the 
following parameters, 
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Time response of the H∞GPMN-ENMPC is as solid line of Fig.9 and Fig.10. Furthermore, the 
comparisons between the performance of the closed loop controlled by the proposed 
H∞GPMN-ENMPC and some other controller design method are done. The dashed line in 
Fig.9 and Fig.10 is the time response of the feedback linearization controller. From Fig.9 and 
Fig.10, the disturbance attenuation performance of the H∞GPMN-ENMPC is apparently 
better than that of feedback linearization controller, because the penalty gain of position 
signals, being much larger than other terms, can be used to further improve the ability. 
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Fig. 9. Time response of states 
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6.3 Example 3 (H∞GPMN-ENMPC) 
In this section, a simulation will be given to verify the feasibility of the proposed H∞GPMN-
ENMPC algorithm with respect to the following planar dynamic model of helicopter, 
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Time response of the H∞GPMN-ENMPC is as solid line of Fig.9 and Fig.10. Furthermore, the 
comparisons between the performance of the closed loop controlled by the proposed 
H∞GPMN-ENMPC and some other controller design method are done. The dashed line in 
Fig.9 and Fig.10 is the time response of the feedback linearization controller. From Fig.9 and 
Fig.10, the disturbance attenuation performance of the H∞GPMN-ENMPC is apparently 
better than that of feedback linearization controller, because the penalty gain of position 
signals, being much larger than other terms, can be used to further improve the ability. 
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Fig. 9. Time response of states 
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Fig. 10. Control inputs 
 
Simultaneously, the following index is used to compare the optimality of the two different 
controllers, 
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The optimality performance of H∞GPMN-ENMPC, computed from Eq. (55), is about 3280, 
and the feedback linearization controller is about 5741, i.e., the H∞GPMN-ENMPC has better 
optimality than the feedback linearization controller. 

 
7. Conclusion 

In this paper, nonlinear model predictive control (NMPC) is researched and a new NMPC  
algorithm is proposed. The new designed NMPC algorithm, called GPMN-enhancement 
NMPC (GPMN-ENMPC), has the following three advantages: 1) closed loop stability can be 
always guaranteed; 2) performance other than optimality and stability can be considered in 
the new algorithm through selecting proper guide function; 3) computational cost of the 
new NMPC algorithm is regulable according to the performance requirement and available 
CPU capabilities. Also, the new GPMN-ENMPC is generalized to a robust version with 
respect to input-output feedback linearizable nonlinear system with partially known 
uncertainties. Finally, extensive simulations have been conducted, and the results have 
shown the feasibility and validity of the new designed method. 
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