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1. Introduction

Model predictive control (MPC) has attracted notable attention in control of dynamic systems
and has gained the important role in control practice. The idea of MPC can be summarized as
follows, (Camacho & Bordons, 2004), (Maciejovski, 2002), (Rossiter, 2003) :

• Predict the future behavior of the process state/output over the finite time horizon.

• Compute the future input signals on line at each step by minimizing a cost function
under inequality constraints on the manipulated (control) and/or controlled variables.

• Apply on the controlled plant only the first of vector control variable and repeat the
previous step with new measured input/state/output variables.

Therefore, the presence of the plant model is a necessary condition for the development of
the predictive control. The success of MPC depends on the degree of precision of the plant
model. In practice, modelling real plants inherently includes uncertainties that have to be
considered in control design, that is control design procedure has to guarantee robustness
properties such as stability and performance of closed-loop system in the whole uncertainty
domain. Two typical description of uncertainty, state space polytope and bounded unstruc-
tured uncertainty are extensively considered in the field of robust model predictive control.
Most of the existing techniques for robust MPC assume measurable state, and apply plant
state feedback or when the state estimator is utilized, output feedback is applied. Thus, the
present state of robustness problem in MPC can be summarized as follows:
Analysis of robustness properties of MPC.
(Zafiriou & Marchal, 1991) have used the contraction properties of MPC to develop necessary-
sufficient conditions for robust stability of MPC with input and output constraints for SISO
systems and impulse response model. (Polak & Yang, 1993) have analyzed robust stability of
MPC using a contraction constraint on the state.
MPC with explicit uncertainty description.
( Zheng & Morari, 1993), have presented robust MPC schemes for SISO FIR plants, given un-
certainty bounds on the impulse response coefficients. Some MPC consider additive type of
uncertainty, (delaPena et al., 2005) or parametric (structured) type uncertainty using CARIMA
model and linear matrix inequality, (Bouzouita et al., 2007). In (Lovas et al., 2007), for open-
loop stable systems having input constraints the unstructured uncertainty is used. The robust
stability can be established by choosing a large value for the control input weighting matrix R
in the cost function. The authors proposed a new less conservative stability test for determin-
ing a sufficiently large control penalty R using bilinear matrix inequality (BMI). In (Casavola
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Model Predictive Control2

et al., 2004), robust constrained predictive control of uncertain norm-bounded linear systems
is studied. The other technique- constrained tightening to design of robust MPC have been
proposed in (Kuwata et al., 2007). The above approaches are based on the idea of increasing
the robustness of the controller by tightening the constraints on the predicted states.
The mixed H2/H∞ control approach to design of MPC has been proposed by (Orukpe et al.,
2007) .
Robust constrained MPC using linear matrix inequality (LMI) has been proposed by (Kothare et
al., 1996), where the polytopic model or structured feedback uncertainty model has been used.
The main idea of (Kothare et al., 1996) is the use of infinite horizon control laws which guar-
antee robust stability for state feedback. In (Ding et al., 2008) output feedback robust MPC
for systems with both polytopic and bounded uncertainty with input/state constraints is pre-
sented. Off-line, it calculates a sequence of output feedback laws based on the state estimators,
by solving LMI optimization problem. On-line, at each sampling time, it chooses an appro-
priate output feedback law from this sequence. Robust MPC controller design with one step
ahead prediction is proposed in (Veselý & Rosinová , 2009). The survey of optimal and robust
MPC design can be consulted in (Mayne et al., 2000). Some interesting results for nonlinear
MPC are given in (Janík et al., 2008).
In MPC approach generally, control algorithm requires solving constrained optimization prob-
lem on-line (in each sampling period). Therefore on-line computation burden is significant
and limits practical applicability of such algorithms to processes with relatively slow dynam-
ics. In this chapter, a new MPC scheme for an uncertain polytopic system with constrained
control is developed using model structure introduced in (Veselý et al., 2010). The main con-
tribution of the first part of this chapter is that all the time demanding computations of output
feedback gain matrices are realized off-line ( for constrained control and unconstrained control
cases). The actual value of control variable is obtained through simple on-line computation of
scalar parameter and respective convex combination of already computed matrix gains. The
developed control design scheme employs quadratic Lyapunov stability to guarantee the ro-
bustness and performance (guaranteed cost) over the whole uncertainty domain.
The first part of the chapter is organized as follows. A problem formulation and preliminaries
on a predictive output/state model as a polytopic system are given in the next section. In
Section 1.2, the approach of robust output feedback predictive controller design using linear
matrix inequality is presented. In Section 1.3, the input constraints are applied to LMI feasi-
ble solution. Two examples illustrate the effectiveness of the proposed method in the Section
1.4. The second part of this chapter addresses the problem of designing a robust parameter
dependent quadratically stabilizing output/state feedback model predictive control for linear
polytopic systems without constraints using original sequential approach. For the closed-loop
uncertain system the design procedure ensures stability, robustness properties and guaran-
teed cost. Finally, conclusions on the obtained results are given.
Hereafter, the following notational conventions will be adopted: given a symmetric matrix
P = PT ∈ Rn×n, the inequality P > 0(P ≥ 0) denotes matrix positive definiteness (semi-
definiteness). Given two symmetric matrices P, Q, the inequality P > Q indicates that
P − Q > 0. The notation x(t + k) will be used to define, at time t, k-steps ahead prediction
of a system variable x from time t onwards under specified initial state and input scenario. I
denotes the identity matrix of corresponding dimensions.
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1.1 Problem formulation and preliminaries

Let us start with uncertain plant model described by the following linear discrete-time uncer-
tain system with polytopic uncertainty domain

x(t + 1) = A(α)x(t) + B(α)u(t) (1)

y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control and output variables of the system,
respectively; A(α), B(α) belong to the convex set

S = {A(α) ∈ Rn×n, B(α) ∈ Rn×m} (2)

{A(α) =
N

∑
j=1

Ajαj B(α) =
N

∑
j=1

Bjαj, αj ≥ 0}, j = 1, 2...N,
N

∑
j=1

αj = 1

Matrices Ai, Bi and C are known matrices with constant entries of corresponding dimensions.
Simultaneously with (1) we consider the nominal model of system (1) in the form

x(t + 1) = Aox(t) + Bou(t) y(t) = Cx(t) (3)

where Ao, Bo are any constant matrices from the convex bounded domain S (2). The nominal
model (3) will be used for prediction, while (1) is considered as real plant description provid-
ing plant output. Therefore in the robust controller design we assume that for time t output
y(t) is obtained from uncertain model (1), predicted outputs for time t + 1, ...t + N2 will be
obtained from model prediction, where the nominal model (3) is used. The predicted states
and outputs of the system (1) for the instant t + k, k = 1, 2, ...N2 are given by

• k=1
x(t + 2) = Aox(t + 1) + Bou(t + 1) = Ao A(α)x(t) + AoB(α)u(t) + Bou(t + 1)

• k=2
x(t + 3) = A2

o A(α)x(t) + A2
o B(α)u(t) + AoBou(t + 1) + Bou(t + 2)

• for k

x(t + k + 1) = Ak
o A(α)x(t) + Ak

oB(α)u(t) +
k−1

∑
i=0

Ak−i−1
o Bou(t + 1 + i) (4)

and corresponding output is
y(t + k) = Cx(t + k) (5)

Consider a set of k = 0, 1, 2, ..., N2 state/output model predictions as follows

z(t + 1) = A f (α)z(t) + B f (α)v(t), y f (t) = C f z(t) (6)

where
z(t)T = [x(t)T ...x(t + N2)

T ], v(t)T = [u(t)T ...u(t + Nu)
T ] (7)

y f (t)
T = [y(t)T ...y(t + N2)

T ]

and

B f (α) =









B(α) 0 ... 0
AoB(α) Bo ... 0

... ... ... 0

AN2
o B(α) AN2−1

o Bo ... AN2−Nu
o Bo









(8)
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A f (α) =









A(α) 0 ... 0
Ao A(α) 0 ... 0

... ... ... ...

AN2
o A(α) 0 ... 0









, C f =









C 0 ... 0
0 C ... 0
... ... ... ...
0 0 ... C









(9)

where N2, Nu are output and control prediction horizons of model predictive control, respec-
tively. Note that for output/state prediction in (6) one needs to put A(α) = Ao, B(α) = Bo.

Matrices dimensions are A f (α) ∈ Rn(N2+1)×n(N2+1), B f (α) ∈ Rn(N2+1)×m(Nu+1) and C f ∈

Rl(N2+1)×n(N2+1).
Consider the cost function associated with the system (6) in the form

J =
∞

∑
t=0

J(t) (10)

where
J(t) = ∑

N2

k=0 x(t + k)TQkx(t + k) + ∑
Nu

k=0 u(t + k)T Rku(t + k) =

= z(t)TQz(t) + v(t)T Rv(t) (11)

Q = blockdiag{Qi}i=0,1,...N2
R = blockdiag{Ri}i=0,1,...Nu

The problem studied in this part of chapter can be summarized as follows. Design the robust
model predictive controller with output feedback and input constraints in the form

v(t) = Fy f (t) = FC f z(t) (12)

where FT = [FT
0 ...FT

Nu
], Fi = [Fi0...FiN2

], i = 0, 1, 2, ...Nu

are the output feedback gain matrices which for given prediction horizon N2 and control hori-
zon Nu ensure the closed-loop system (13) stability, robustness and guaranteed cost.

z(t + 1) = (A f (α) + B f (α)FC f )z(t) = Ac(α)z(t) (13)

Definition 1. Consider the system (6). If there exists a control law v(t)∗ and a positive scalar J∗

such that the closed-loop system (13) is stable and the closed-loop cost function (10) value J
satisfies J ≤ J∗ then J∗ is said to be the guaranteed cost and v(t)∗ is said to be the guaranteed
cost control law for the system (6).
To guarantee closed-loop stability of uncertain system overall the whole uncertainty domain,
the concept of quadratic stability is frequently used. That is, one Lyapunov function works
for the whole uncertainty domain. Experience and analysis has shown that quadratic stabil-
ity is rather conservative in many cases, therefore robust stability with parameter dependent
Lyapunov function P(α) has been introduced by (Peaucelle et al., 2000). Using the concept of
Lyapunov stability it is possible to formulate the following definition and lemma.
Definition 2. System (13) is robustly stable in the convex uncertainty domain with parameter-
dependent Lyapunov function P(α) if and only if there exists a matrix P(α) = P(α)T

> 0 such
that

Ac(α)
T P(α)Ac(α)− P(α) < 0 (14)

Lemma 1. (Rosinová et al., 2003), (Krokavec & Filasová, 2003) Consider the closed-loop system
(13) with control algorithm (12). Control algorithm (12) is the guaranteed cost control law if
and only if there exists a positive definite matrix P(α) and matrix F such that the following
condition holds

Be = z(t)T(Ac(α)
T P(α)Ac(α)− P(α) + Q + CT

f FT RFC f )z(t) ≤ 0 (15)

www.intechopen.com
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where the first term of (15) ∆V(t) = z(t)T(Ac(α)T P(α)Ac(α)− P(α))z(t) is the first difference
of closed-loop system Lyapunov function V(t) = z(t)T P(α)z(t). Moreover, summarizing (15)
from initial time to to t → ∞ the following inequality is obtained

− V(to) + J ≤ 0 (16)

Definition 1 and (16) imply
J∗ ≤ V(to) (17)

Note, that as a receding horizon strategy is used, only u(t) is sent to the real plant control,
control inputs u(t + k), k = 0, 1, 2, ..., Nu are used for predictive outputs y(t + k) calculation.
According to (de Oliviera et al., 2000) there is no general and systematic way to formally deter-
mine P(α) in (15) as a function of Ac(α). Such a matrix P(α) is called the parameter dependent
Lyapunov matrix (PDLM) and for particular structure of P(α) the inequality (15) defines the
parameter dependent quadratic stability (PDQS). Formal approach to choose P(α) for real
convex polytopic uncertainty (2) can be found in the references. One of the approaches is to
take P(α) = P, in this case if the solution is feasible the quadratic stability is obtained. An-
other possibility P(α) = ∑

N
i=1 Piαi, ∑

N
i=1 αi = 1, Pi = PT

i > 0 gives the parameter dependent
quadratic stability (PDQS). To decrease the conservatism of PDQS arising from affine parame-
ter dependent Lyapunov function (PDLF), recently, the use of polynomial PDLF (PPDLF) has
been proposed in different forms. For more details see (Ebihara et al., 2006).

1.2 Robust model predictive controller design. Quadratic stability

Robust MPC controller design which guarantees quadratic stability and guaranteed cost of
closed-loop system is based on (15). Using Schur complement formula inequality (15) can be
rewritten to following bilinear matrix inequality (BMI).







−P(α) + Q CT
f FT Ac(α)T

FC f −R−1 0

Ac(α) 0 −P(α)−1






≤ 0 (18)

For the quadratic stability P(α) = P = PT
> 0 in (18). Using linearization approach for P−1,

de Oliviera et al. (2000), the following inequality can be derived

− P−1
≤ Y−1

k (P − Yk)Y
−1
k − Y−1

k = lin(−P−1) (19)

where Yk, k = 1, 2, ... in iteration process Yk = P. We can recast bilinear matrix inequality (18)
to the linear matrix inequality (LMI) using linearization (19). The following LMI is obtained
for quadratic stability







−P + Q CT
f FT AT

f i + CT
f FT BT

f i

FC f −R−1 0

A f i + B f iFC f 0 lin(−P−1)






≤ 0 i = 1, 2, ...N (20)

where

A f (α) =
N

∑
j=1

A f jαj B f (α) =
N

∑
j=1

B f jαj

We can conclude that if the LMIs (20) are feasible with respect to ̺ ∗ I > P = PT
> 0 and

matrix F then the closed-loop system with control algorithm (12) is quadratically stable with

www.intechopen.com
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guaranteed cost (17). Note that due to control horizon strategy only the first m rows of ma-
trix F are used for real plant control, the other part of matrix F serves for predicted output
variables calculation. Parameter dependent or Polynomial parameter dependent quadratic
stability approach to design robust MPC may decrease the conservatism of quadratic stability.
In this case for PDQS we can use the approaches given in (Peaucelle et al., 2000), (Grman et
al., 2005) and for (PPDLF) see (Ebihara et al., 2006).

1.3 MPC design for input constraints

In this subsection we propose the off-line calculation of two control gain matrices and using
analogy to SVSC approach, (Adamy & Fleming, 2004), we significantly reduce the computa-
tional effort for MPC suboptimal control with input constraints.
To design model predictive control (Adamy & Fleming, 2004), (Camacho & Bordons, 2004)
with constraints on input, state and output variables at each sampling time, starting from the
current state, an open-loop optimal control problem is solved over the defined finite horizon.
The first element of the optimal control sequence is applied to the plant. At the next time step,
the computation is repeated with new measured variables. Thus, the implementation of the
MPC strategy requires a QP solver for the on-line optimization which still requires significant
on-line computational effort, which limits MPC applicability.
In our approach the actual output feedback control gain matrix is computed as a convex com-
bination of two gain matrices computed a priori (off-line) : one for constrained and one for
unconstrained case such that both gains guarantee performance and robustness properties
of closed-loop system. This convex combination is determined by a scalar parameter which
is updated on-line in each step. Based on this idea, in the following, the algorithm for con-
strained control algorithm is developed.
Consider the system (6) where the control v(t) is constrained to evolve in the following set

Γ = {v ∈ RmNu : |vi(t)| ≤ Ui, i = 1, ...mNu} (21)

The aim of this part of chapter is to design the stabilizing output feedback control law for
system (6) in the form

v(t) = FC f z(t) (22)

which guarantees that for the initial state z0 ∈ Ω(P) = {z(t) : z(t)T Pz(t) ≤ θ} control v(t)
belongs to the set (21) for all t ≥ 0, where θ is a positive real parameter which determines the
size of Ω(P). Furthermore, Ω(P) should be such that all z(t) ∈ Ω(P) provide v(t) satisfying
the relation (21), restricting the values of the control parameters. Moreover, the following
ellipsoidal Lyapunov function level set

Ω(P) = {z(t) ∈ RnN2 : z(t)T Pz(t) ≤ θ} (23)

can be proven to be a robust positively invariant region with respect to motion of the closed-
loop system in the sense of the following definition, (Rohal-Ilkiv, 2004), (Ayd et al., 2008) .

Definition 3. A subset So ∈ R(nN2) is said to be positively invariant with respect to motion of
system (6) with control algorithm (22) if for every initial state z(0) inside So the trajectory z(t)
remains in So for all t ≥ 0.
Consider that vector fi denotes the i-th row of matrix F and define

L(F) = {z(t) ∈ R(nN2) : | fiC f z(t)| ≤ Ui, i = 1, 2...mNu}

www.intechopen.com
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The above set can be rewritten as

L(F) = {z(t) ∈ R(nN2) : |DiFC f z(t)| ≤ Ui, i = 1, 2...mNu} (24)

where Di ∈ R1×mNu = {dij}, dij = 1, i = j, dij = 0, i �= j. The results are summarized in
the following theorem.
Theorem 1. The inclusion Ω(P) ⊆ L(F) is for output feedback control equivalent to

[

P CT FT DT
i

DiFC λi

]

≥ 0, i = 1, 2, ...mNu (25)

where

λi ∈< 0,
U2

i

θ
>

Proof. To prove that the inclusion Ω(P) ⊆ L(F) is equivalent to (25) we use S− procedure in
the following way. Rewrite (23) and (24) to the following form

p(z) = zT(t)Pz(t)− θ ≤ 0

gi(z) = zT(t)CT
f FT DT

i DiFCz(t)− U2
i ≤ 0

According to S− procedure the above inclusion is equivalent to the existence of a positive
scalar λi such that

gi(z)− λi p(z) ≤ 0

or equivalently

z(t)T(CT
f FT DT

i DiFC − λiP)z(t)− U2
i + λiθ ≤ 0 (26)

After some manipulation (26) can be rewritten in the form

[

CT FT DT
i DiFC − λiP 0

0 −U2
i + λiθ

]

≤ 0 (27)

i = 1, 2, ...mNu

The above inequality for block diagonal matrix is equivalent to two inequalities. Using Schur
complement formula for the first one the inequality (25) is obtained, which proves the theo-
rem.
In order to check the value of θi for i− th input we solve the optimization problem z(t)T Pz(t) →
max, subject to constraints (24), which yields

θi =
U2

i

DiFCP−1CT FT DT
i

(28)

In the design procedure it should be verified that when parameter θ decreases the obtained
robust positively invariant regions Ω(P) are nested to region obtained for θ + ǫ, ǫ > 0.
Assume that we calculate two output feedback gain matrices: F1 for unconstrained case and F2

for constrained one. Obviously, closed-loop system with the gain matrix F2 gives the dynamic
behavior slower than the one obtained for F1. Consider the output feedback gain matrix F in
the form

F = γF1 + (1 − γ)F2, γ ∈ (0, 1) (29)

www.intechopen.com
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For gain matrices Fi, i = 1, 2 we obtain two closed-loop system in the form (13), Aci = A f +
B f FiC f , i = 1, 2. Consider the edge between Ac1 and Ac2, that is

Ac = αAc1 + (1 − α)Ac2, α ∈< 0, 1 > (30)

The following lemma gives the stability conditions for matrix Ac (30).
Lemma 2. Consider the stable closed-loop system matrices Aci, i = 1, 2.

• If there exists a positive definite matrix Pq such that

AT
ciPq Aci − Pq ≤ 0, i = 1, 2 (31)

then matrix Ac (30) is quadratically stable.

• If there exist two positive definite matrices P1, P2 such that they satisfy the parameter
dependent quadratic stability conditions, see (Peaucelle et al., 2000), (Grman et al., 2005)
the closed-loop system Ac is parameter dependent quadratically stable (PDQS).

Remarks

• If closed-loop matrices Aci, i = 1, 2 satisfy (31) the scalar γ in (29) may be changed
with any rate without violating the closed-loop stability.

• If closed-loop matrices Aci, i = 1, 2 are PDQS, the scalar γ in (29) has to be constant
but may be unknown.

• The proposed control algorithm (29) is similar to Soft Variable-Structure Control (SVSC),
(Adamy & Fleming, 2004), but in our case, when |vi| << Ui the feedback gain matrix
F (29) gives rather quicker dynamic behavior of the closed-loop system (unconstrained
case) than when |vi| approaches to Ui.

Algorithm for calculation of γ for (29) may be as follows:

γ = min
i

Ui − |vi|

Ui
(32)

If accidentally some |vi| > Ui, γ = 0.
The resulting control design procedure is given by the next steps

• Off-line computation stage, compute output feedback gain matrices:
F1 for unconstrained case as a solution to (20), where LMI (20) is solved for unknown P
and F;
F2 for constrained case as a solution to (20) and (25).

• On-line computation- in each step:
compute the actual value of scalar parameter γ, e.g from (32) (where vi is obtained from
(12) for F = F1;
compute the actual feedback gain matrix from (29) and respective constrained control
vector from (12). All on-line computations follow general MPC scheme, i.e. the first
part of computed control vector u(t) is applied on real controlled plant and the other
part of control vector is used for model prediction.

www.intechopen.com
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1.4 EXAMPLES

Two examples are presented to illustrate the qualities of the control design procedure pro-
posed above, namely its ability to cope with robust stability and input constraints without
complex computational load. In each example the results of three simulation experiments are
compared for closed-loop with output feedback control:
case 1 Unconstrained case for output feedback gain matrix F1

case 2 Constrained case for output feedback gain matrix F2

case 3 The new proposed control algorithm (29) for output feedback gain matrix F.
The input constraint case is studied, in each case maximal value of u(t) is checked; stability is
assessed using spectral radius of closed-loop system matrix.
First example serves as a benchmark. The model of double integrator turns to (1) where

Ao =

[

1 0
1 1

]

Bo =

[

1
0

]

, C =
[

0 1
]

and uncertainty matrices are

A1u =

[

0.01 0.01
0.02 0.03

]

B1u =

[

0.001
0

]

,

For the case when number of uncertainty is p = 1, the number of the respective polytope
vertices is N = 2p = 2, the matrices (2) are calculated as follows

A1 = Ao − A1u, A2 = Ao + A1u, B1 = Bo − B1u, B2 = Bo + B1u

For the parameters: ̺ = 20000, N2 = 6, Nu = 6, Q0 = 0.1I, Q1 = 0.5I, Q2 = ... = Q6 = I, R =
I, the following results are obtained for unconstrained and constrained cases

• Unconstrained case: Closed − loopmaxeig = 0.8495. Maximal value of control variable
is about umax = 0.24.

• Constrained case with Ui = 0.1, θ = 1000, Closed − loopmaxeig = 0.9437. Maximal
value of control variable is about umax = 0.04.

Closed-loop step responses for unconstrained and constrained cases are given in Fig.1 and
Fig.2, respectively. Closed-loop step responses for the case of in this chapter proposed algo-
rithm are given in Fig.3. Maximal value of control variable is about umax = 0.08 < 0.1.
Input constraints conditions were applied only for plant control variable u(t).
Second example has been borrowed from (Camacho & Bordons (2004), p.147). The model cor-
responds to the longitudinal motion of a Boeing 747 airplane. The multivariable process is
controlled using a predictive controller based on the output model of the aircraft. Two of the
usual command outputs that must be controlled are airspeed that is, velocity with respect to
air, and climb rate. Continuous model has been converted to discrete time one with sampling
time of 0.1s, the nominal model turns to (1) where

Ao =









.9996 .0383 .0131 −.0322
−.0056 .9647 .7446 .0001

.002 −.0097 .9543 0
.0001 −.0005 .0978 1









www.intechopen.com
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Fig. 1. Dynamic behavior of controlled system for unconstrained case for u(t).

Bo =









.0001 .1002
−.0615 .0183
−.1133 .0586
−.0057 .0029









C =

[

1 0 0 0
0 −1 0 7.74

]

and model uncertainty matrices are

A1u =









0 0 0 0
0 0.0005 0.0017 0
0 0 0.0001 0
0 0 0 0









B1u =









0 0.12
−0.02 0.1
−0.12 0

0 0









10−3

For the case when number of uncertainty is p = 1, the number of vertices is N = 2p = 2, the
matrices (2) are calculated as in example 1. Note that nominal model Ao is unstable. Consider
N2 = Nu = 1, ̺ = 20000 and weighting matrices Q0 = Q1 = 1I, R0 = R1 = I the following
results are obtained:

• Unconstrained case: maximal closed-loop nominal model eigenvalue is Closed− loopmaxeig =
0.9983. Maximal value of control variables are about u1max = 9.6, u2max = 6.3.

• Constrained case with Ui = 1, θ = 40000 Closed− loopmaxeig = 0.9998 Maximal values
of control variables are about u1max = 0.21, u2max = 0.2.

Closed-loop nominal model step responses of the above two cases for the input u(t) are given
in the Fig.4 and Fig.5, respectively. Closed-loop step responses for in the paper proposed
control algorithm (29) and (32) are in Fig.6. Maximal values of control variables are about
u1max = 0.75 < 1, u2max = 0.6 < 1. Input constraint conditions were applied only for plant
control variable u(t). Both examples show that using tuning parameter θ the demanded input
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Fig. 2. Dynamic behavior of controlled system for constrained case for u(t).

constraints can be reached with high accuracy. The initial guess of θ can be obtained from (28).
It can be seen that the proposed control scheme provides reasonable results : the response in
case 3 (Fig.3 , Fig. 6) are quicker than those in case 2 (Fig.2, Fig.5), while the computation load
has not much increased comparing to case 2.

2. ROBUST MPC DESIGN: SEQUENTIAL APPROACH

2.1 INTRODUCTION

In this part a new MPC algorithm is proposed pursuing the idea of (Veselý & Rosinová ,
2009). The proposed robust MPC control algorithm is designed sequentially. The respec-
tive sequential robust MPC design procedure consists from two steps. In the first step and
one step ahead prediction horizon, the necessary and sufficient robust stability conditions
have been developed for MPC and polytopic system with output feedback, using generalized
parameter dependent Lyapunov matrix P(α). The proposed robust MPC algorithm ensures
parameter dependent quadratic stability (PDQS) and guaranteed cost. In the second step of
design procedure, the nominal plant model is used to design the predicted input variables
u(t + 1), ...u(t + N2 − 1) so that the robust closed-loop stability of MPC and guaranteed cost
are ensured. Thus, input variable u(t) guarantees the performance and robustness proper-
ties of closed-loop system and predicted input variables u(t + 1), ...u(t + N2 − 1) guarantee
the performance and closed-loop stability of uncertain plant model and nominal model pre-
diction. Note that within sequentially design procedure the degree of plant model does not
change when the output prediction horizon changes.
This part of chapter is organized as follows: Section 2.2 presents preliminaries and problem
formulation. In Section 2.3 the main results are given and finally, in Section 2.4 two examples
solved using Yalmip BMI solvers show the effectiveness of the proposed method.
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Fig. 3. Dynamic behavior of controlled system with the proposed algorithm for u(t) .

2.2 PROBLEM FORMULATION AND PRELIMINARIES

For readers convenience, uncertain plant model and respective preliminaries are briefly re-
called. A time invariant linear discrete-time uncertain polytopic system is

x(t + 1) = A(α)x(t) + B(α)u(t) (33)

y(t) = Cx(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control and output variables of the system,
respectively; A(α), B(α) belong to the convex set

S = {A(α) ∈ Rn×n, B(α) ∈ Rn×m} (34)

{A(α) =
N

∑
j=1

Ajαj B(α) =
N

∑
j=1

Bjαj, αj ≥ 0}, j = 1, 2...N,
N

∑
j=1

αj = 1

Matrix C is constant known matrix of corresponding dimension. Jointly with the system (33),
the following nominal plant model will be used.

x(t + 1) = Aox(t) + Bou(t) (35)

y(t) = Cx(t)

where (Ao, Bo) ∈ S are any matrices with constant entries. The problem studied in this part
of chapter can be summarized as follows: in the first step, parameter dependent quadratic
stability conditions for output feedback and one step ahead robust model predictive control
are derived for the polytopic system (33), (34), when control algorithm is given as

u(t) = F11y(t) + F12y(t + 1) (36)

and in the second step of design procedure, considering a nominal model (35) and a given
prediction horizon N2 a model predictive control is designed in the form:

u(t + k − 1) = Fkky(t + k − 1) + Fkk+1y(t + k) (37)
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Fig. 4. Dynamic behavior of unconstrained controlled system for u(t) .

where Fki ∈ Rm×l , k = 2, 3, ...N2; i = k + 1 are output (state) feedback gain matrices to be
determined so that cost function given below is optimal with respect to system variables. We
would like to stress that y(t + k − 1), y(t + 1) are predicted outputs obtained from predictive
model (44).
Substituting control algorithm (36) to (33) we obtain

x(t + 1) = D1(j)x(t) (38)

where
D1(j) = Aj + BjK1(j)

K1(j) = (I − F12CBj)
−1(F11C + F12CAj), j = 1, 2, ...N

For the first step of design procedure, the cost function to be minimized is given as

J1 =
∞

∑
t=0

J1(t) (39)

where
J1(t) = x(t)TQ1x(t) + u(t)T R1u(t)

and Q1, R1 are positive definite matrices of corresponding dimensions. For the case of k = 2
we obtain

u(t + 1) = F22CD1(j)x(t) + F23C(AoD1(j)x(t) + Bou(t + 1))

or
u(t + 1) = K2(j)x(t)

and closed-loop system

x(t + 2) = (AoD1(j) + BoK2(j))x(t) = D2(j)x(t), j = 1, 2, ...N
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Fig. 5. Dynamic behavior of constrained controlled system for u(t) .

Sequentially, for k = N2 ≥ 2 step prediction, we obtain the following closed-loop system

x(t + k) = (AoDk−1(j) + BoKk(j))x(t) = Dk(j)x(t) (40)

where
D0 = I, Dk(j) = AoDk−1(j) + BoKk(j) k = 2, 3, ..., N2; j = 1, 2, ...N

Kk(j) = (I − Fkk+1CBo)
−1(FkkC + Fkk+1CAo)Dk−1(j)

For the second step of robust MPC design procedure and k prediction horizon the cost function
to be minimized is given as

Jk =
∞

∑
t=0

Jk(t) (41)

where
Jk(t) = x(t)TQkx(t) + u(t + k − 1)T Rku(t + k − 1)

and Qk, Rk, k = 2, 3, ...N2 are positive definite matrices of corresponding dimensions. We
proceed with two corollaries following from Definition 2 and Lemma 1.
Corollary 1
The closed-loop system matrix of discrete-time system (1) is robustly stable if and only if
there exists a symmetric positive definite parameter dependent Lyapunov matrix 0 < P(α) =
P(α)T

< I̺ such that

− P(α) + D1(α)
T P(α)D1(α) ≤ 0 (42)

where D1(α) is the closed-loop polytopic system matrix for system (33). The necessary and
sufficient robust stability condition for closed-loop polytopic system with guaranteed cost is
given by the recent result (Rosinová et al., 2003).
Corollary 2
Consider the system (33) with control algorithm (36). Control algorithm (36) is the guaranteed
cost control law for the closed-loop system if and only if the following condition holds

Be = D1(α)
T P(α)D1(α)− P(α) + Q1 + (F11C + F12CD1(α))

T R1(F11C+ (43)
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Fig. 6. Dynamic behavior for proposed control algorithm (29) and (32) for u(t) .

+F12CD1(α)) ≤ 0

For the nominal model and k = 1, 2, ...N2 the model prediction can be obtained in the form

z(t + 1) = A f z(t) + B f v(t) (44)

y f (t) = C f z(t)

where
z(t)T = [x(t)T ...x(t + N2 − 1)T ]

v(t)T = [u(t)T ...u(t + N2 − 1)T ]

y f (t)
T = [y(t)T ...y(t + N2 − 1)T ]

A f =













Ao 0 0 ... 0
AoD1 0 0 ... 0
AoD2 0 0 ... 0

... ... ... ... ...
AoDN2−1 0 0 ... 0













∈ RnN2×nN2

B f = blockdiag{Bo}nN2×mN2

C f = blockdiag{C}lN2×nN2

Remarks

• Control algorithm for k = N2 is u(t + N2 − 1) = FN2 N2
y(t + N2 − 1).

• If one wants to use control horizon Nu < N2 (Camacho & Bordons, 2004), the control
algorithm is u(t + k − 1) = 0, Kk = 0, FNu+1 Nu+1

= 0, FNu+1 Nu+2
= 0 for k > Nu.

• Note that model prediction (44) is calculated using nominal model (35), that is D0 =
I, Dk = AoDk−1 + BoKk, Dk(j) is used robust controller design procedure.
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2.3 MAIN RESULTS

2.3.1 Robust MPC controller design. First step

The main results for the first step of design procedure can be summarized in the following
theorem.
Theorem 2.
The system (33) with control algorithm (36) is parameter dependent quadratically stable with
parameter dependent Lyapunov function V(t) = x(t)T P(α)x(t) if and only if there exist ma-
trices N11, N12, F11, F12 such that the following bilinear matrix inequality holds.

Be =

[

G11 G12

GT
12 G22

]

≤ 0 (45)

where
G22 = NT

12 Ac(α) + Ac(α)
T N12 − P(α) + Q1 + CT FT

11R1F11C

GT
12 = Ac(α)

T N11 + NT
12 Mc(α) + CT FT

11R1F12C

G11 = NT
22 Mc(α) + Mc(α)

T N22 + CT FT
12R1F12C + P(α)

Mc(α) = B(α)F12C − I

Ac(α) = A(α) + B(α)F11C

Note that (45) is affine with respect to α. Substituting (34) and P(α) = ∑
N
i=1 αiPi to (45) the

following BMI is obtained for the polytopic system

Bie =

[

G11i G12i

GT
12i G22i

]

≤ 0 i = 1, 2, ...N (46)

where
G11i = NT

22 Mci + MT
ci N22 + CT FT

12R1F12C + Pi

GT
12i = AT

ci N22 + NT
12 Mci + CT FT

11R1F12C

G22i = NT
12 Aci + AT

ci N12 − Pi + Q1 + CT FT
11R1F11C

Mci = BiF12C − I Aci = Ai + BiF11C

Proof. For the proof of this theorem see the proof of Theorem 3 .
If the solution of (46) is feasible with respect to symmetric matrices Pi = PT

i > 0, i = 1, 2...N,
and matrices N11, N12, within the convex set defined by (34), the gain matrices F11, F12 ensure
the guaranteed cost and parameter dependent quadratic stability (PDQS) of closed-loop poly-
topic system for one step ahead predictive control.
Note that:

• For concrete matrix P(α) = ∑
N
i=1 αiPi BMI robust stability conditions "if and only if" in

(45) reduces in (46) to BMI conditions " if".

• If in (46) Pi = Pj = P, i �= j = 1, 2...N, the feasible solution of (46) with respect to
matrices N11, N12, and symmetric positive definite matrix P gives the gain matrices
F11, F12 guaranteeing quadratic stability and guaranteed cost for one step ahead pre-
dictive control for the closed-loop polytopic system within the convex set defined by
(34). Quadratic stability gives more conservative results than PDQS. Conservatism of
real results depend on the concrete examples.

Assume that the BMI solution of (46) is feasible, then for nominal plant one can calculate
matrices D1 and K1 using (38). For the second step of MPC design procedure, the obtained
nominal model will be used.
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2.3.2 Model predictive controller design. Second step

The aim of the second step of predictive control design procedure is to design gain matrices
Fkk, Fkk+1, k = 2, 3, ...N2 such that the closed-loop system with nominal model is stable with
guaranteed cost. In order to design model predictive controller with output feedback in the
second step of design procedure we proceed with the following corollary and theorem.
Corollary 3
The closed-loop system (40) is stable with guaranteed cost iff the following inequality holds

Bek(t) = ∆Vk(t) + x(t)TQkx(t) + u(t + k − 1)T Rku(t + k − 1) ≤ 0 (47)

where ∆Vk(t) = Vk(t + k)− Vk(t) and Vk(t) = x(t)T Pkx(t), Pk = PT
k > 0, k = 2, 3, ...N2.

Theorem 3
The closed-loop system (40) is robustly stable with guaranteed cost iff for k = 2, 3, ...N2 there
exist matrices

Fkk, Fkk+1, Nk1 ∈ Rn×n, Nk2 ∈ Rn×n

and positive definite matrix Pk = PT
k ∈ Rn×n such that the following bilinear matrix inequality

holds

Be2 =

[

Gk11 Gk12

GT
k12 Gk22

]

≤ 0 (48)

where
Gk11 = NT

k1 Mck + MT
ck Nk1 + CT FT

kk+1RkFkk+1C + Pk

GT
k12 = Dk−1(j)TCT FT

kkRkFkk+1C + Dk−1(j)T AT
ck Nk1 + NT

k2 Mck

Gk22 = Qk − Pk + Dk−1(j)TCT FT
kkRkFkkCDk−1(j)

+NT
k2 AckDk−1(j) + Dk−1(j)T AT

ck Nk2

and
Mck = B0Fkk+1C − I; Ack = A0 + B0FkkC

Dk(j) = A0Dk−1(j) + B0Kk(j)

Kk(j) = (I − Fkk+1CB0)
−1(FkkC + Fkk+1CA0)Dk−1(j), j = 1, 2, ...N

Proof. Sufficiency.
The closed-loop system (40) can be rewritten as follows

x(t + k) = −(Mck)
−1 AckDk−1(j)x(t) = Aclkx(t) (49)

Since the matrix (j is omitted)

UT
k = [−DT

k−1 AT
ck(Mck)

−1 I]

has full row rank, multiplying (48) from left and right side the inequality equivalent to (47) is
obtained. Multiplying the results from left by x(t)T and right by x(t), taking into account the
closed-loop matrix (49), the inequality (47) is obtained, which proves the sufficiency.
Necessity.
Suppose that for k-step ahead model predictive control there exists such matrix 0 < Pk =
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PT
k
< Iρ that (48) holds. Necessarily, there exists a scalar β > 0 such that for the first difference

of Lyapunov function in (47) holds

AT
clkPk Aclk − Pk ≤ −β(AT

clk Aclk) (50)

The inequality (50) can be rewritten as

AT
clk(Pk + βI)Aclk − Pk ≤ 0

Using Schur complement formula we obtain

[

−Pk −AT
clk
(Pk + βI)

(Pk + βI)Aclk −(Pk + βI)

]

≤ 0 (51)

taking

Nk1 = −(Mck)
−1(Pk + βI/2)

NT
k2 = −DT

k−1 AT
ck(M−1

ck
)T M−1

ck
β/2

one obtains
−AT

clk(Pk + βI) = DT
k−1 AT

ck Nk1 + NT
k2 Mck

− Pk = −Pk + NT
k2 AckDk−1 + DT

k−1 (52)

AT
ck Nk2 + β(DT

k−1 AT
ck(M−1

ck
)T M−1

ck
AckDk−1)

−(Pk + βI) = 2Mck Nk1 + Pk

Substituting (52) to (51) for β → 0 the inequality (48) is obtained for the case of Qk = 0, Rk = 0.
If one substitutes to the second part of (47) for u(t + k − 1) from (37), rewrites the obtained
result to matrix form and takes sum of it with the above matrix, inequality (48) is obtained,
which proves the necessity. It completes the proof.
If there exists a feasible solution of (48) with respect to matrices Fkk, Fkk+1, Nk1 ∈ Rn×n, Nk2 ∈
Rn×n, k = 2, 3, ...N2 and positive definite matrix Pk = PT

k
∈ Rn×n, then the designed MPC

ensures quadratic stability of the closed-loop system and guaranteed cost.

Remarks

• Due to the proposed design philosophy, predictive control algorithm u(t + k), k ≥ 1 is
the function of corresponding performance term (39) and previous closed-loop system
matrix.

• In the proposed design approach constraints on system variables are easy to be imple-
mented by LMI using a notion of invariant set (Ayd et al., 2008), (Rohal-Ilkiv, 2004) (see
Section 1.3).

• The proposed MPC with sequential design is a special case of classical MPC. Sequential
MPC may not provide "better" dynamic behavior than classical one but it is another
approach to the design of MPC.

• Note that in the proposed MPC sequential design procedure, the size of system does
not change when N2 increases.

• If there exists feasible solution for both steps in the convex set (34), the proposed con-
trol algorithm (37) guarantees the PDQS and robustness properties of closed-loop MPC
system with guaranteed cost.
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The sequential robust MPC design procedure can be summarized in the following steps:

• Design of robust MPC controller with control algorithm (36) by solving (46).

• Calculate matrices K1, D1 and K1(j), D1(j), j = 1, 2, ...N given in (38) for nominal and
uncertain model of system.

• For a given k = 2, 3, ...N2 and control algorithm (37), sequentially calculate Fkk, Fkk+1 by
solving (48) with Kk, Dk given in (40).

• Calculate matrices A f , B f , C f (44) for model prediction.

2.4 EXAMPLES

Example 1. First example is the same as in section 1.5, it serves as a benchmark. The model of
double integrator turns to (35) where

Ao =

[

1 0
1 1

]

Bo =

[

1
0

]

, C =
[

0 1
]

and uncertainty matrices are

A1u =

[

0.01 0.01
0.02 0.03

]

B1u =

[

0.001
0

]

,

For the case when number of uncertainties p = 1, the number of vertices is N = 2p = 2, the
matrices (34) are calculated as

A1 = An − A1u, A2 = An + A1u

B1 = Bn − B1u, B2 = Bn + B1u

For the parameters: ̺ = 20000, prediction and control horizons N2 = 4, Nu = 4, performance
matrices R1 = ...R4 = 1, Q1 = .1I, Q2 = .5I, Q3 = I, Q4 = 5I, the following results are
obtained using the sequential design approach proposed in this part :

• For prediction k = 1, the robust control algorithm is given as

u(t) = F11y(t) + F12y(t + 1)

From (46), one obtains the gain matrices F11 = 0.9189; F12 = −1.4149. The eigenvalues
of closed-loop first vertex system model are as follows

Eig(Closed − loop) = {0.2977 ± 0.0644i}

• For k = 2, control algorithm is

u(t + 1) = F22y(t + 1) + F23y(t + 2)

In the second step of design procedure control gain matrices obtained solving (48) are
F22 = 0.4145; F23 = −0.323. The eigenvalues of closed-loop first vertex system model
are

Eig(Closed − loop) = {0.1822 ± 0.1263i}

www.intechopen.com



Model Predictive Control20

• For k=3, control algorithm is

u(t + 2) = F33y(t + 2) + F34y(t + 3)

In the second step of design procedure the obtained control gain matrices are F33 =
0.2563; F34 = −0.13023. The eigenvalues of closed-loop first vertex system model are

Eig(Closed − loop) = {0.1482 ± 0.051i}

• For prediction k = N2 = 4, control algorithm is

u(t + 3) = F44y(t + 3) + F45y(t + 4)

In the second step the obtained control gain matrices are F44 = 0.5797; F45 = 0.0. The
eigenvalues of closed-loop first vertex model system are

Eig(Closed − loop) = {0.1002 ± 0.145i}

Example 2. Nominal model for the second example is

Ao =













0.6 0.0097 0.0143 0 0
0.012 0.9754 0.0049 0 0

−0.0047 0.01 0.46 0 0
0.0488 0.0002 0.0004 1 0
−0.0001 0.0003 0.0488 0 1













Bo =









0.0425 0.0053
0.0052 0.01
0.0024 0.0001

0 0.0012









C =









1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









The linear affine type model of uncertain system (34) is in the form

Ai = An + θ1 A1u; Bi = Bn + θ1B1u

Ci = C, i = 1, 2

where A1u, B1u are uncertainty matrices with constant entries, θ1 is an uncertain real parame-
ter θ1 ∈< θ1, θ1 > . When lower and upper bounds of uncertain parameter θ1 are substituted
to the affine type model, the polytopic system (33) is obtained. Let θ1 ∈< −1, 1 > and

A1u =













0.025 0 0 0 0
0 0.021 0 0 0
0 0 0.0002 0 0

0.001 0 0 0 0
0 0 0.0001 0 0













B1u =













0.0001 0
0 0.001
0 0.0021
0 0
0 0












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In this example two vertices (N = 2) are calculated. The design problem is: Design two PS(PI)
model predictive robust decentralized controllers for plant input u(t) and prediction horizon
N2 = 5 using sequential design approach. The cost function is given by the following matrices

Q1 = Q2 = Q3 = I, R1 = R2 = R3 = I,

Q4 = Q5 = 0.5I, R4 = R5 = I

In the first step, calculation for the uncertain system (33) yields the robust control algorithm

u(t) = F11y(t) + F12y(t + 1)

where matrix F11 with decentralized output feedback structure containing two PS controllers,
is designed. From (46), the gain matrices F11, F12 are obtained

F11 =

[

−18.7306 0 −42.4369 0
0 8.8456 0 48.287

]

where decentralized proportional and integral gains for the first controller are

K1p = 18.7306, K1i = 42.4369

and for the second one
K2p = −8.8456, K2i = −48.287

Note that in F11 sign - shows the negative feedback. Because predicted output y(t + 1) is
obtained from prediction model (44), for output feedback gain matrix F12 there is no need to
use decentralized control structure

F12 =

[

−22.0944 20.2891 −10.1899 18.2789
−29.3567 8.5697 −28.7374 −40.0299

]

In the second step of design procedure, using (48) for nominal model, the matrices (37) Fkk, Fkk+1, k =
2, 3, 4, 5 are calculated. The eigenvalues of closed-loop first vertex system model for N2 =
Nu = 5 are

Eig(Closed − loop) = {−0.0009;−0.0087; 0.9789; 0.8815; 0.8925}

Feasible solutions of bilinear matrix inequality have been obtained by YALMIP with PENBMI
solver.

3. CONCLUSION

The first part of chapter addresses the problem of designing the output/state feedback robust
model predictive controller with input constraints for output and control prediction horizons
N2 and Nu. The main contribution of the presented results is twofold: The obtained robust
control algorithm guarantees the closed-loop system quadratic stability and guaranteed cost
under input constraints in the whole uncertainty domain. The required on-line computa-
tion load is significantly less than in MPC literature (according to the best knowledge of au-
thors), which opens possibility to use this control design scheme not only for plants with slow
dynamics but also for faster ones. At each sample time the calculation of proposed control
algorithm reduces to a solution of simple equation. Finally, two examples illustrate the effec-
tiveness of the proposed method. The second part of chapter studies the problem of design
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a new MPC with special control algorithm. The proposed robust MPC control algorithm is
designed sequentially, the degree of plant model does not change when the output predic-
tion horizon changes. The proposed sequential robust MPC design procedure consists of two
steps: In the first step for one step ahead prediction horizon the necessary and sufficient ro-
bust stability conditions have been developed for MPC and the polytopic system with output
feedback, using generalized parameter dependent Lyapunov matrix P(α). The proposed ro-
bust MPC ensures parameter dependent quadratic stability (PDQS) and guaranteed cost. In
the second step of design procedure the uncertain plant and nominal model with sequential
design approach is used to design the predicted input variables u(t + 1), ...u(t + N2 − 1) so
that to ensure the robust closed-loop stability of MPC with guaranteed cost. Main advantages
of the proposed sequential method are that the design plant model degree is independent on
prediction horizon N2; robust controller design procedure ensures PDQS and guaranteed cost
and the obtained results are easy to be implemented in real plant. In the proposed design
approach, constraints on system variables are easy to be implemented by LMI (BMI) using a
notion of invariant set. Feasible solution of BMI has been obtained by Yalmip with PENBMI
solver.
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