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1. Introduction 

In the last decade, risk management in the banking and insurance sectors has witnessed a rise 
in the importance of operational risk among other types of risks, rising from the position of 
»other risks« and placing itself alongside credit and market risks – the two risk categories 
deemed to be the most important in the industry, gaining most of the attention by risk 
managers in financial institutions and by regulators. The main reasons for such a change are a 
powerful growth of the financial markets, its increasing deregulation and globalization, the 
growing organizational complexity of these institutions, their corporate and capital 
partnerships, which increases their overall exposure to risk, as well as the intense development 
of financial services, which are becoming more accessible to a wider circle of investors. 
 
The development of a comprehensive operational risk management system is the basis for a 
comprehensive overall company-wide risk management model for any financial institution. 
The operational risk management system includes the following steps to the analysis of 
operational risk: the identification of operational risk factors and events, collecting data on 
operational risk events, the analysis of gathered data and the use of the analysis results in 
decision making throughout the institution. Historically, the financial institutions’ business 
environment has the upper hand in the development and implementation of risk 
management systems, including operational risk management, since risk management was 
first developed and incorporated. Fortunately, this does not mean that financial institutions 
hold the exclusive opportunity of using risk management tools to their advantage. As we 
will show later on, analogue operational risk management systems can also be developed 
for other industries, such as logistics, where business processes are mainly what operational 
risk management should focus on; also, high-technology or fast developing industries, such 
as telecommunications, software, hardware, pharmaceuticals and biotechnology, where the 
development of new product and services solutions requires substantial financial 
investments, with patent protection offering substantial rewards and patent lawsuits 
threatening with substantial financial downfalls.  
 
Any operational risk management method allows a company to improve its opportunities in 
the business environment by identifying potential threats, by identifying potential losses or 
simply by turning the company’s attention to the processes within that company which in 
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the past have caused or, in turn, experienced the most numerous or most financially 
burdening operational risk events. The different types of operational risk identification and 
measurement methods require a different involvement of the company; they also differ in 
their basic principle – being either qualitative or quantitative, their complexity and 
comprehensiveness and the width of the application of the data analysis’ results. Among 
different methods, the use of advanced measurement methods and the use of quantitative 
methods allow a company to quantify and manage this important type of risk in the widest 
possible way, but unfortunately, these methods require the most effort by the company – an 
extensive development, integration and knowledge for such a system to be efficiently used 
within the company’s overall risk management system. 
 
Unfortunately, the quality of any risk management system can only be determined by its 
use, by testing the quality of gathered data and of forecasts made on the basis of such data. 
This can be done by comparing the gathered data and forecasts them to actual data arising 
from continuing operations. Obviously, it is imperative that in such a data gathering 
operation all levels of business be included; this means that a consensus on all levels of 
management in the company is necessary and that all levels of operations in the company 
are aware of, and integrated into, the risk management system.  
 
One of the other problems with such data analysis models, apart from the system setup 
effort, lies in extreme events, which are rare by nature and extreme by consequences – both 
quantitatively (e.g. financially) or qualitatively (e.g. loss of reputation). These events may 
have not yet occurred in the recent history of a financial institution, say in the last 10 years. 
A logical, albeit erroneous, conclusion one would make based on such data is that extreme 
events do not happen and will not happen in the future. Such a conclusion may cause the 
underestimation of minimal capital requirements or capital reserves for financial institutions 
or the underestimation of risk event provisions in other companies.  
 
Therefore, the development of an operational risk management model which takes into 
consideration and integrates data on extreme events is an important issue for companies 
with a short historical data background. This is the obvious situation for recently founded 
companies with a short business history or for companies which only recently developed an 
operational risk data gathering system. Such companies can be found in most fast 
developing industries, as well as in changing business environments due to changes in 
legislation, mode of operation, political or macroeconomic systems. Here, any data gathered 
in the past can be considered an unreliable base for the use within such a model. 
 
In the following sections of the chapter, we will continue by presenting the different risk 
management methods which will be followed by proposing, in our opinion, the most suitable 
method for operational risk management. We will then present an innovative approach in 
using such a method by adapting it to the poor data environment and showing how to use 
simulations to obtain additional data for analysis. We will illustrate the use of the method on 
an example and analyze the results of the model. In conclusion, we will show some 
possibilities for the integration of the method within the company’s risk management system. 

 

 

2. Risk Measurement Methods 

2.1 The Choice of a Suitable Method 
Operational risk can be defined as the risk remaining after eliminating market, credit, 
interest and exchange risks (Allen & Bali, 2007). The Basel Committee on Banking 
Supervision defines operational risk as the risk of loss resulting from inadequate or failed 
internal processes, people and systems or from external events. This definition includes 
legal risk, but excludes strategic and reputational risk (BIS, 2004; Van Greuning & 
Bratanovic, 2003). It is in the New Basel Accord (BIS, 2004) that operational risk is given a 
greater consideration and the methods for its identification, measurement and management 
are explored. It is also in this document that operational risk is included in the calculation of 
minimum capital requirements for banks.  
 
The New Basel Accord allows financial institutions to choose one of the following proposed 
methods for the calculation of minimal capital requirements: the Basic Indicator Approach, 
the Standardized Approach or the Advanced Measurement Approach (AMA). All of the 
proposed methods can be somewhat modified to measure and manage operational risk, but 
the AMA is the one most suitable for operational risk events, as it allows the models to be 
implemented in companies other than financial institutions, i.e. companies which require 
such models for the calculation of capital adequacy or the calculation of provisions.  
 
Within the AMA, a company has the possibility of developing its own specialized 
operational risk measuring model, with the premises that the model be comprehensive, 
transparent and systematic. The AMA includes the Internal Measurement Approach, the 
Scorecard Approach and the Loss Distribution Approach. With the LDA, the company 
creates a matrix of business processes and possible operational risk events and determines 
the probability of each combination of events and business processes as well as the severity 
of the loss. This is the basis for the determination of the loss distribution function of the total 
loss incurred in a year (or other period). The company then uses the loss distribution to 
calculate the VaR at a 99.9 % confidence level. 
 
According to Chernobai et al. (2007), the advantages of using the LDA are its high 
sensitivity, the possibility of integrating both internal and external data into the loss 
distribution model, as well as expert estimates, and high reliability of results, provided that 
reliable data is used in the model. Some disadvantages of the method include VaR’s failure 
to meet the sub-additivity criteria in cases of fat-tailed distributions (Nešlehova et al., 2006), 
the interdependence and correlation between model input variables, the lack of a 
diversification effect with extreme event distributions (Embrechts et al. 2002; Ibragimov, 
2005), the questionable reliability of high-quantile statistical indicators such as VaR with 
extreme events (McNeil et al., 2005), as well as the general problem of data gathering and 
data quality in an environment of scarce and extreme events, which are often well protected 
information (de Fontnouvelle et al., 2003). Many of these disadvantages can be averted by 
applying a few modifications to the LDA which will be presented in the next section.  
 
A key issue in constructing such a model is the identification of the correct loss distribution 
function for the gathered data. By correctly choosing the loss distribution function a 
company can calculate the probability and total loss incurred by operational risk events and 
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the past have caused or, in turn, experienced the most numerous or most financially 
burdening operational risk events. The different types of operational risk identification and 
measurement methods require a different involvement of the company; they also differ in 
their basic principle – being either qualitative or quantitative, their complexity and 
comprehensiveness and the width of the application of the data analysis’ results. Among 
different methods, the use of advanced measurement methods and the use of quantitative 
methods allow a company to quantify and manage this important type of risk in the widest 
possible way, but unfortunately, these methods require the most effort by the company – an 
extensive development, integration and knowledge for such a system to be efficiently used 
within the company’s overall risk management system. 
 
Unfortunately, the quality of any risk management system can only be determined by its 
use, by testing the quality of gathered data and of forecasts made on the basis of such data. 
This can be done by comparing the gathered data and forecasts them to actual data arising 
from continuing operations. Obviously, it is imperative that in such a data gathering 
operation all levels of business be included; this means that a consensus on all levels of 
management in the company is necessary and that all levels of operations in the company 
are aware of, and integrated into, the risk management system.  
 
One of the other problems with such data analysis models, apart from the system setup 
effort, lies in extreme events, which are rare by nature and extreme by consequences – both 
quantitatively (e.g. financially) or qualitatively (e.g. loss of reputation). These events may 
have not yet occurred in the recent history of a financial institution, say in the last 10 years. 
A logical, albeit erroneous, conclusion one would make based on such data is that extreme 
events do not happen and will not happen in the future. Such a conclusion may cause the 
underestimation of minimal capital requirements or capital reserves for financial institutions 
or the underestimation of risk event provisions in other companies.  
 
Therefore, the development of an operational risk management model which takes into 
consideration and integrates data on extreme events is an important issue for companies 
with a short historical data background. This is the obvious situation for recently founded 
companies with a short business history or for companies which only recently developed an 
operational risk data gathering system. Such companies can be found in most fast 
developing industries, as well as in changing business environments due to changes in 
legislation, mode of operation, political or macroeconomic systems. Here, any data gathered 
in the past can be considered an unreliable base for the use within such a model. 
 
In the following sections of the chapter, we will continue by presenting the different risk 
management methods which will be followed by proposing, in our opinion, the most suitable 
method for operational risk management. We will then present an innovative approach in 
using such a method by adapting it to the poor data environment and showing how to use 
simulations to obtain additional data for analysis. We will illustrate the use of the method on 
an example and analyze the results of the model. In conclusion, we will show some 
possibilities for the integration of the method within the company’s risk management system. 

 

 

2. Risk Measurement Methods 

2.1 The Choice of a Suitable Method 
Operational risk can be defined as the risk remaining after eliminating market, credit, 
interest and exchange risks (Allen & Bali, 2007). The Basel Committee on Banking 
Supervision defines operational risk as the risk of loss resulting from inadequate or failed 
internal processes, people and systems or from external events. This definition includes 
legal risk, but excludes strategic and reputational risk (BIS, 2004; Van Greuning & 
Bratanovic, 2003). It is in the New Basel Accord (BIS, 2004) that operational risk is given a 
greater consideration and the methods for its identification, measurement and management 
are explored. It is also in this document that operational risk is included in the calculation of 
minimum capital requirements for banks.  
 
The New Basel Accord allows financial institutions to choose one of the following proposed 
methods for the calculation of minimal capital requirements: the Basic Indicator Approach, 
the Standardized Approach or the Advanced Measurement Approach (AMA). All of the 
proposed methods can be somewhat modified to measure and manage operational risk, but 
the AMA is the one most suitable for operational risk events, as it allows the models to be 
implemented in companies other than financial institutions, i.e. companies which require 
such models for the calculation of capital adequacy or the calculation of provisions.  
 
Within the AMA, a company has the possibility of developing its own specialized 
operational risk measuring model, with the premises that the model be comprehensive, 
transparent and systematic. The AMA includes the Internal Measurement Approach, the 
Scorecard Approach and the Loss Distribution Approach. With the LDA, the company 
creates a matrix of business processes and possible operational risk events and determines 
the probability of each combination of events and business processes as well as the severity 
of the loss. This is the basis for the determination of the loss distribution function of the total 
loss incurred in a year (or other period). The company then uses the loss distribution to 
calculate the VaR at a 99.9 % confidence level. 
 
According to Chernobai et al. (2007), the advantages of using the LDA are its high 
sensitivity, the possibility of integrating both internal and external data into the loss 
distribution model, as well as expert estimates, and high reliability of results, provided that 
reliable data is used in the model. Some disadvantages of the method include VaR’s failure 
to meet the sub-additivity criteria in cases of fat-tailed distributions (Nešlehova et al., 2006), 
the interdependence and correlation between model input variables, the lack of a 
diversification effect with extreme event distributions (Embrechts et al. 2002; Ibragimov, 
2005), the questionable reliability of high-quantile statistical indicators such as VaR with 
extreme events (McNeil et al., 2005), as well as the general problem of data gathering and 
data quality in an environment of scarce and extreme events, which are often well protected 
information (de Fontnouvelle et al., 2003). Many of these disadvantages can be averted by 
applying a few modifications to the LDA which will be presented in the next section.  
 
A key issue in constructing such a model is the identification of the correct loss distribution 
function for the gathered data. By correctly choosing the loss distribution function a 
company can calculate the probability and total loss incurred by operational risk events and 
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consequently maintain an adequate level of capital or provisions for operational risk losses. 
For the purpose of data analysis, the usage of classical statistical functions is quite adequate 
for data falling within the major part of the loss distribution, but may differ significantly in 
the tail of the data distribution, especially in the case of heavy-tailed data, where the use of 
the Extreme Value Theory (EVT) is much more suitable (Moscadelli, 2004). Due to the 
extreme nature, low frequency and high severity of operational loss events, which can cause 
significant losses to a financial institution, it is imperative to achieve a good fit in the tail of 
the distribution function. 

 
2.2 The Use of Value at Risk 
The principal method of estimating of the capital charge (or provisions) for operational risk 
within the LDA is the Value at Risk measure (VaR). From a market risk measure, VaR has 
become a much more versatile measure of risk (Jorion, 2001; Manganelli & Engle, 2001) 
thanks to actuarial methods of estimating the loss distribution functions based on historical 
data.  
 
VaR is, in a way, a further development of classical derivatives valuation models such as the 
Black-Scholes model and refers to the volatility of a portfolio Ft within a timeframe t or on a 
target date: 
      , ,t tVaR t E F Q F   , (1) 
where Q(Ft ,) is the quantile corresponding to the  confidence level. 
 
Considering that the aggregate operational risk losses are distributed according to an 
actuarial model, X being the loss for a certain operational risk event and N t the number of 
risk loss events in a  t period of time, e.g. one year, the cumulative losses occur according 
to the following stochastic process:  
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where FX is the distribution function of the stochastic variable X, while *n
XF denotes the n-th 

convolution of FX with itself. 
 
Clearly, such a distribution function is non-linear by X and N and an analytical approach to 
determining its parameters is not viable. Instead, some of the alternative methods can be 
used (Klugman et al., 2004; Enrique, 2006), such as the kernel method (Butler & Schachter, 
1998) and the Monte Carlo simulation, which will be demonstrated in the following parts of 
the chapter in our example. 
 

 

Within the actuarial models, the operational risk VaR can be calculated as follows 
(Chernobai et al., 2007): 
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or by using the inverse distribution function: 
 1 (1 )

tSVaR F 
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By keeping in mind some specifics when dealing with cumulative operational risk losses 
data within fat-tailed distribution, where the maximum observed value can significantly 
affect the cumulative loss Sn (see Embrechts et al., 1997), the fat-tailed distribution VaR can 
be calculated as: 

 1 1X
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      

. (6) 

 
Some of the advantages of using VaR as a risk measure according to Wilson (1998) include 
the possibility of comparing different types of risk and different subjects, i.e. different 
financial institutions or, in the case of expanding the method to non-financial sectors, the 
comparison of other companies in highly competitive industries. It can be used directly as a 
measure for creating provisions for risk events and the use of VaR can also be applied to 
certain financial analysis measures, such as ROE or RAROC. 
 
Potentially, the use of VaR presents also a few problems (Yamai & Yoshiba, 2002). These 
include the limitation of presenting only the 99.9-percentile loss and all higher losses lying 
to the right of the 99.9-percentile threshold, creating a potentially non-true picture of 
potential losses. It also fails to take into consideration the dependencies between risk factors 
and processes, which can significantly affect the total size of potential operational risk 
losses, by underestimating or overestimating the projected losses. The use of VaR enables 
companies to study operational loss data, but it cannot prevent high operational losses in 
itself. Therefore, the use of VaR must be integrated within an efficient and comprehensive 
risk management system. Finally, the sub-additivity criteria, which VaR fails to meet, is very 
important from a methodological point of view, as discussed by Artzner et al. (1999), 
Chavez-Demoulin et al. (2006) and Embrechts et al. (2002).  
 
As an alternative to VaR, some authors are proposing the use of Expected Shortfall (ES) or 
Conditional Value at Risk (CVaR) (see Chernobai et al., 2007; Embrechts et al., 2008). It can 
be calculated as: 
 t tCVaR S S VaR      . (7) 

 
CVaR calculates the potential loss in the case an event in the right tail of the distribution 
beyond VaR should occur. Unlike VaR, which may fail the sub-additivity property, CVaR is 
a sub-additive measure of risk suitable for use in fat-tailed and extreme event distributions. 
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consequently maintain an adequate level of capital or provisions for operational risk losses. 
For the purpose of data analysis, the usage of classical statistical functions is quite adequate 
for data falling within the major part of the loss distribution, but may differ significantly in 
the tail of the data distribution, especially in the case of heavy-tailed data, where the use of 
the Extreme Value Theory (EVT) is much more suitable (Moscadelli, 2004). Due to the 
extreme nature, low frequency and high severity of operational loss events, which can cause 
significant losses to a financial institution, it is imperative to achieve a good fit in the tail of 
the distribution function. 

 
2.2 The Use of Value at Risk 
The principal method of estimating of the capital charge (or provisions) for operational risk 
within the LDA is the Value at Risk measure (VaR). From a market risk measure, VaR has 
become a much more versatile measure of risk (Jorion, 2001; Manganelli & Engle, 2001) 
thanks to actuarial methods of estimating the loss distribution functions based on historical 
data.  
 
VaR is, in a way, a further development of classical derivatives valuation models such as the 
Black-Scholes model and refers to the volatility of a portfolio Ft within a timeframe t or on a 
target date: 
      , ,t tVaR t E F Q F   , (1) 
where Q(Ft ,) is the quantile corresponding to the  confidence level. 
 
Considering that the aggregate operational risk losses are distributed according to an 
actuarial model, X being the loss for a certain operational risk event and N t the number of 
risk loss events in a  t period of time, e.g. one year, the cumulative losses occur according 
to the following stochastic process:  
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where FX is the distribution function of the stochastic variable X, while *n
XF denotes the n-th 

convolution of FX with itself. 
 
Clearly, such a distribution function is non-linear by X and N and an analytical approach to 
determining its parameters is not viable. Instead, some of the alternative methods can be 
used (Klugman et al., 2004; Enrique, 2006), such as the kernel method (Butler & Schachter, 
1998) and the Monte Carlo simulation, which will be demonstrated in the following parts of 
the chapter in our example. 
 

 

Within the actuarial models, the operational risk VaR can be calculated as follows 
(Chernobai et al., 2007): 
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By keeping in mind some specifics when dealing with cumulative operational risk losses 
data within fat-tailed distribution, where the maximum observed value can significantly 
affect the cumulative loss Sn (see Embrechts et al., 1997), the fat-tailed distribution VaR can 
be calculated as: 
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Some of the advantages of using VaR as a risk measure according to Wilson (1998) include 
the possibility of comparing different types of risk and different subjects, i.e. different 
financial institutions or, in the case of expanding the method to non-financial sectors, the 
comparison of other companies in highly competitive industries. It can be used directly as a 
measure for creating provisions for risk events and the use of VaR can also be applied to 
certain financial analysis measures, such as ROE or RAROC. 
 
Potentially, the use of VaR presents also a few problems (Yamai & Yoshiba, 2002). These 
include the limitation of presenting only the 99.9-percentile loss and all higher losses lying 
to the right of the 99.9-percentile threshold, creating a potentially non-true picture of 
potential losses. It also fails to take into consideration the dependencies between risk factors 
and processes, which can significantly affect the total size of potential operational risk 
losses, by underestimating or overestimating the projected losses. The use of VaR enables 
companies to study operational loss data, but it cannot prevent high operational losses in 
itself. Therefore, the use of VaR must be integrated within an efficient and comprehensive 
risk management system. Finally, the sub-additivity criteria, which VaR fails to meet, is very 
important from a methodological point of view, as discussed by Artzner et al. (1999), 
Chavez-Demoulin et al. (2006) and Embrechts et al. (2002).  
 
As an alternative to VaR, some authors are proposing the use of Expected Shortfall (ES) or 
Conditional Value at Risk (CVaR) (see Chernobai et al., 2007; Embrechts et al., 2008). It can 
be calculated as: 
 t tCVaR S S VaR      . (7) 

 
CVaR calculates the potential loss in the case an event in the right tail of the distribution 
beyond VaR should occur. Unlike VaR, which may fail the sub-additivity property, CVaR is 
a sub-additive measure of risk suitable for use in fat-tailed and extreme event distributions. 
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2.3 The use of Extreme Value Theory (EVT) 
Operational loss data are typically right-skewed, leptokurtic (i.e. concentrated around the 
value 0) and fat-tailed on the positive (right) side of the distribution (see Cruz, 2002; 
Moscadelli, 2004; De Fontnouvelle et al., 2006). The use of EVT methods is therefore 
recommended. 
 
There are two basic analytical methods of the EVT: the block maxima model, which studies the 
most severe losses within a time interval-based block-organized data, and the peak-over-
threshold model (POT), which analyzes data above a high threshold. In our quantitative 
operational risk measurement model, we have chosen the use of the POT method as follows: 
 
Let u be a high threshold. Fu is the distribution function of data above this threshold, also 
known as the conditional excess distribution function (Chernobai et al., 2007): 

 
( ) ( )( ) ( | )

1 ( )u
F u x F uF x P X u x X x

F u
 

    


 (8) 

as shown in Figure 1.  

 
Fig. 1. The conditional excess distribution function above the high threshold u.  
 
Embrechts et al. (1997) have shown that for high values of u the conditional excess 
distribution function Fu takes the shape of a two-parametric general Pareto distribution 
(GPD) with the following distribution function: 
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x being an individual operational risk loss above the threshold,    is the location 
parameter, usually assumed to be 0,  >0 is the size parameter and  is the distribution’s 
shape parameter. The GPD becomes interesting for operational risk event data when  >0, 
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where it becomes fat-tailed. For  <1 it is possible to calculate the mean value, whereas the 
variance and standard deviation can only be calculated for values of  <0.5. 
 
There are several advantages of using the EVT in modeling operational risk event data1. The 
EVT describes the characteristics of the tail of a distribution function and is a direct tool for 
the analysis of high-severity-low-frequency extreme event data around and beyond a high 
threshold. By using the POT method one can analyze the catastrophic losses which lie 
beyond the high threshold, which clearly presents an advantage over other risk measures, 
such as VaR. By using the EVT, one can apply either computational theoretic methods for 
determining the parameters of the distribution function and, specifically, the tail of the 
distribution function, or use non-parametric measures, such as the Hill estimator, which 
possesses interesting asymptotic qualities. 
 
Notwithstanding some of the shortcomings of using the EVT (the use of a limited number of 
observations, which can lead to inaccuracy in parameter estimates; the use of graphic 
methods; potentially long calculation times in large data samples and complex models; the 
focus on high-severity events and the potential underestimation of medium- and low-
severity events), we feel that the advantages of EVT compared to VaR overweigh its 
weaknesses in the analysis of operational risk events, especially by applying the 
modifications of the method as described in the following section. 

 
3. Adaptations and Simulation 

3.1 Construction of the Model 
The operational risk measurement model presented hereby is based on the Loss Distribution 
Approach (LDA) of the New Basel Accord.  
 
It starts out as a bottom-up analysis of business processes, their classification, sorting and 
grouping into meaningful groups with common characteristics. This allows us to easily 
observe for operational risk events in practice and it facilitates the identification and further 
study of these events.  
 
The bottom-up approach requires a detailed knowledge of business processes within the 
company which is where the help of the lowest management levels will provide a very 
useful feedback. The business processes are then evaluated and the most likely risk factors 
for the specific business processes are identified and input into the model. 
 
The model of P processes and R risk factors is then a P x R matrix as shown in Figure 2. We 
then continue by estimating the frequency of the loss event for each process-risk factor 
combination (F()P) and the probability distribution function of the loss severity (F(a, s)R). 
 

                                                                 
1 The advantages and disatvantages of using EVT for high-quantile risk measures are also discussed in Diebold, 
Schuermann and Stroughair (1998), Embrechts (2000), Aragonés, Blanco and Dowd (2000), Fernandez (2003b), Chavez-
Demoulin and Roehl (2004), Emmer, Klüppelberg and Trüstedt (1999) and Bensalah (2000). 
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2.3 The use of Extreme Value Theory (EVT) 
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Let u be a high threshold. Fu is the distribution function of data above this threshold, also 
known as the conditional excess distribution function (Chernobai et al., 2007): 
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as shown in Figure 1.  

 
Fig. 1. The conditional excess distribution function above the high threshold u.  
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x being an individual operational risk loss above the threshold,    is the location 
parameter, usually assumed to be 0,  >0 is the size parameter and  is the distribution’s 
shape parameter. The GPD becomes interesting for operational risk event data when  >0, 
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where it becomes fat-tailed. For  <1 it is possible to calculate the mean value, whereas the 
variance and standard deviation can only be calculated for values of  <0.5. 
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Notwithstanding some of the shortcomings of using the EVT (the use of a limited number of 
observations, which can lead to inaccuracy in parameter estimates; the use of graphic 
methods; potentially long calculation times in large data samples and complex models; the 
focus on high-severity events and the potential underestimation of medium- and low-
severity events), we feel that the advantages of EVT compared to VaR overweigh its 
weaknesses in the analysis of operational risk events, especially by applying the 
modifications of the method as described in the following section. 
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3.1 Construction of the Model 
The operational risk measurement model presented hereby is based on the Loss Distribution 
Approach (LDA) of the New Basel Accord.  
 
It starts out as a bottom-up analysis of business processes, their classification, sorting and 
grouping into meaningful groups with common characteristics. This allows us to easily 
observe for operational risk events in practice and it facilitates the identification and further 
study of these events.  
 
The bottom-up approach requires a detailed knowledge of business processes within the 
company which is where the help of the lowest management levels will provide a very 
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for the specific business processes are identified and input into the model. 
 
The model of P processes and R risk factors is then a P x R matrix as shown in Figure 2. We 
then continue by estimating the frequency of the loss event for each process-risk factor 
combination (F()P) and the probability distribution function of the loss severity (F(a, s)R). 
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Fig. 2. The building elements of the operational risk measurement model. 
 
At this point, one must consider the potential hazard of using experts from within the 
company as they tend to overemphasize the importance of individual processes and are 
prone to offering too detailed analyses of their field of operation. The use of sound 
judgment is definitely called for when setting up the model, as the mapping of business 

 

processes and subsequent identification of risk factors should not be too specific in order to 
find some common ground between processes within the sub-segment and, on the other 
hand, in order to keep the size of the model manageable and cost-effective. 
 
The following steps in implementing the model require several modifications of the LDA, 
which are illustrated in the following subsection.  

 
3.2 Modifications of Methodology 
Firstly, there is the digression from the Basel “operating territory” into the field of non-
financial companies that we are proposing and will show later on by example. By selecting a 
company that operates in the field of high-technology such as software production, we are 
choosing on average a smaller company than a bank and at the same time an individual 
organization, thus keeping the model simple while encompassing a full range of business 
processes and risk factors. We believe that keeping the model manageable in size is one of 
the most important features that helps it be cost-effective and its results comprehendible, 
which is why in the case of analyzing a large company we propose that the company first be 
segmented into few larger divisions (e.g. production, sales, research etc.) and an individual 
operational risk measurement model be set up for each such division. 
 
The high-technology and other fast growing industries and their companies, as well as 
companies from developing countries, posses a relatively short business history, being due 
to short-lived stable economic, capital market and legislative environment, or the novelty of 
their existence in itself, usually ranging from ten to twenty years in the “oldest” new 
industries or most developed fast-growing countries to none at all other in countries, where 
the capital market is only a few years old and still in the first phases of development. This is 
obviously even truer for the individual company. This lack of history, meaning a lack of 
operational risk event data, causes a significant problem for the consistency and validity of 
the proposed model, since a large database of consistent quality is the basis of the method 
(Dell'Aquila & Embrechts, 2006; Ebnöther et al., 2001). The second proposed modification of 
the LDA method is aimed to solve this problem. Namely, we propose a widening of the 
database to include external data from the whole industry and the inclusion of subjective 
expert’s assessments and estimates on operational risk losses. 
 
In collecting expert’s estimations, we adjust for the subjectivity of the estimations by 
instructing experts to base the estimations on historical data available, we adjust the 
estimates for differences in the companies’ sizes as well as correcting or eliminating 
historical data which are biased due to adjustment periods because of restructuring, 
reorganization, mergers, legislation changes (e.g. tax or capital markets regulation which is 
known to change often in developing countries) etc. within each company. By adding 
expert’s estimates of operational risk losses and adjusting historical data, we not only 
increase the quality and size of the database, creating an adequate base on which to build 
our model, but we also include the very important expectation or prediction factor of 
potential losses into the database, which significantly diminishes one of the problems of 
relying solely on historical data (de Fontnouvelle et al., 2003).  
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company as they tend to overemphasize the importance of individual processes and are 
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processes and subsequent identification of risk factors should not be too specific in order to 
find some common ground between processes within the sub-segment and, on the other 
hand, in order to keep the size of the model manageable and cost-effective. 
 
The following steps in implementing the model require several modifications of the LDA, 
which are illustrated in the following subsection.  

 
3.2 Modifications of Methodology 
Firstly, there is the digression from the Basel “operating territory” into the field of non-
financial companies that we are proposing and will show later on by example. By selecting a 
company that operates in the field of high-technology such as software production, we are 
choosing on average a smaller company than a bank and at the same time an individual 
organization, thus keeping the model simple while encompassing a full range of business 
processes and risk factors. We believe that keeping the model manageable in size is one of 
the most important features that helps it be cost-effective and its results comprehendible, 
which is why in the case of analyzing a large company we propose that the company first be 
segmented into few larger divisions (e.g. production, sales, research etc.) and an individual 
operational risk measurement model be set up for each such division. 
 
The high-technology and other fast growing industries and their companies, as well as 
companies from developing countries, posses a relatively short business history, being due 
to short-lived stable economic, capital market and legislative environment, or the novelty of 
their existence in itself, usually ranging from ten to twenty years in the “oldest” new 
industries or most developed fast-growing countries to none at all other in countries, where 
the capital market is only a few years old and still in the first phases of development. This is 
obviously even truer for the individual company. This lack of history, meaning a lack of 
operational risk event data, causes a significant problem for the consistency and validity of 
the proposed model, since a large database of consistent quality is the basis of the method 
(Dell'Aquila & Embrechts, 2006; Ebnöther et al., 2001). The second proposed modification of 
the LDA method is aimed to solve this problem. Namely, we propose a widening of the 
database to include external data from the whole industry and the inclusion of subjective 
expert’s assessments and estimates on operational risk losses. 
 
In collecting expert’s estimations, we adjust for the subjectivity of the estimations by 
instructing experts to base the estimations on historical data available, we adjust the 
estimates for differences in the companies’ sizes as well as correcting or eliminating 
historical data which are biased due to adjustment periods because of restructuring, 
reorganization, mergers, legislation changes (e.g. tax or capital markets regulation which is 
known to change often in developing countries) etc. within each company. By adding 
expert’s estimates of operational risk losses and adjusting historical data, we not only 
increase the quality and size of the database, creating an adequate base on which to build 
our model, but we also include the very important expectation or prediction factor of 
potential losses into the database, which significantly diminishes one of the problems of 
relying solely on historical data (de Fontnouvelle et al., 2003).  
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Within this modification we propose another similar deviation from the LDA model, the 
inclusion of potential or opportunity losses of the company, including the ones occurring 
during the process of detecting a potential (or actual) loss events and eliminating its 
potential consequences before they reach a significant severity by analyzing its sources or 
risk factors and limiting their influence by adding several additional internal control 
mechanisms. 
 
Thirdly, we solve the problem of VaR potentially failing the sub-additivity property of 
coherent risk measures. Instead of determining a 99.9-confidence level VaR for each of the 
element of the business process/risk factor matrix and subsequent summation of these 
VaRs, we use a simulation to obtain the yearly operational risk losses for the entire 
company. This is then used for a yearly VaR calculation. This way we eliminate not only the 
sub-additivity problem, but we also eliminate another potential threat: the overestimation of 
VaR, which can occur by simply adding together several VaR measures, as this method does 
not take into consideration the diversification effect (Jorion, 2001; Embrechts et al., 2002). 
The proposed modification also eliminates the task of including correlation parameters into 
the final VaR estimate (Böcker & Klüppelberg, 2007; Chavez-Demoulin et al., 2006). By 
simulating total yearly operational risk losses, we obtain a loss distribution function 
consistent with the sum of the individual business process/risk factor loss distribution 
functions, while simultaneously simplifying the model and the analysis and reducing 
calculation time and costs. 
 
The use of a simulation is indicated, since discreet events like operational risk loss events 
can be described by a Poisson process, which can be used for an elegant analysis of the 
frequencies of event occurrences, including the calculation of event occurrences in longer or 
shorter time periods and the estimation of event occurrences in two different business 
processes determined by two separate Poisson functions – the latter due to the sub-
additivity property of the Poisson function (Chernobai et al., 2007). 
 
By using a Monte Carlo simulation where the event occurrences are determined by a 
stochastic Poisson process for each business process and with a yearly frequency of  for 
each business process, we can create a time series with enough OR loss event data to include 
in the model. For the distribution function of the frequency of event occurrences, we use the 
available historic data and experts’ estimates of loss severity (a) and the estimated span of 
the data determined by the standard deviation (s), obtaining a different distribution function 
for each business process/risk factor combination of the model matrix of varying shapes 
and sizes from normal distributions to asymmetric and skewed distributions like the log-
normal distribution function. 
 
This brings us to the core of the operational risk measurement model, the determination of 
the probability distribution function (PDF) of the losses. Here we use the EVT methods 
described in section 2 of the chapter. After successfully processing the data and determining 
the PDF, we can use the results for the estimation of potential losses using either VaR or 
CVaR, as described in section 2 of the chapter and, subsequently, determine the capital 
requirements or provisions that are necessary to protect the company from potential 
financial losses should an extreme operational risk event ever occur. 

 

4. Analysis of Results 

4.1 Business Process and Risk Factor Mapping 
The concept of analyzing and the realization of the importance of a company’s business 
processes have been known for decades, their management has strongly gained importance 
with Porter’s Value Chain (Porter, 1985). Harmon (2007) and Jeston & Nellis (2008) 
emphasize the importance of system-oriented process management within the company, 
keeping in mind that they are inseparably linked within the company and all together 
contribute to the efficiency of the whole system. 
 
A thorough business process analysis and business process mapping can identify weak or 
critical elements in a company’s value chain. By adding the information on risk factors that 
affect some or all business processes and by setting up additional control and safety 
mechanisms within the processes, a company can effectively manage those risks and 
thereby manage its overall business risk. 
 
The bottom-up approach that we have chosen for business process mapping in our 
operational risk measuring model starts with a list of detailed business processes that are 
being executed throughout the company and are later combined with other processes into 
process groups with similar characteristics. 
 
Since operational risk management is already widely spread in financial institutions, 
especially banks, and we have already stated that the logic behind operational risk 
management and the use of the proposed model can be generalized and widened to other 
industrial sectors as well, we will illustrate the construction of the model on a software 
making company, starting with mapping its business processes2.  
 
In mapping the business processes we have also analyzed the organizational structure, the 
supply, production and sales process and the products of the company. We have identified 
the following four business process groups and business processes: (1) research and product 
development, (2) product and client support, (3) marketing and sales, (4) general administration. 
 
The risk factors’ identification was based on the Basel Accord and subsequently modified to 
the specifics of our example company. We have identified the following seven risk factors: 
(1) internal fraud and theft, (2) external fraud and theft, (3) clients, services and practices, (4) IT 
error or failure, (5) employment and work environment safety, (6) execution and management of 
processes and (7) physical damage to assets. Note that all the risk factors are chosen and defined 
in such a way as to be relevant for all business segments, i.e. they occur in each of the four 
business segments in our example.  

 
4.2 Simulation3 
Based on available company, industry and competitors’ loss event data, we next estimate 
the probability distribution type and most important parameters (average, standard 

                                                                 
2 For an example of the model use in financial institutions, see Brdar Turk (2009). 
3 This whole step can be skipped if there is enough empirical data available for direct use in the model. 
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Within this modification we propose another similar deviation from the LDA model, the 
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simulating total yearly operational risk losses, we obtain a loss distribution function 
consistent with the sum of the individual business process/risk factor loss distribution 
functions, while simultaneously simplifying the model and the analysis and reducing 
calculation time and costs. 
 
The use of a simulation is indicated, since discreet events like operational risk loss events 
can be described by a Poisson process, which can be used for an elegant analysis of the 
frequencies of event occurrences, including the calculation of event occurrences in longer or 
shorter time periods and the estimation of event occurrences in two different business 
processes determined by two separate Poisson functions – the latter due to the sub-
additivity property of the Poisson function (Chernobai et al., 2007). 
 
By using a Monte Carlo simulation where the event occurrences are determined by a 
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each business process, we can create a time series with enough OR loss event data to include 
in the model. For the distribution function of the frequency of event occurrences, we use the 
available historic data and experts’ estimates of loss severity (a) and the estimated span of 
the data determined by the standard deviation (s), obtaining a different distribution function 
for each business process/risk factor combination of the model matrix of varying shapes 
and sizes from normal distributions to asymmetric and skewed distributions like the log-
normal distribution function. 
 
This brings us to the core of the operational risk measurement model, the determination of 
the probability distribution function (PDF) of the losses. Here we use the EVT methods 
described in section 2 of the chapter. After successfully processing the data and determining 
the PDF, we can use the results for the estimation of potential losses using either VaR or 
CVaR, as described in section 2 of the chapter and, subsequently, determine the capital 
requirements or provisions that are necessary to protect the company from potential 
financial losses should an extreme operational risk event ever occur. 

 

4. Analysis of Results 
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The concept of analyzing and the realization of the importance of a company’s business 
processes have been known for decades, their management has strongly gained importance 
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critical elements in a company’s value chain. By adding the information on risk factors that 
affect some or all business processes and by setting up additional control and safety 
mechanisms within the processes, a company can effectively manage those risks and 
thereby manage its overall business risk. 
 
The bottom-up approach that we have chosen for business process mapping in our 
operational risk measuring model starts with a list of detailed business processes that are 
being executed throughout the company and are later combined with other processes into 
process groups with similar characteristics. 
 
Since operational risk management is already widely spread in financial institutions, 
especially banks, and we have already stated that the logic behind operational risk 
management and the use of the proposed model can be generalized and widened to other 
industrial sectors as well, we will illustrate the construction of the model on a software 
making company, starting with mapping its business processes2.  
 
In mapping the business processes we have also analyzed the organizational structure, the 
supply, production and sales process and the products of the company. We have identified 
the following four business process groups and business processes: (1) research and product 
development, (2) product and client support, (3) marketing and sales, (4) general administration. 
 
The risk factors’ identification was based on the Basel Accord and subsequently modified to 
the specifics of our example company. We have identified the following seven risk factors: 
(1) internal fraud and theft, (2) external fraud and theft, (3) clients, services and practices, (4) IT 
error or failure, (5) employment and work environment safety, (6) execution and management of 
processes and (7) physical damage to assets. Note that all the risk factors are chosen and defined 
in such a way as to be relevant for all business segments, i.e. they occur in each of the four 
business segments in our example.  

 
4.2 Simulation3 
Based on available company, industry and competitors’ loss event data, we next estimate 
the probability distribution type and most important parameters (average, standard 

                                                                 
2 For an example of the model use in financial institutions, see Brdar Turk (2009). 
3 This whole step can be skipped if there is enough empirical data available for direct use in the model. 
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deviation) for the size and frequency of loss events in each business segment that are caused 
by each risk factor (i.e. for 28 process-risk factor combinations). 
 
With this data, we use a simulation software package such as GoldSim, AnyLogic or 
MathLab to generate 1000 repetitions of a business year of our sample software company, 
thus creating a large data sample of loss event data. The sum of all loss events within one 
business year creates a composite Poisson distribution , a sum of independent Poisson 
distributions of loss event data for individual business processes i, each loss event being 
also independent from other loss events. Although in the real world loss events as well as 
business processes are correlated, this mathematical simplification eases the computation of 
model parameters. 

 
4.3 Basic Data Analysis 
The generated (or gathered) data are first analyzed with elementary statistical methods, as 
shown in the example below.  
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Fig. 3. Histogram of loss event severity (shown in EUR) and frequency from example data. 
 
From the histogram alone the skewed nature and the extended right tail of the loss event 
data distribution is already visible, which is further confirmed by some descriptive statistics: 
the mean loss severity is slightly greater than the median, the kurtosis and skewness are less 
than 1, all indicating a right-side fat-tailed distribution. 
 

Mean (EUR) 67.647,78 
Median (EUR) 63.872,13 
Standard Deviation (EUR)  41.424,74 
Sample Variance 1.716.008.838,65 
Kurtosis 0,62 
Skewness 0,76 
99th percentile (EUR) 207.005,48 

Table 1. Descriptive statistics for example data. 
 
Similar analyses can be made for individual business process data or risk factors thus 
identifying the risk factor that causes the most frequent, smallest or most extreme losses 

 

from operational risk. This analysis can also provide the answer to the question which 
business process experiences the most loss events and which process’ losses differ most 
significantly from a normal distribution. These must be the point of focus in the subsequent 
operational risk management activities and when implementing additional safety 
mechanisms and controls. 

 
4.4 Distribution Type and Parameter Estimation 
By using a statistical software package, such as R, Stata or SPSS, we fist establish that we are 
indeed dealing with an extreme value distribution and that it is appropriate to use EVT 
methods for parameter estimation. This is done with graphic methods, such as the mean 
excess plot, which is defined as the mean of all differences between the values of the data 
exceeding a high threshold u and u for different values of u: 
 ( )e u X u X u      . (11) 

In the case of a fat-tailed distribution, the mean excess plot looks like a straight upward-
sloping line (Chernobai et al., 2007; Cruz, 2002). The mean excess plot in Figure 4 clearly 
indicates that the example data is heavy-tailed.  
 

 
Fig. 4. Mean excess plot for simulated example data. 
 
We then choose several empirical distributions and estimate the functions’ parameters. 
Among available distributions in EVT we have chosen the most commonly used and tested 
distributions (see Cruz, 2002; Moscadelli, 2004; Ebnöther et al., 2001; Chapelle et al., 2005): 
the Generalized Pareto distribution (GPD), Generalized Extreme Value distribution (GEV), 
the Gumbel and the Weibull distribution. GPD and GEV have been most frequently 
determined as fitting to extreme losses in financial institutions. Additionally, the Gumbel 
distribution is a special case of GEV with 0 as the shape parameter, making it easier to 
determine other function parameters. Both Gumbel’s and Weibul’s are thin-tailed 
distributions, which consequently results in underestimating extreme losses in the right tail 
of the distribution.  
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business year creates a composite Poisson distribution , a sum of independent Poisson 
distributions of loss event data for individual business processes i, each loss event being 
also independent from other loss events. Although in the real world loss events as well as 
business processes are correlated, this mathematical simplification eases the computation of 
model parameters. 

 
4.3 Basic Data Analysis 
The generated (or gathered) data are first analyzed with elementary statistical methods, as 
shown in the example below.  
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Fig. 3. Histogram of loss event severity (shown in EUR) and frequency from example data. 
 
From the histogram alone the skewed nature and the extended right tail of the loss event 
data distribution is already visible, which is further confirmed by some descriptive statistics: 
the mean loss severity is slightly greater than the median, the kurtosis and skewness are less 
than 1, all indicating a right-side fat-tailed distribution. 
 

Mean (EUR) 67.647,78 
Median (EUR) 63.872,13 
Standard Deviation (EUR)  41.424,74 
Sample Variance 1.716.008.838,65 
Kurtosis 0,62 
Skewness 0,76 
99th percentile (EUR) 207.005,48 

Table 1. Descriptive statistics for example data. 
 
Similar analyses can be made for individual business process data or risk factors thus 
identifying the risk factor that causes the most frequent, smallest or most extreme losses 

 

from operational risk. This analysis can also provide the answer to the question which 
business process experiences the most loss events and which process’ losses differ most 
significantly from a normal distribution. These must be the point of focus in the subsequent 
operational risk management activities and when implementing additional safety 
mechanisms and controls. 

 
4.4 Distribution Type and Parameter Estimation 
By using a statistical software package, such as R, Stata or SPSS, we fist establish that we are 
indeed dealing with an extreme value distribution and that it is appropriate to use EVT 
methods for parameter estimation. This is done with graphic methods, such as the mean 
excess plot, which is defined as the mean of all differences between the values of the data 
exceeding a high threshold u and u for different values of u: 
 ( )e u X u X u      . (11) 

In the case of a fat-tailed distribution, the mean excess plot looks like a straight upward-
sloping line (Chernobai et al., 2007; Cruz, 2002). The mean excess plot in Figure 4 clearly 
indicates that the example data is heavy-tailed.  
 

 
Fig. 4. Mean excess plot for simulated example data. 
 
We then choose several empirical distributions and estimate the functions’ parameters. 
Among available distributions in EVT we have chosen the most commonly used and tested 
distributions (see Cruz, 2002; Moscadelli, 2004; Ebnöther et al., 2001; Chapelle et al., 2005): 
the Generalized Pareto distribution (GPD), Generalized Extreme Value distribution (GEV), 
the Gumbel and the Weibull distribution. GPD and GEV have been most frequently 
determined as fitting to extreme losses in financial institutions. Additionally, the Gumbel 
distribution is a special case of GEV with 0 as the shape parameter, making it easier to 
determine other function parameters. Both Gumbel’s and Weibul’s are thin-tailed 
distributions, which consequently results in underestimating extreme losses in the right tail 
of the distribution.  
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As noted before, we have chosen to analyze the data in the distribution’s right tail and 
according to EVT, we have chosen the POT method for parameter estimation. The first step 
is the selection of the high threshold u. This can, in turn, affect the estimated parameters, it is 
therefore important to use additional diagnostic methods for the threshold determination. 
With GPD, we can use the Hill plot to determine the shape parameter  (Chernobai et al., 
2007; Cruz, 2002), which stabilizes horizontally at the most suitable threshold u; the Hill 
function for each sample value k is:  

 ˆ ( )
1

1 ln ln
k

j k
j

X X
k



   . (12) 

Additionally, we can use the plot of the shape parameter  in regards to the value of the 
high threshold u, the appropriate threshold being the value where the plot horizontally 
stabilizes. 

 
Fig. 5. Hill plot and Shape estimator plot for example data 
 
In our example data, the Hill plot does not stabilize significantly at any threshold value, 
whereas the  - u plot shows 150.000 EUR as the appropriate threshold, as can be seen from 
Fig. 5.  
 
For the estimation of the GPD parameters we have chosen the maximum likelihood estimate 
method (MLE)4, which in our example data and with the value of u at 150.000 EUR 
converges to a single solution. The GEV parameters were estimated using the block maxima 
method and MLE. The fitting of the Gumbel and Weibull distribution was done for the 
whole data sample (not only the right-tail), since these are thin-tailed distributions.  
 
The parameters of all fitted distributions are shown in Table 2. 
 

                                                                 
4 The use of the method in the distribution’s tail is shown by Nylund (2001). 

 

Distribution parameter Parameter value Standard error of estimate 
GPD   
 26.370,00 2.752,17 
 -0,081 0,085 
u (high threshold) 150.000,00  
nu (number of values above 
u) 

136  

f<u (density of data below u) 0,861  
GEV   
 94.296,74 1.031,12 
 34.047,64 940,28 
 -0,118 0,0190 
Gumbel   
 93.463,22 1.816,19 
 32.427,01 1.048,58 
Weibull    
  3,16 0,0712 
  12.387,20 878,03 

Table 2, Distribution parameters estimated from example data. 

 
4.5 Goodness-of-fit Tests 
It is important to test for goodness-of-fit for all fitted distributions in order to maximize the 
analytical power of the model and its potential use in risk management and extreme event 
prediction. The most common is the use of the quantile-quantile (QQ) plot which shows the 
empirical distribution quantile vs. actual data. The fit is adequate if the plot is close to the 
imaginary 45° diagonal line of the plot. The QQ plot can also be drawn for tail data only, 
which is important for GEV and GPD goodness-of-fit since they were only fitted to tail data.  
 

 
Fig. 6. QQ plots for GEV for the whole sample (gevr / data) and the tail of the distribution 
(gevr1502 / data 150). 
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The results of the graphic tests are shown in Figure 6. They show an apparent adequate fit 
for GEV for the whole sample, whereas the fit for the tail is clearly inadequate. The plots in 
Figure 7 show an inadequate fit to Weibul and Gumbel distributions as well. The GPD QQ 
plot (Figure 8) shows an adequate fit.  
 

 
Fig. 7. QQ plots for Gumbel (gumbr) and Weibull (weibullr) distributions.  
 
 

 
Fig. 8. The QQ plot for GPD. 
 
GPD was additionally tested with the GPD density function and its inverse function plots 
and residual plots showing an adequate fit in the tail as well as no autocorrelation or 
heteroschedasticity in the residuals (Figure 9), by which we can conclude that the example 
data are distributed according to the GPD. 
 
The goodness of fit can also be determined by using non-parametric methods such as the 
Pearson’s Chi-square test (see D'Agostino & Stephens, 1986). There are two important 

 

shortcomings of the test: firstly, its dependency on the number of classes k into which the 
data are segmented, and secondly, the need for a large data sample for the asimptotic 
properties of the Chi-square function hypothesis to hold. This can also be seen from Chi-
square test results in Table 3. 

 

 
Fig. 9. Goodness of fit tests for GPD with estimated parameters  = 28.027,00 and  = -0,0781. 
 
The second group of tests are empirical distribution function (EDF) based tests, which can 
be used for all distributions and use the vertical shift of the empirical distribution derived 
from the data compared to the theoretic distributions (see Anderson & Darling, 1952; 
D'Agostino & Stephens, 1986; Chernobai et al., 2007). The most commonly used are the 
Kolmogorov-Smirnov test (KS) and the Anderson-Darling test (AD).  
 
Let us denote the empirical distribution function as Fn(x) and the theoretic distribution 
function as F(x). The KS test is defined as: 

  max ,KS n D D  , (13) 

where D+ and D– are the maximum and minimum distance between the empiric and 
theoretic distribution. 
 
By the probability integration method, we get the following formula for sample data KS test 
estimation (D'Agostino in Stephens, 1986): 
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where z(j) is the theoretic distribution value for the j sample value. 
The AD test is defined as:  
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whereas for sample data we have: 
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. (16) 

The KS test focuses mostly on the middle of the distribution and gives the values in this area 
a greater weight within the final result, whereas the AD test focuses more on the 
distribution tails, making it more suitable for fat-tailed distribution goodness-of-fit testing.  
 

 GPD GEV Gumbel Weibull 
2 17.452 [0,189] does not converge does not converge does not converge 
KS 0,854 [0,822] 0,027 [0,398] 0,517 [0,000] 0,999 [0,000] 
AD 48,259 [0,952] 0,351 [0,572] 3,275 [0,000] 2,989 [0,000] 

Table 3. Goodness-of-fit test results for example data. 
 
The results of the KS and AD tests in Table 3 show that GPD is indeed the most suitable 
distribution for the example data. 

 
4.6 Use of Results 
The most obvious use of the analysis’ results is the determination of VaR for the company. 
We can see from Table 1 that the 10th largest loss amounts to 207.005,48 EUR, which is the 
VaR at a 99% confidence level. This is the actual loss the company may suffer in the 1% 
worst case scenario and should set aside provisions (or capital) of this amount to protect 
from financial distress should such a loss actually occur. 
 
To illustrate the underestimation problem with VaR, we calculated VaR and CVaR from the 
distribution function fitted to the example data and compared them to the empirical VaR 
(derived directly from sorted example data).  
 

Criteria Value (EUR) 
VaR - empirical data 207.005,48 
VaR – from GPD 215.276,32 
CVaR – from GPD 218.358,44 

Table 4. Value at Risk calculations from empirical data and from fitted GPD. 
 

 

From the results shown in Table 4, the following clearly holds: 
 emp GPD GPDVaR VaR CVaR  , (17) 

which suggests that the most suitable criteria in view of non-underestimating potential 
losses for the assessment of capital adequacy or the creation of provisions for the protection 
from risk losses, is Conditional Value at Risk. 
There are other uses for the analysis’ results as well. One can focus on a single business sub-
process or segment, identify the contribution of individual risk factors to the loss estimates 
of that segment and use the results to implement additional risk control and prevention 
mechanisms, significantly reducing the potential risk losses. Also, in times of increased 
overall risk due to changes in the organization itself or in the business environment, the 
company can reassess its risk losses estimates and temporarily increase its capital or 
provisions. 

 
4.6 Back testing 
The analysis and evaluation of the quality of the methods for capital adequacy 
determination itself (Internal Capital Adequacy Assessment Process - ICAAP) is one of the 
crucial elements of control and supervision as defined by the Basel Accord’s 2nd Pillar. Its 
goal is to ensure that banks other financial institutions are providing an adequate capital 
structure for all the risks that the financial institution is exposed to and that they are 
constantly monitoring and improving risk management practices.  
 
This regulatory mechanism can be adapted in other companies as well, especially where 
advanced methods for risk management, such as the proposed model, are being used. One 
of the simplest methods for a model’s evaluation is back testing. It involves comparing 
predictions and analysis results to subsequently gathered data on loss events by comparing 
a certain percentile (e.g. 80%) of predicted losses to the actual number of loss events above 
the percentile threshold. 
 
Naturally, in risk management, where companies deal with extreme and rare events, this 
may take significant time (e.g. a decade), but the evaluation of smaller and more frequent 
losses can be effective as well. The evaluation should be performed periodically and also 
following any major loss event or major changes in the organization or its business 
environment. With the discovery of discrepancies between the model’s predictions and 
actual data, a reevaluation of the input data should be performed, identifying potential new 
risk factors and eliminating those which may have become irrelevant to the company’s 
operations, reevaluating the frequency and severity of loss events for each business process 
/ risk factor element of the matrix, the integration of new empirical data into the model. 
Also, a reevaluation of the model’s fitted theoretical distribution should be performed, as it 
too may significantly affect the results. 
 
A reevaluation and redesign of the model is sometimes not necessary, since the integration 
of new loss event data may significantly adjust the model’s results, making it unnecessary to 
radically change other inputs into the model, since this may be cost-inefficient and may 
cause the model to become more complex and harder to use and manage. 
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5. Further Integration of Operational Risk Management 

Apart from using the proposed model’s results directly as a tool for the determination of 
capital requirements or provision formation, the model can be integrated into an overall risk 
management system devised by a company. The creation of an overall risk management 
system within a company starts with a risk management strategy (Andersen, 1998; Cruz, 
2002; Marshall, 2001) which determines the way the company will deal with all the different 
risks that influence its operations. In this strategy, also called risk management framework 
or policy, the company must first define the different risks that it is subjected to and 
subsequently chose a methodology for their management, which includes identification, 
measurement, recording and analysis of risk event data, reporting, internal controls and risk 
management system support, the organization of these tasks and a clear definition of 
employees’ responsibilities and authorizations. 
 

 
Fig. 10. The learning and development processes for risk management activities. 
 
The process of risk management is a continuing learning process as illustrated in Figure 10. 
The identification and prompt examination of loss events leads to an update of the risk 
event database and, if necessary, to the update of the underlying risk measurement model, 
all of which result in an evaluation of the overall risk the company is facing, enabling the 
management to take corrective and protective measures. An important part of the loop is the 
reporting process which needs to start in the lowest management levels and continue right 
to the top management level, where risk awareness is crucial for adequate executive 
decisions to be taken. A more passive approach to risk management may include loss event 
recording, analysis and reporting. The next step is a more defensive risk management 
policy, which includes also a more in-depth risk analysis and corrective measures proposals, 
which include damage control and additional protective mechanisms and controls within 
business processes. An active risk management framework, as the final stage of risk 
management, may include risk event prediction, the development of complex risk causal 
model, the use of securitization, provisions or insurance and the calculation of risk-adjusted 
performance measures, such as risk-adjusted return on capital (RAROC), expected value 
added (EVA) and volatility of profits (Cruz, 2002; Marshall, 2001).  
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5. Further Integration of Operational Risk Management 

Apart from using the proposed model’s results directly as a tool for the determination of 
capital requirements or provision formation, the model can be integrated into an overall risk 
management system devised by a company. The creation of an overall risk management 
system within a company starts with a risk management strategy (Andersen, 1998; Cruz, 
2002; Marshall, 2001) which determines the way the company will deal with all the different 
risks that influence its operations. In this strategy, also called risk management framework 
or policy, the company must first define the different risks that it is subjected to and 
subsequently chose a methodology for their management, which includes identification, 
measurement, recording and analysis of risk event data, reporting, internal controls and risk 
management system support, the organization of these tasks and a clear definition of 
employees’ responsibilities and authorizations. 
 

 
Fig. 10. The learning and development processes for risk management activities. 
 
The process of risk management is a continuing learning process as illustrated in Figure 10. 
The identification and prompt examination of loss events leads to an update of the risk 
event database and, if necessary, to the update of the underlying risk measurement model, 
all of which result in an evaluation of the overall risk the company is facing, enabling the 
management to take corrective and protective measures. An important part of the loop is the 
reporting process which needs to start in the lowest management levels and continue right 
to the top management level, where risk awareness is crucial for adequate executive 
decisions to be taken. A more passive approach to risk management may include loss event 
recording, analysis and reporting. The next step is a more defensive risk management 
policy, which includes also a more in-depth risk analysis and corrective measures proposals, 
which include damage control and additional protective mechanisms and controls within 
business processes. An active risk management framework, as the final stage of risk 
management, may include risk event prediction, the development of complex risk causal 
model, the use of securitization, provisions or insurance and the calculation of risk-adjusted 
performance measures, such as risk-adjusted return on capital (RAROC), expected value 
added (EVA) and volatility of profits (Cruz, 2002; Marshall, 2001).  
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