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Introduction 

Darcy showed by experimentation in 1856 that the volumetric flow rate through a porous 
sand pack was proportional to the flow rate through the pack. That is: 
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 ( i ) 

(Nutting, 1930) suggested that the proportionality constant in the Darcy law (K/ ) should be 
replaced by another constant that depended only on the fluid property. That constant he 
called permeability. Thus Darcy law became: 
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Later researches, for example (Vibert,  1939) and (LeRosen, 1942) observed that the Darcy 
law was restricted to laminar (viscous) flow. 
(Muskat, 1949) among other later researchers suggested that the pressure in the Darcy law 
should be replaced with a potential ( ). The potential suggested by Muskat is: 
 

gzp   

Then Darcy law became:   
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  (iii) 

 
(Forchheimer, 1901) tried to extend the Darcy law to non laminar flow by introducing a 
second term. His equation is: 
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 ( iv ) 

 
(Brinkman, 1947) tried to extend the Darcy equation to non viscous flow by adding a term 
borrowed from the Navier Stokes equation. Brinkman equation takes the form: 
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 In 2003, Belhaj et al. re- examined the equations for non viscous flow in porous media. The 
authors observed that; neither the Forchheimer equation nor the Brinkman equation used 
alone can accurately predict the pressure gradients encountered in non viscous flow, 
through porous media. According to the authors, relying on the Brinkman equation alone 
can lead to underestimation of pressure gradients, whereas using Forchheimer equation can 
lead to overestimation of pressure gradients. Belhaj et al combined all the terms in the Darcy 
, Forchheimer and Brinkman equations together with a new term they borrowed from the 
Navier Stokes equation to form a new model. Their equation can be written as: 
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In this work, a cylindrical homogeneous porous medium is considered similar to a pipe. The 
effective cross sectional area of the porous medium is taken as the cross sectional area of a 
pipe multiplied by the porosity of the medium. With this approach the laws of fluid 
mechanics can easily be applied to a porous medium. Two differential equations for gas 
flow in porous media were developed. The first equation was developed by combining 
Euler equation for the steady flow of any fluid with the Darcy equation; shown by 
(Ohirhian, 2008) to be an incomplete expression for the lost head during laminar (viscous) 
flow in porous media and the equation of continuity for a real gas. The Darcy law as 
presented in the API code 27 was shown to be a special case of this differential equation. The 
second equation was derived by combining the Euler equation with the a modification of 
the Darcy-Weisbach equation that is known to be valid for the lost head during laminar and 
non laminar flow in pipes and the equation of continuity for  a real gas. 
Solutions were provided to the differential equations of this work by the Runge- Kutta 
algorithm. The accuracy of the first differential equation (derived by the combination of the 
Darcy law, the equation of continuity for a real gas and the Euler equation) was tested by 
data from the book of (Amyx et al., 1960). The book computed the permeability of a certain 
porous core as 72.5 millidracy while the solution to the first equation computed it as 72.56 
millidarcy. The only modification made to the Darcy- Weisbach formula (for the lost head in 
a pipe) so that it could be applied to a porous medium was the replacement of the diameter 

of the pipe with the product of the pipe diameter and the porosity of the medium. Thus the 
solution to the second differential equation could be used for both pipe and porous 
medium. The solution to the second differential equation was tested by using it to calculate 
the dimensionless friction factor for a pipe (f) with data taken from the book of (Giles et al., 
2009). The book had f = 0.0205, while the solution to the second differential equation 
obtained it as 0.02046. Further, the dimensionless friction factor for a certain core (fp )  
calculated by the solution to the second differential equation plotted very well in a graph of 
fp versus the Reynolds number  for porous media that  was previously generated by 
(Ohirhian, 2008) through experimentation. 

 
Development of Equations 

The steps used in the development of the general differential equation for the steady flow of 
gas pipes can be used to develop a general differential equation for the flow of gas in porous 
media. The only difference between the cylindrical homogenous porous medium lies in the 
lost head term.  
The equations to be combined are;  

(a) Euler equation for the steady flow of any fluid.  
(b) The equation for lost head  
(c) Equation of continuity for a gas.  

The Euler equation is:  
 

 
dp vdv

  d  dhp lg
sin 0


     (1) 

 
In equation (1), the positive sign (+) before sind p corresponds to the upward direction 

of the positive z coordinate and the negative sign (-) to the downward direction of the 
positive z coordinate. In other words, the plus sign before sind p is used for uphill flow 

and the negative sign is used for downhill flow.   
The Darcy-Weisbach equation as modified by (Ohirhian, 2008) (that is applicable to laminar 
and non laminar flow) for the lost head in isotropic porous medium is:  
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The (Ohirhian, 2008) equation (that is limited to laminar flow) for the lost head in an 
isotropic porous medium is;  
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The Darcy-Weisbach equation as modified by (Ohirhian, 2008) (applicable to laminar and 
non-laminar flow) for the lost head in isotropic porous medium is; 
 

 
f v dp p

      dh L g dp
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2



 (4) 

The Reynolds number as modified by (Ohirhian, 2008) for an isotropic porous medium is:  
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In some cases, the volumetric rate (Q) is measured at a base pressure and a base 
temperature. Let us denote the volumetric rate measured at a base pressure (P b) and a base 
temperature (T b) then, 

W = b
Qb

 
 

The Reynolds number can be written in terms of b and bQ as  
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If the fluid is a gas, the specific weight at P b and T b is  
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Substitution of b  in equation (4.8) into equation (4.6) leads to:  
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36.88575


  (9) 
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(8) 

Example 1 
In a routine permeability measurement of a cylindrical core sample, the following data were 
obtained: 
Flow rate of air = 2 cm2 / sec 
Pressure upstream of core  = 1.45 atm   
                                                    absolute    
Pressure downstream of core = 1.00 atm  
                                                     absolute  
Flowing temperature             = 70 F  
Viscosity of air at flowing temperature = 0.02  
                                                                         cp                                                                           
Cross sectional area of core             = 2 cm 2 

Length of core                                    = 2 cm 
Porosity of core                                  = 0.2 
Find the Reynolds number of the core 
 
Solution 
Let us use the pounds seconds feet (p s f) consistent set units. Then substitution of values 
into  
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= 0. 0 23414 ft 
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The Darcy-Weisbach equation as modified by (Ohirhian, 2008) (applicable to laminar and 
non-laminar flow) for the lost head in isotropic porous medium is; 
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   NPR  Then = = 
pdg

W4


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6 - E 289431.54
=

×××
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.

bT
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zgpRgd

b
QbPgG88575.36

NPR


= =  
0.02341453017 - E 177086.42.32

5 - E 052934.71447.141885750.36

××××

××××
 

= 21.385221  

The equation of continuity for gas flow in a pipe is: 
 

 
===  2v2A21v1A

1
W   Constant          (10) 

 
Then,   A v.  W =  
In a cylindrical homogeneous porous medium the equation of the weight flow rate can be 
written as:  
 
 W  A  v.p  (11) 

 
Equation (11) can be differentiated and solved simultaneously with the lost head formulas 
(equation 2, 3 and 4), and the energy equation (equation 1) to arrive at the general 
differential equation for fluid flow in a homogeneous porous media.  
Regarding the cross sectional area of the porous medium (A p) as a constant, equation (11) 
can be differentiated and solve simultaneously with equations (2) and (1) to obtain.    
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Equation (12) is a differential equation that is valid for the laminar flow of any fluid in a 
homogeneous porous medium. The fluid can be a liquid of constant compressibility or a gas. 
The negative sign that proceeds the numerator of equation (12) shows that pressure 
decreases with increasing length of porous media.  
The compressibility of a fluid (C f) is defined as:  
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Combination of equations (12) and (13 ) leads to:  
 

 

_

c v
   sin

kd p
  

d p W

 A gp

/

2
1 2


 





 
 
 
 
 
 
 
 




 (14) 

 
Differentiation of equation (11) and simultaneous solution with equations (2), (1) and (13) 
after some simplifications, produces:   
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Differentiation of equation (6) and simultaneous solution with equations (4), (1) and ( 1 3)  
after some simplifications produces:      
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Equation (16) can be simplified further for gas flow through homogeneous porous media. 
The cross sectional area of a cylindrical cross medium is: 
 

        pA 
d p

2

4



 (17) 
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The equation of state for a non ideal gas is:  
 

             
p M

z T R
   (18) 

Where 

        =p  Absolute pressure  

        =T  Absolute temperature 
 
Multiply equation (11) with   and substitute A p in equation (17) and use the fact that: 
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The compressibility of ideal gas  gC  is defined as  
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For an ideal gas such as air, 
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  (21) 

      
(Matter et al,  1975) and ( Ohirhian,  2008) have proposed equations for the calculation of the 
compressibility of hydrocarbon gases. For a sweet natural gas (natural gas that contains CO2 
as major contaminant), (Ohirhian,  2008) has expressed the compressibility of the real gas 
(Cg ) as:  

 pfC
Κ

=
                

                     (22) 

 
For Nigerian (sweet) natural gas K = 1.0328 when p is in psia. Then equation (19) can then 
be written compactly as: 
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The denominator of the differential equation (23) is the contribution of kinetic effect to the 
pressure drop across a given length of a cylindrical isotropic porous medium. In a pipe the 
kinetic contribution to the pressure drop is very small and can be neglected. What of a 
homogeneous porous medium?    
 
Kinetic Effect in Pipe and Porous Media  
An evaluation of the kinetic effect can be made if values are substituted into the variables 
that occurs in the denominator of the differential equation (23)  
 
Example 2 
Calculate the kinetic energy  correction factor, given that 0.75 pounds   per second of air 
flow isothermally through a 4 inch pipe at a pressure of 49.5 psia and temperature of 90 0 F.   
 
Solution 

The kinetic effect correction factor is 2
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The equation of state for a non ideal gas is:  
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The kinetic effect correction factor is 
 

999183.02
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58628.41504_
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Example 3 
If the pipe in example 1 were to be a cylindrical homogeneous porous medium of 25 % 
porosity, what would be the kinetic energy correction factor? 
 
Solution 

Here, d p  = d  = 333333.0  25.0  =  ft1666667.0
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4
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The kinetic effect is also small, though not as small as that of a pipe. The higher the pressure,  
the more negligible the kinetic energy correction factor. For example, at 100 psia, the kinetic 
energy correction factor in example 2 is: 
 

998341.02
)144100(

0212.3441046_
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×
 

 
Simplification of the Differential Equations for Porous Media 
When the kinetic effect is ignored, the differential equations for porous media can be 
simplified. Equation (14) derived with the Darcy form of the lost head becomes: 
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Equation (15) derived with the (Ohirhian, 2008) form of the lost head becomes:  
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Equation (16) derived with the (Ohirhian, 2008) modification of the Darcy- Weisbach lost 
head becomes:  
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In terms of velocity (v) equation (26) can be written as: 
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In certain derivations (for example, reservoir simulation models) it is required to make v or 
W subject of equations (24) to (27) 
 
Making velocity (v)  or weight (W) subject of the simplified differential equations 
When v is made subject of equation (24), we obtain: 
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When v is made subject of equation (25), we obtain: 
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When v 2 is made subject of equation (27), we obtain: 
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When W 2 is made subject of equation (26), we obtain: 
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Let S be the direction of flow which is always positive, then equation (28) can be written as: 
 
 d p d z- kv   s    d s d s

_ 6101.01325



 
 
 
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Where: 

www.intechopen.com



Steady State Compressible Fluid Flow in Porous Media 477

The kinetic effect correction factor is 
 

999183.02
7128

58628.41504_
12

p

C_
1 ==  

 
Example 3 
If the pipe in example 1 were to be a cylindrical homogeneous porous medium of 25 % 
porosity, what would be the kinetic energy correction factor? 
 
Solution 

Here, d p  = d  = 333333.0  25.0  =  ft1666667.0
     

0212.344046       

4
166667.097.282.32

55015451
2

75.01
pC

=

××

××××
=

 

Then, 

993221.02
7128

0212.3441046
12

p

pC_
1 ==  

The kinetic effect is also small, though not as small as that of a pipe. The higher the pressure,  
the more negligible the kinetic energy correction factor. For example, at 100 psia, the kinetic 
energy correction factor in example 2 is: 
 

998341.02
)144100(

0212.3441046_
1 =

×
 

 
Simplification of the Differential Equations for Porous Media 
When the kinetic effect is ignored, the differential equations for porous media can be 
simplified. Equation (14) derived with the Darcy form of the lost head becomes: 
 

 
d c vp

   sin
d kp

/ 
 

 
 
 
 




 (24) 

 

Equation (15) derived with the (Ohirhian, 2008) form of the lost head becomes:  
 

 d p c v
   sin 2d d   p p       

32 
 

 
 
 
 




 (25) 

 
Equation (16) derived with the (Ohirhian, 2008) modification of the Darcy- Weisbach lost 
head becomes:  

 
2f   W d p p

   sin
2d p 2   A  d   p p       

 




 
 
 
 
 




 (26) 

 
In terms of velocity (v) equation (26) can be written as: 
 

 
2f   v d p p

   sin
d 2  d   p p       

 




 
 
 
 
 




 (27) 

 
In certain derivations (for example, reservoir simulation models) it is required to make v or 
W subject of equations (24) to (27) 
 
Making velocity (v)  or weight (W) subject of the simplified differential equations 
When v is made subject of equation (24), we obtain: 
 

 
d p- k

v     sin  / d c  p
 




 
 
 
 




 (28) 

 
When v is made subject of equation (25), we obtain: 
 

 
- dp d p

v     sin 
32c  d p

 
2

 



 
 
 
 




 (29) 

 
When v 2 is made subject of equation (27), we obtain: 
 

 
- 2 g d p d p

v      sin 
f d p p

2  



 
 
 
 




 (30) 

 
When W 2 is made subject of equation (26), we obtain: 
 

 
- 2 g d Ap p d p

W      sin 
f d p p

2
2  




 
 
 
 




 (31) 

 
Let S be the direction of flow which is always positive, then equation (28) can be written as: 
 
 d p d z- kv   s    d s d s

_ 6101.01325



 
 
 

   (32) 

Where: 

www.intechopen.com



Natural Gas478

  sv Volumetric flux across a unit area of 
              porous medium in unit time along   
              flow path, S cm / sec 
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 According to (Amyx et al.,  1960), this is “the generalized form of Darcy law as presented in 
APT code 27 “.  
 
Horizontal and Uphill Gas Flow in Porous Media 
In uphill flow, the + sign in the numerator of equation (23) is used. Neglecting the kinetic 
effect, which is small, equation (23) becomes  
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An equation similar to equation (33) can also be derived if the Darcian lost head is used. The 
horizontal / uphill gas flow equation in porous media becomes. 
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Solution to the Horizontal/Uphill Flow Equation 
Differential equations (33) and (34) are of the first order and can be solved by the classical 
Runge - Kutta algorithm. The Runge - Kutta algorithm used in this work came from book of 
(Aires, 1962) called “Theory and problems of Differential equations”. The Runge - Kutta 
solution to the differential equation   

( )  given that  xat x  y,xf
dx

dy
n==

 

is  x x at 0y y 0==
 

  y   y k k k k
1

2( )0 1 2 3 46
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where
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Application of the Runge - Kutta algorithm to equation (33) leads to:  
 

dp
AA B pp pd p

2
/ 2 


(34) 
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Where: 
p1 = Pressure at inlet end of porous medium     p2 = Pressure at exit end of porous medium     
fp  = Friction factor of porous medium. 
θ  =  Angle of inclination of porous  
         medium with horizontal in degrees. 
z2 =  Gas deviation factor at exit end of  
         porous medium. 
T2 = Temperature at exit end of porous   
         medium  
T1 =  Temperature at inlet end of porous  
          medium 

z a v = Average gas deviation factor    
            evaluated with Ta v and p a v 

T a v = Arithmetic average temperature of   
            the porous medium given by 
                0.5(T1 + T2) and 

             p a v a = 
a

paa
2

2p +
 

 
In equation (36), the component k4 in the Runge - Kutta algorithm was given some 
weighting to compensate for the variation of temperature (T) and gas deviation factor (z) 
between the mid section and the inlet end of the porous  medium. In isothermal flow where 
there is little variation of the gas deviation factor between the mid section and the inlet end 
of the porous  medium, the coefficients of x a change slightly, then, 
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Application of the Runge-Kutta algorithm to equation (34) produces.  
 

 p p yb
2 2

1 2   (37) 
 

( )3
bx36.0

2
bx5.0bx1

b
paaby +++=  

( )2
bx72.0

2
bx48.1bx96.4

6

2
2p

+++
 

( )2
bx72.0bx96.196.4

6

2
pu

+++
 

www.intechopen.com



Steady State Compressible Fluid Flow in Porous Media 481

 p   p y  a2
2 2

1    (36) 
 

Where 

( )3
ax72.0

2
x48.1x96.4

6

2
2p

         

3
ax36.0

2
ax5.0ax1

a
paa ay

aa

)(
+++

+++=

 

+  ( )2
ax72.0ax96.196.4

6

a
pu

++
 

)L2Sp2(AA  
a

paa +=
 

R2T2z

2
2psinM2

2S

,
M

5
pgd

2
RW2T2zpf621139.1

2pAA


=

=

 

RavT
a

avz

LsinM2
ax

,
M

5
pgd

2
RWavTavzpf621139.1a

pu


=

=

 
 
Where: 
p1 = Pressure at inlet end of porous medium     p2 = Pressure at exit end of porous medium     
fp  = Friction factor of porous medium. 
θ  =  Angle of inclination of porous  
         medium with horizontal in degrees. 
z2 =  Gas deviation factor at exit end of  
         porous medium. 
T2 = Temperature at exit end of porous   
         medium  
T1 =  Temperature at inlet end of porous  
          medium 

z a v = Average gas deviation factor    
            evaluated with Ta v and p a v 

T a v = Arithmetic average temperature of   
            the porous medium given by 
                0.5(T1 + T2) and 

             p a v a = 
a

paa
2

2p +
 

 
In equation (36), the component k4 in the Runge - Kutta algorithm was given some 
weighting to compensate for the variation of temperature (T) and gas deviation factor (z) 
between the mid section and the inlet end of the porous  medium. In isothermal flow where 
there is little variation of the gas deviation factor between the mid section and the inlet end 
of the porous  medium, the coefficients of x a change slightly, then, 
 

( )

)
2

ax5.0ax25(
6

2
pu

          

)
3

ax5.0
2

ax2ax5(
6

2
2p

          

3
ax25.0

2
ax5.0ax1

a
paaay

+++

+++

+++=

 
 

Application of the Runge-Kutta algorithm to equation (34) produces.  
 

 p p yb
2 2

1 2   (37) 
 

( )3
bx36.0

2
bx5.0bx1

b
paaby +++=  

( )2
bx72.0

2
bx48.1bx96.4

6

2
2p

+++
 

( )2
bx72.0bx96.196.4

6

2
pu

+++
 

www.intechopen.com



Natural Gas482

Where  aa pb = L )
2
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         T a v  = Arithmetic average  Temperature of the porous medium = 0.5(T1+T2), 
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b
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All other variables remain as defined in equation (36). In isothermal flow where there is not 
much variation in the gas deviation factor (z) between the mid section and inlet and of the 
porous medium there is no need to make compensation in the k4 parameter in the Runge 
Kuta algorithm, then equation (37) becomes:  
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Equation (36) can be arranged as:  
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All other variables remain as defined in previous equations. 
In isothermal flow where there is no significant change in the gas deviation factor (z), 
equation (39) becomes: 
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  
 

- -

        -  

p
p x x x pc c c

S L
x x xc c c

2
2 2 3 21 5 2 0.51 26

2 32 1 0.5 0.25
6

 

  

 (40) 

 
When the porous medium is horizontal, S2 = 0 and x c = 0 then from equation (40),            
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In an isothermal flow where there is no variation in z,  

 pf
 =  

2T2z
a

pBB
2

W6

2
2p-

2
1p

                  

(42) 

Example 4 
The following data came from the book of (Giles et al.,  2009) called “theory and problem of 
fluid mechanics and hydraulics” 
W =  0.75 1b/sec of air, R = 1544, L = 1800ft, d  =   4inch = 0.333333ft,      

g  = 32.2ft/sec2 , z 2 = zava = 1 (air is fluid), T2 = R
0

550 F
0

90avT ==  
(Isothermal flow), p1 = 49.5psia = 7128psf, P2 = 45.73 psia = 6585.12 psf.  
Pipe is horizontal.  

(a) Calculate friction factor of the pipe (f) 
(b) If the pipe were to be filled with a homogenous porous material having a porosity 

of 20% what would be the friction factor (fp )? 
 
Solution 

(a) Let BBa the equivalent BBPa  by use of a pipe then.  
 

        RLaBB   
gd M

`1.621139
56

  
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××××
==

 
 

The calculated f agrees with f = 0.0205 obtained by Giles et al., who used another equation. 
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The equation for pressure transverse in a porous medium by use of Darcian lost head 
(equation (37) can be arranged as: 
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Where  
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of 20% what would be the friction factor (fp )? 
 
Solution 

(a) Let BBa the equivalent BBPa  by use of a pipe then.  
 

        RLaBB   
gd M

`1.621139
56

  

                    1195610.824

  
97.28

5
333333.02.326

18001544621139.1

=

×××

××
=

  

 

0.20463       

 
550  11195610.824  

2
0.75  6

2
6585.12-

2
7128

  
2T2z

a
BB

2
W6

2
2p-

2
1p

 f

=

××××
==

 
 

The calculated f agrees with f = 0.0205 obtained by Giles et al., who used another equation. 
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R2T2z

2
2P sinM2

2S 

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RavT
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L sinM2
  cx


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 z a v c = Average gas deviation factor calculated with p a v c and Ta v 

 

p a v c = 
2

p p 2
2

2
1 

 
 

When the porous medium is horizontal, S2 = 0,  , and x c = 0, then , 
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2 2
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2
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 
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When the flow is isothermal and there is no significant variation in the gas deviation factor 
(z) equation (44) becomes.  
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 (45) 

 
When the porous medium is horizontal, equation (45) becomes  
 

  -

bWBB z Tp
k

p p

6 2 2
2 2

1 2
  (46) 

 

Example 5  
The following problem came from the book of (Amyx et al., 1960). During a routine 
permeability test, the following data were obtained. 

Flow rate (Q) = 1,000cc of air in 500sec.  
Pressure down stream of core (p2) = 1 atm. absolute  
Flowing temperature (T)  =    70 0F 
Viscosity or air at test temperature (μ) = 0.02cp 

Cross-sectional area of core (A p) = 2cm2 

Pressure upstream of core (p1) = 1.45 atm absolute  
Length of core (L p) = 2cm  
Compute the permeability of the core in millidarcy 
 
Solution 
In oil field units in which pressure is in atmospheres and temperature is expressed in degree 
Kelvin, R = 82.1  

Here, T = 700F = (70 + 460)0R = 
8.1

R
0

530

      
 

                                                   K
0

4.294=   

Q = cc cc1000 / 500 sec 2 / sec  
cz z z  1 (air  is  fluid )av1 2  

 
 
The volumetric flow rate can be converted to weight flow rate by:  

W=  Q where   = 
pM

zTR
 

Substituting given values  
 

W

     gm

1 28.97 2

1 82.1 294.4
0.002397163 / sec

 


 


 

 

Taking the core to be horizontal  
 

  where
pp

2T2zb
PwBB6

k 2
2

2
1 


 

) units ofset  consistent ain  1c( ,
MA6

RL2  BB
p

p
b 




 

2
_

E889311.1
97.2826

21.8202.02
=

××

×××
=
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When the porous medium is horizontal, S2 = 0,  , and x c = 0, then , 
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When the flow is isothermal and there is no significant variation in the gas deviation factor 
(z) equation (44) becomes.  
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Then 
 

 millidarcy 72.56  darcy07256.0    

4.29412E889311.13E397163.26
k 22 1-45.1

==

××××
=

 
 
Amyx , et al obtained the permeability of this core as 72.5md with a less rigorous equation. 
 
Horizontal and Downhill Gas Flow in Porous Media  
In downhill flow, the negative (-) sign in the numerator of equation (23) in used. Neglecting 
the kinetic effect, equation (23) becomes: 
 

 -
dp

AA B PP Pd p

2
2


 (47) 

Where 

,
M

5
pgd

zTRpf621139.1

pAA =

 

zTR

sinM2
pB


=

 
 

By use of the Darcian lost head, the differential equation for downhill gas flow in porous 
media becomes. 

 _dp
AA B pP Pd p

2
2


 (48) 

Where  

,
Mk

2
pd

zTRWc546479.2
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
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Solution to the differential equation for horizontal and downhill flow  
The Runge-Kutta numerical algorithm that was used to provide a solution to the differential 
equation for horizontal and uphill flow can also be used to solve the differential equation for 
horizontal and downhill flow. Application of the Runge - Kutta algorithm to equation (47) 
produces. 
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avz = Gas deviation factor (z) calculated  

 

with T  0.5(T T )av 1 2 
 

 and
d cp p aaav p

2
1 

 
 
Other variables remain as defined in previous equations.  
In equation (49), the parameter k4 in the Runge-Kutta algorithm is given some weighting to 
compensate for the variation of the temperature (T) and the gas deviation factor between the 
mid section and the exit end of the porous medium. In isothermal flow in which there is no 
significant variation of the gas deviation factor (z) between the midsection and the exit end 
of the porous medium, equation (49) becomes. 
 

 -p p y cT
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equation for horizontal and uphill flow can also be used to solve the differential equation for 
horizontal and downhill flow. Application of the Runge - Kutta algorithm to equation (47) 
produces. 

 
_p p  y  c

2
2 1  (49) 

Where  

 
- -

 - - 

cy aa x x xc p d d d

p
            x x xd d d

2 3( 1 0 .5 0 .3 )

2
1 2 35 .2 2 .2 0 .66

 

 
                                          

 -
cup

x xd d
35.2 2.2 0.6

6
 

 
-1 1

c
paa  (AAp S )L

 
f z T RWp

AAp
gd Mp

M p
S

z T R

21.621139 1 1 ,1 5

22 sin 1
1

1 1







 

,
M

5
pgd

2
RWavT

d
avzp1.621139fc

pu =  

RavT
d

avz

2MsinθL

dx =  

d
avz = Gas deviation factor (z) calculated  

 

with T  0.5(T T )av 1 2 
 

 and
d cp p aaav p

2
1 

 
 
Other variables remain as defined in previous equations.  
In equation (49), the parameter k4 in the Runge-Kutta algorithm is given some weighting to 
compensate for the variation of the temperature (T) and the gas deviation factor between the 
mid section and the exit end of the porous medium. In isothermal flow in which there is no 
significant variation of the gas deviation factor (z) between the midsection and the exit end 
of the porous medium, equation (49) becomes. 
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Where  
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Other variables in equation (50) remain as defined in equation (49). 
Application of the Runge -Kutta algorithm to the down hill differential equation by use of 
Darcian lost head (equation (48)) gives  
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Equation (49) can be written as: 
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Other variables in equation (50) remain as defined in equation (49). 
Application of the Runge -Kutta algorithm to the down hill differential equation by use of 
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Equation (49) can be written as: 
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z a v f = Gas deviation factor at the midsection of the porous medium calculated with  

T a v and 
f

avp , where    0.5( T   T  ) av 1 2T 
 

and  
p pfpav

p p

2 1 2

1 2



 

 

During isothermal flow  in which there  is  no  significant  variation  of  the gas  deviation  
factors (z)  between  the mid section  and  the  exit  end  of  the porous  medium, equation 
(52)  can be  written as: 
 

 

 
   

- -
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S L
J x x xp f f f

f wp aBB z T x x x z T x xp f f f f f

2 31 1 0.5 0.35
62
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 


  

 
 
 

 
                

(54) 

 
The variables in equation (53) remain as defined in equation (52) 
 
Example 6 
Suppose the porous medium of example 3b was vertical what would be the dimensionless 
friction factor by use of the same pressure as they were in example 3b? 
 
Solution 
Here,  P1 = 7128psf, P2= 6585.12psf, T1=T a v =5500R, W=0.75  b / sec, R= 1544,  
L p= 1800ft, g= 32.2ft / sec 2, d p =0.066667ft, z1= z a v f = 1, since θ = 900, sin 900=1 
 

122812.0                                 

15445501

1800197.282

RavT
f

avz

LsinM2

fx

=

××

×××
==



 
 

The flow is isothermal; z is constant at 1.0 so equation (52) is used. 
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 There is a drastic reduction in the fp as compared to fp= 6.560860 E-6 when  the porous 
medium was horizontal. The effect of inclination becomes more severe as the porous 
medium gets longer. 
Equation (40) can be written as: 
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z a v f = Gas deviation factor at the midsection of the porous medium calculated with  

T a v and 
f

avp , where    0.5( T   T  ) av 1 2T 
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p p
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During isothermal flow  in which there  is  no  significant  variation  of  the gas  deviation  
factors (z)  between  the mid section  and  the  exit  end  of  the porous  medium, equation 
(52)  can be  written as: 
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The variables in equation (53) remain as defined in equation (52) 
 
Example 6 
Suppose the porous medium of example 3b was vertical what would be the dimensionless 
friction factor by use of the same pressure as they were in example 3b? 
 
Solution 
Here,  P1 = 7128psf, P2= 6585.12psf, T1=T a v =5500R, W=0.75  b / sec, R= 1544,  
L p= 1800ft, g= 32.2ft / sec 2, d p =0.066667ft, z1= z a v f = 1, since θ = 900, sin 900=1 
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The flow is isothermal; z is constant at 1.0 so equation (52) is used. 
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 There is a drastic reduction in the fp as compared to fp= 6.560860 E-6 when  the porous 
medium was horizontal. The effect of inclination becomes more severe as the porous 
medium gets longer. 
Equation (40) can be written as: 
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( )
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All other variables remain as defined in equation (52). During  isothermal flow in which 
there  is no significant variation  of  the gas deviation  factor (z) between  the mid  section  
and the exit end  of the  porous  medium, equation (54)  can be written  as: 
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Beside the coefficients of fx all other variables in equation (55) remain as defined in 
equation (54). 
 
Example 7 
Compute the permeability of the core of example 4 assuming that the case was vertical. 
 
Solution 
From example 4, W= γ Q 
 Substituting the given   values, W=0.00239716gm/sec 
Sin θ = sin 900 =1.0, M =28.97, L p=2cm 
 

f
vaz  = z1=1, T1=Ta v =294.4 o K, A p=2cm2 

p1 = 1.45atm, p2 =1.0atm,  = 0.02cp. 
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The flow is isothermal so equation (55) is used. 
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Substitution of given values into equation (54) gives  
 

[ ]

6

0995217.2005040.0
    11088.1

990428.4 99521.04.2941002397.0018893.0
k

××
+

+×××
=

 

=
001672.0110883.1

173888.176200239716.0018893.0

+

××
 

=0.071734 darcy = 71.734 millidarcy. 

Comparing 71.734 md with 72.562md obtained when the core was considered horizontal, it 
is seen that inclination has reduced, the calculated permeability (k) by (72.562-
71.734)/72.564 = 1.141093 percent  
The longer the core,  the more,  the effect of inclination. 
 
Example 8 
Use the data of example 4 to calculate the dimensionless friction factor (fp). Because of 
simplicity assume that the core is horizontal. 
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All other variables remain as defined in equation (52). During  isothermal flow in which 
there  is no significant variation  of  the gas deviation  factor (z) between  the mid  section  
and the exit end  of the  porous  medium, equation (54)  can be written  as: 
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Beside the coefficients of fx all other variables in equation (55) remain as defined in 
equation (54). 
 
Example 7 
Compute the permeability of the core of example 4 assuming that the case was vertical. 
 
Solution 
From example 4, W= γ Q 
 Substituting the given   values, W=0.00239716gm/sec 
Sin θ = sin 900 =1.0, M =28.97, L p=2cm 
 

f
vaz  = z1=1, T1=Ta v =294.4 o K, A p=2cm2 

p1 = 1.45atm, p2 =1.0atm,  = 0.02cp. 
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The flow is isothermal so equation (55) is used. 
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=0.071734 darcy = 71.734 millidarcy. 

Comparing 71.734 md with 72.562md obtained when the core was considered horizontal, it 
is seen that inclination has reduced, the calculated permeability (k) by (72.562-
71.734)/72.564 = 1.141093 percent  
The longer the core,  the more,  the effect of inclination. 
 
Example 8 
Use the data of example 4 to calculate the dimensionless friction factor (fp). Because of 
simplicity assume that the core is horizontal. 
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Solution 
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The coordinate (R NP , fp ) = (21.385242 , 0.0133065E8) locates very well in a previous graph of  
fp versus R NP that was generated by (Ohirhian, 2008). The points plotted in the graph were 
obtained by flowing water through synthetic tight consolidated cores. The plot is 
reproduced here as follows. 
 

 
Plot of fp versus R Np for Porous Media 
Assignment 
Use the data of example 4 to calculate the dimensionless friction factor (fp) considering the 
core to be vertical   

 
Conclusions 

(1) The Darcy law as  presented  in API  code 27  has been derived from the laws of 
fluid mechanics 

(2) New general  differential  equations  applicable  to horizontal, uphill and  downhill 
flow of  gas  through porous  media have been  developed. 

(3) The Runge-Kutta algorithm has been used to provide accurate solutions to the 
differential equations developed in this work. 

(4) The solution to the differential equation shows  that inclination  has the effect of  
reducing laboratory measured values of gas permeability and dimensionless 
friction factor- the longer a core the more  the  reduction  of measured  permeability 
/ dimensionless friction factor. 
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Nomenclature 

   pd  Incremental pressure drop 

  pd Incremental length of porous    

             medium 
 Q = Volumetric flow rate 
 v = Average velocity flowing fluid 

   K /  Proportionality constant that is  dependent on both fluid and rock properties 

   k  Permeability of porous medium       
   Absolute viscosity of flowing fluid 
    Mass density of flowing fluid 

 g = Acceleration due to gravity 
  z  Elevation of the porous medium  above a datum. The + sign is used where the point of 

interest is above the datum the – sign is used where the chosen point is and  below the datum    

 


   fluid flowing of  viscosityEffective  /  

 p = Pressure 
  = Specific weight of flowing fluid  
 v = Average fluid velocity 
 g = Acceleration due to gravity in a consistent set of units. 
d p  = Incremental length of porous medium 

  = Angel of porous medium inclination with the horizontal, degrees 
dh L=Incremental lost head 
c  = Dimensionless constant which is dependent on the pone size       .           
       medium porous of ndisributio    
  c 1 = Constant used for conversion of units. It is equal to 1 in a consistent set of units 

  d p = Diameter of porous medium = d   
  d= Diameter of cylindrical pipe  
   Porosity of medium  

  pf  = Dimensionless friction factor of porous medium that is dependent  

     on  the Reynolds number of porous medium. 
  pNR   Reynolds number  of isotropic porous medium. 

  
  pA Cross-sectional area of porous medium 

  W  = Weight flow rate of fluid  

  
=b Specific weight of fluid at P b  and T b 

 b
Q = Volumetric rate of fluid, measured at P b and T b 

 

 P b = Base pressure, absolute unit 
 T b = Base Temperature, absolute unit 

 z b = Gas deviation factor at p b and Tb     usually taken as 1 
 G g = Specific gravity of gas (air = 1) at standard condition  
 M = Molecular weight of gas 
 R  = Universal gas constant    

1A  = Pipe cross sectional area at point 1  

1v  = Average fluid velocity at point.  1 

 1 = Specific weight of fluid at point 1  

2A = Pipe cross-sectional area at point 2  

 2v =Average fluid velocity at point 2  

 2 = Specific weight of fluid at point 2  

 T  Absolute temperature 
  K = Constant for calculating the   compressibility of a real gas 
   p1 = Pressure at inlet end of porous medium  
   p2 = pressure at exit end of porous medium  
   θ  = Angle of inclination of porous  medium with horizontal in degrees.  
   z2 = Gas deviation factor at exit end of  porous medium.  
   T2 = Temperature at exit end of porous   medium  
   T1 =Temperature at inlet end of porous medium  
   z a v =  Average gas deviation factor  evaluated with Ta v and p a v 

   T a v = Arithmetic average temperature of  the porous medium given by 0.5(T1 + T2) and p a 

v =  Average pressure 
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