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1. Introduction    

During the recent decades, global climate change has been at the centre of quite many 
scientific studies. Although the consensus is that climate is changing on a global scale, 
change on a regional or local scale is often more subtle and variable. Global climate change 
is mostly evaluated using the changes of annual average ambient temperature indicators, 
however, regional climate scenarios are not always consistent with global indicators. 
Consequently, the search for, and identification of, clear and unambiguous indicators of the 
impact of global climate change at a regional or local level is of vital importance. 
Interactions between the biosphere and the atmosphere are obvious and have long been 
studied by several disciplines (e.g. Budyko, 1971, 1984; Fritts, 1976; Bolin, 1977; Tooming, 
1977, 1984; Semenov and Porter, 1995; Scheifinger et al., 2002; Menzel, 2003; Aasa et al., 2004; 
McPherson, 2007). It has long been recognized that climate decides what can be cultivated, 
whereas soils indicate mainly to what extent climatic opportunities can be realized. The 
crops that continue to be grown in a particular location will primarily be determined by the 
changes in climate, and the seasonal distribution of rainfall and temperature that they 
experience. The main effect of temperature derives from the control of the growing period 
duration (Woodward, 1988), but also other processes linked with the accumulation of dry 
matter (leaf area expansion, photosynthesis, respiration, evapotranspiration etc.) are affected 
by temperature. Rainfall and soil water availability may affect the duration of growth 
through leaf area duration and the photosynthetic efficiency. These general climatic 
constraints on agricultural production are modified by local climatic constraints. In 
Northern countries the length of growing season, late spring and early autumn frost and 
solar radiation availability are typical climatic constraints, limiting the productivity of crops. 
For example, in Germany the growing season is one to three months longer than in 
Scandinavian countries (Mela, 1996).  
Not surprisingly, also the reverse relation is true – biological and agricultural data can be 
used in climate assessments. Several biology-related indicators have been used by several 
scientists to assess past and present climate, its changes and variability, such as Palmer 
Drought Severity Index (e.g. Makra et al., 2002; Szep et al., 2005; Burke et al., 2006; 
Mpelasoka et al., 2007), growth season beginning and length (e.g. Menzel and Fabian, 1999; 
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Chmielewski & Köhn, 2000; Schwartz & Reiter, 2000; Sparks & Tryjanowski, 2007), dates of 
phenological phases (e.g. Ahas et al., 2004; Badeck et al, 2004; Chuine et al., 2004; Donnelly 
et al., 2004), etc. One of the complex variables, integrally describing summer weather 
conditions, is the biological production of plants and yield of agricultural crops. In this 
chapter, the potentiality of using the biological production and yield of agricultural crops as 
an indicator of summer climate variability and possible change is discussed. This approach 
is based on the postulate that the primary requirement for the success of a plant in a 
particular area is that its phenology would fit the environment. The signals of climate 
change usually occur more clearly in species growing at the borders of their distribution 
areas (Pensa et al., 2006) or whose growth is strongly influenced by climate, such as many 
arable crops (Hay & Porter, 2006).  
Trends in individual climate variables or their combination into agro-climatic indicators 
show that there is an advance in phenology in large areas of North America and Europe, 
which has been attributed to recent regional warming. In temperate regions, there are clear 
signals of reduced risk of frost, longer growing season duration, increased biomass, insect 
expansion, and increased forest-fire occurrence that are in agreement with regional 
warming. Still, no detectable change in crop yield directly attributable to climate change has 
been reported for Europe (IPCC, 2007). Experimental studies of climate change through 
plant productivity are  complicated indeed, as it is hard to distinguish the impact of climate 
variability or change from the effects of soil, landscape, and management. The worldwide 
trends in increasing productivity (yield per hectare) of most crops over the last 40 years, 
primarily due to technological improvements in breeding, pest and disease control, 
fertilisation and mechanisation, also make identifying climate-change signals difficult 
(Hafner, 2003). Thus, although the yield of agricultural crops is a quite commonly measured 
value, there is usually no long homogeneous time series of field crop yields. Therefore, the 
use of a simulated time series of crop yields, computed with dynamic plant production 
process models, is a more convenient and efficient way to draw climate estimations. These 
models are compiled from our knowledge of the different physiological processes in plants, 
and integrate different daily or more frequent weather data, calculating the development of 
plant production step-by-step. Traditionally, crop models are useful tools for translating 
climate forecasts and climate change scenarios into changes in yield, net returns, and other 
outcomes of different management practices. Additionally, those results can be turned 
backward and model-calculated yields can be used as an indicator to describe climate 
resources. In this chapter the concept of meteorologically possible yield (MPY) - the 
maximum yields under given meteorological conditions - is applied to derive qualitatively 
new information about climate variability. We will describe series of weather-reliant potato 
yields based on real existing meteorological series. Trends and variability changes within 
the series are assessed and compared to variability in the series of meteorological data. 
Probable range of temperature and precipitation in years 2050 and 2100 is applied to 
construct possible distribution of MPY in those years; future changes in mean values and 
variability are examined.  

 

2. Material and methods 

2.1 The model and the category of meteorologically possible yield 
Plant productivity and thus the yields of field crops depend on many different closely 
interrelated factors. To introduce all of them into the model simultaneously is complicated. 
In our approach, the concept of the separation of factors, the principle of reference yields 
(Tooming, 1984; Kadaja & Tooming, 2004) was applied based on the principle of maximum 
plant productivity: such adaptation processes take place in a plant and plant community 
which are directed towards providing the maximum productivity of net photosynthesis 
possible under the existing environmental conditions (Tooming, 1967, 1970, 1977, 1984, 
1988). Proceeding from this principle, maximum plant production is observed under 
different limiting factors, which can be divided into agroecological groups: biological, 
meteorological, soil, and agrotechnical groups. These groups of factors are included 
separately in the model, step by step, starting from the optimal conditions for the plant 
community (Tooming, 1993, 1998; Kadaja, 1994). Because the conditions specified as optimal 
involve no limitations, no input information regarding their optimal and limiting ranges is 
necessary. The corresponding categories of reference yields, as limits between the aforesaid 
groups, are in descending order: potential yield (PY), MPY, practically possible yield, and 
commercial yield (Fig. 1).  
This concept is applied in the dynamic model POMOD to model the potato production 
process and yield (Sepp & Tooming, 1991; Kadaja & Tooming, 2004). In the present state, 
POMOD allows the computation of the PY and the MPY. The PY is the maximum yield of a 
given species or variety possible under the existing conditions of solar radiation, with all the 
other environmental and agricultural factors considered to be optimal. Therefore, PY is 
determined by the biological properties of the variety and the solar radiation available for 
utilization, and it expresses the radiation resources in units of biomass produced. The MPY 
is the maximum yield conceivable under the existing irradiance and meteorological 
conditions, with optimal soil fertility and agrotechnology, the levels of soil nutrients and the 
agrotechnology used do not limit production, and the effects of plant diseases, pests, and 
weeds are excluded. Only those soil properties related to the determination of the soil water 
content are applied.  
 

 
Fig. 1. The concept of yield limiting factors and corresponding reference yields (Zhukovsky 
et al., 1989). 
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an indicator of summer climate variability and possible change is discussed. This approach 
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particular area is that its phenology would fit the environment. The signals of climate 
change usually occur more clearly in species growing at the borders of their distribution 
areas (Pensa et al., 2006) or whose growth is strongly influenced by climate, such as many 
arable crops (Hay & Porter, 2006).  
Trends in individual climate variables or their combination into agro-climatic indicators 
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which has been attributed to recent regional warming. In temperate regions, there are clear 
signals of reduced risk of frost, longer growing season duration, increased biomass, insect 
expansion, and increased forest-fire occurrence that are in agreement with regional 
warming. Still, no detectable change in crop yield directly attributable to climate change has 
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plant productivity are  complicated indeed, as it is hard to distinguish the impact of climate 
variability or change from the effects of soil, landscape, and management. The worldwide 
trends in increasing productivity (yield per hectare) of most crops over the last 40 years, 
primarily due to technological improvements in breeding, pest and disease control, 
fertilisation and mechanisation, also make identifying climate-change signals difficult 
(Hafner, 2003). Thus, although the yield of agricultural crops is a quite commonly measured 
value, there is usually no long homogeneous time series of field crop yields. Therefore, the 
use of a simulated time series of crop yields, computed with dynamic plant production 
process models, is a more convenient and efficient way to draw climate estimations. These 
models are compiled from our knowledge of the different physiological processes in plants, 
and integrate different daily or more frequent weather data, calculating the development of 
plant production step-by-step. Traditionally, crop models are useful tools for translating 
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maximum yields under given meteorological conditions - is applied to derive qualitatively 
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yields based on real existing meteorological series. Trends and variability changes within 
the series are assessed and compared to variability in the series of meteorological data. 
Probable range of temperature and precipitation in years 2050 and 2100 is applied to 
construct possible distribution of MPY in those years; future changes in mean values and 
variability are examined.  
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2.1 The model and the category of meteorologically possible yield 
Plant productivity and thus the yields of field crops depend on many different closely 
interrelated factors. To introduce all of them into the model simultaneously is complicated. 
In our approach, the concept of the separation of factors, the principle of reference yields 
(Tooming, 1984; Kadaja & Tooming, 2004) was applied based on the principle of maximum 
plant productivity: such adaptation processes take place in a plant and plant community 
which are directed towards providing the maximum productivity of net photosynthesis 
possible under the existing environmental conditions (Tooming, 1967, 1970, 1977, 1984, 
1988). Proceeding from this principle, maximum plant production is observed under 
different limiting factors, which can be divided into agroecological groups: biological, 
meteorological, soil, and agrotechnical groups. These groups of factors are included 
separately in the model, step by step, starting from the optimal conditions for the plant 
community (Tooming, 1993, 1998; Kadaja, 1994). Because the conditions specified as optimal 
involve no limitations, no input information regarding their optimal and limiting ranges is 
necessary. The corresponding categories of reference yields, as limits between the aforesaid 
groups, are in descending order: potential yield (PY), MPY, practically possible yield, and 
commercial yield (Fig. 1).  
This concept is applied in the dynamic model POMOD to model the potato production 
process and yield (Sepp & Tooming, 1991; Kadaja & Tooming, 2004). In the present state, 
POMOD allows the computation of the PY and the MPY. The PY is the maximum yield of a 
given species or variety possible under the existing conditions of solar radiation, with all the 
other environmental and agricultural factors considered to be optimal. Therefore, PY is 
determined by the biological properties of the variety and the solar radiation available for 
utilization, and it expresses the radiation resources in units of biomass produced. The MPY 
is the maximum yield conceivable under the existing irradiance and meteorological 
conditions, with optimal soil fertility and agrotechnology, the levels of soil nutrients and the 
agrotechnology used do not limit production, and the effects of plant diseases, pests, and 
weeds are excluded. Only those soil properties related to the determination of the soil water 
content are applied.  
 

 
Fig. 1. The concept of yield limiting factors and corresponding reference yields (Zhukovsky 
et al., 1989). 
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As a result, MPY expresses agrometeorological resources, while its mean value and 
variability distribution over a long period characterize the agroclimatic resources in yield 
units. Using the category of MPY and the model of crop production, we can transform the 
complex of meteorological conditions into their yield equivalent and easily assess the 
agrometeorological resources of different years and the agroclimatic resources at different 
locations. 
The underlying parameters of POMOD are the total biomass and the masses of plant organs 
(leaves, stems, roots, and tubers) per unit ground area (Kadaja & Tooming, 2004). The total 
growth of the plant biomass is calculated as the difference between the gross photosynthetic 
and respiration rates, integrated over time and leaf area index. The gross and net 
photosynthetic rates are expressed by equations derived from the principle of maximum 
plant productivity (Tooming, 1967). The meaning of parameters of gross and net 
photosynthesis irradiance curves are illustrated in Fig. 2. The initial slope a is the slope of 
tangent to the gross photosynthesis irradiance curve drawn from the origin of co-ordinates. 
Ra is the PAR flux density at the tangential point of net photosynthesis irradiance curve and 
its tangent drawn from the origin of co-ordinates. The intensity of photosynthetically active 
radiation (PAR) in the canopy is calculated from the total radiation and the leaf area above a 
particular level. The distribution of the total increase in biomass between different plant 
organs is determined using growth functions (Ross, 1966), which are given in the model as 
functions of accumulated positive temperatures. MPY is calculated taking into account the 
impact of meteorological factors on photosynthesis and respiration, and the influence of 
temperature on development rate.  
 

 
Fig. 2. Gross and net photosynthesis irradiance curves and their characteristics (Tooming, 
1984). 
 
The biological parameters of the potato varieties were determined on the basis of field 
experiments, not limited by nutrient deficiency, properly cultivated, weed and pest free, and 
regularly protected from late blight (Sepp & Tooming, 1991; Kadaja, 2004). The computed 
yields have proved similar to the real yields under these conditions, if the reduction in leaf 
area from late blight, not totally avoidable by protection, is included in the model. 
Differences in the real and computed yields did not exceed 5% in independent data collected 
under extremely good and bad growing conditions (Sepp & Tooming, 1991). Further 
verification of the model has been made on the basis of 20-year yield series at four stations 

of the Estonian Variety Control Network, with relatively stable cultivation and soils 
maintained during the period. Significant correlations between actual yields and calculated 
MPY were verified at three stations, whereas at the fourth, the correlation was not 
significant because of an increased level of plant diseases, grown without crop rotation.  

 
2.2 Locations  
To simulate time series of meteorologically possible yield, we compiled series of 
meteorological and agrometeorological data from the archives of the Estonian 
Meteorological and Hydrological Institute. We used the data from two stations: Tartu 
(58°15´N, 26°27´E) and Kuressaare (58°15´N, 22°29´E). These stations are located in regions 
with different local climates. Local climatic differences in Estonia result from, above all, the 
proximity of the Baltic Sea, which warms the coastal zone in winter and cools it  especially 
in spring. According to the climatic classification of Estonia based on its air temperature 
regime, as proposed by Jaagus & Truu (2004), Tartu is located in the Mainland Estonia 
climatic region, characterized by a more continental climate and practically no climatic effect 
of the Baltic Sea, and Kuressaare is located in the Island Estonia region, with a much more 
maritime climate. Spring is much warmer in Tartu and summer starts earlier. In addition to 
different temperature regimes, there are considerable differences in precipitation between 
the two stations (Fig. 3). Furthermore, climate change effects appear to be different in the 
continental and coastal areas (Jaagus, 2006). For instance, because of the direct influence of 
the sea, the evident increase in annual mean temperature (1.0-1.7 °C at the different stations 
in Estonia during the second half of the 20th century) is less intense in spring in Kuressaare 
compared to that in Tartu. A significant increase in winter precipitation has also taken place 
in Estonia, but is much lower on the westernmost coast. In the same period, precipitation 
has increased remarkably in the coastal region in spring. 
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Fig. 3. Monthly mean temperatures (lines) and precipitation sums (bars) in Kuressaare and 
Tartu in 1965-2006.  
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Fig. 3. Monthly mean temperatures (lines) and precipitation sums (bars) in Kuressaare and 
Tartu in 1965-2006.  
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2.3 Input data: calculations with current climate 
The input information for the model can be divided into four groups: daily meteorological 
data, annual information, parameters of location, and biological parameters of the potato 
variety (Kadaja & Tooming, 2004).  
The first group includes daily data on global radiation, air temperature, and precipitation 
for the growing period. For Tartu, meteorological data were available from 1901, for 
Kuressaare from 1923. Calculations were carried out up to 2006. As Kuressaare 
meteorological station was closed in 2001,  the data for last years were  calculated there on 
the basis of an adjacent station (Virtsu, Sõrve, Vilsandi, or Ristna, depending on which had 
the highest correlation for a particular factor or period). Direct measurements of global 
radiation have only been made since 1954 in Tartu. We computed the missing daily sums of 
global radiation from sunshine duration, using regression equations established separately 
for every month in Tartu. 
Annual information included the year, the date and the value of the initial water storage in 
the soil (or the date when the soil moisture fell below the field capacity), the date of the 
permanent increase in temperature to above 8 °C in the spring, the dates of the last and first 
night frosts (≤ -2 °C), and the date of the permanent drop in temperature to below 7 °C in 
autumn. The initial soil moisture value is used as a basis for further calculations of soil 
moisture progression throughout the vegetation period. The dates of the temperature 
transitions are used as ‘planting’ and ‘harvesting’ dates for potatoes. We obtained the dates 
of night frosts and temperature transitions from the meteorological data sets of the stations. 
The data for the soil water status in spring was collected from the reports of the 
agrometeorological network using observations at Tartu-Erika (adjacent to Tartu) and at 
Karja on the island of Saaremaa (for Kuressaare). For the earlier period (up to the end of the 
1940s) and for some later years when the agrometeorological network was not working, the 
data were derived from the meteorological data at the stations. 
The locations are characterized by their geographical latitudes and the hydrological 
parameters of the soil, such as the wilting point, field capacity, and maximum water 
capacity. We used the parameters of the field soils (Kitse, 1978) prevalent at the locality. For 
Tartu, the parameters of a region with Albeluvisol (World Reference Base for Soil Resources) 
were used; for Kuressaare, the Skeletic Regosol prevails. All the soils are sandy silt loam, 
with quite similar hydrological parameters. 
As parameters of variety, the model requires the parameters for photosynthesis, respiration, 
and the growth functions. We used the parameters of the early variety ‘Maret’ and the late 
variety ‘Anti’, both bred for Estonian conditions. The variety-specific photosynthesis 
variables, the initial slope of the photosynthesis irradiance curve a (kg CO2 s--1W--1), the 
irradiation density of adaptation Ra (W m--2), and the photosynthesis and respiration rates at 
the saturated PAR density given per unit mass of leaves, 1 and 2 respectively (kg CO2 kg--1 
s--1), were estimated initially from the literature and adjusted for the specified varieties by a 
calibration method from experimental field data (Saue, 2006). Parameters σ2 and α were 
considered constant throughout the vegetation period, while σ1 and Ra were studied as 
variables. To associate parameters amongst each other, measured data of specific leaf weight 
of leaves,  were used. Specifically, different values were given to the maximum value of σ1 
and to the parameters describing its change within the temperature sums. The scope of 
change of σ1 were first estimated by literature data (Tooming, 1977). Ra was calculated 
through σ1, α and  . To find the most optimal σ1 value, relative errors between measured 

and modelled data at different σ1 values were calculated. Data of leaf area index and the 
biomass of all organs at all measurement dates were used.  
Growth functions (Fig. 4) were determined on the basis of field experiments made from 2001 
to 2006 (Kadaja, 2004, 2006). 
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Fig. 4. Experimentally determined growth functions of late potato variety ‘Anti’ and early 
variety ‘Maret’. Vertical lines denote the beginning of calculations. 

 
2.4 Input data: calculations with future climate 
Climate change could considerably affect the growth and yield of most crops (Adams et al., 
1990; Easterling et al., 1992a, b). For model simulations of future potato production, future 
weather data were required. To achieve temperature and precipitation data for the years 
2050 and 2100, climate change scenarios were generated for Estonia using a simple coupled 
gas-cycle/climate model MAGICC (Model for the Assessment of Greenhouse-gas Induced 
Climate Change) that drives a spatial climate-change scenario generator (SCENGEN). 
MAGICC has been one of the primary models used by  IPCC since 1990 to produce 
projections of future global-mean temperature and sea level rise; we used the 5.3 version of 
the software, which is consistent with the IPCC Fourth Assessment Report  
(http://www.cgd.ucar.edu/cas/wigley/magicc/UserMan5.3.v2.pdf). 
Because projections of climate change depend heavily upon future human activity, climate 
models are run against scenarios. There are over 40 different scenarios, each making 
different assumptions for future greenhouse gas pollution, land-use and other driving 
forces. Assumptions about future technological development as well as the future economic 
development are thus made for each scenario. Four alternative illustrative emission 
scenarios were used in our study to generate climate change scenarios for Estonia: A1B, a 
scenario of an integrated world with rapid economic growth, slowing population increase 
and a quick spread of new and efficient technologies with a balanced emphasis on all energy 
sources; A2, a scenario of a more divided world with continuously increasing population 
and an emphasis on family values and local traditions; B1, scenario of a world of 
“dematerialization” and introduction of clean technologies with rapid economic growth and 
increasing population; B2, a scenario of a world with an emphasis on local solutions to 
economic and environmental sustainability, with moderate economic growth and slowed 
population increase (Nakićenović & Swart, 2000). The highest climate warming is projected 
by A2; the lowest by B1. The year 1990 is used as the reference year in 
MAGICC/SCENGEN, all the climatic changes are calculated with respect to this year. 
Data of changes in mean monthly air temperature and precipitation, averaged over 18 GCM 
experiments available on SCENGEN were applied. The idea of averaging more than one 
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2.3 Input data: calculations with current climate 
The input information for the model can be divided into four groups: daily meteorological 
data, annual information, parameters of location, and biological parameters of the potato 
variety (Kadaja & Tooming, 2004).  
The first group includes daily data on global radiation, air temperature, and precipitation 
for the growing period. For Tartu, meteorological data were available from 1901, for 
Kuressaare from 1923. Calculations were carried out up to 2006. As Kuressaare 
meteorological station was closed in 2001,  the data for last years were  calculated there on 
the basis of an adjacent station (Virtsu, Sõrve, Vilsandi, or Ristna, depending on which had 
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radiation have only been made since 1954 in Tartu. We computed the missing daily sums of 
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Annual information included the year, the date and the value of the initial water storage in 
the soil (or the date when the soil moisture fell below the field capacity), the date of the 
permanent increase in temperature to above 8 °C in the spring, the dates of the last and first 
night frosts (≤ -2 °C), and the date of the permanent drop in temperature to below 7 °C in 
autumn. The initial soil moisture value is used as a basis for further calculations of soil 
moisture progression throughout the vegetation period. The dates of the temperature 
transitions are used as ‘planting’ and ‘harvesting’ dates for potatoes. We obtained the dates 
of night frosts and temperature transitions from the meteorological data sets of the stations. 
The data for the soil water status in spring was collected from the reports of the 
agrometeorological network using observations at Tartu-Erika (adjacent to Tartu) and at 
Karja on the island of Saaremaa (for Kuressaare). For the earlier period (up to the end of the 
1940s) and for some later years when the agrometeorological network was not working, the 
data were derived from the meteorological data at the stations. 
The locations are characterized by their geographical latitudes and the hydrological 
parameters of the soil, such as the wilting point, field capacity, and maximum water 
capacity. We used the parameters of the field soils (Kitse, 1978) prevalent at the locality. For 
Tartu, the parameters of a region with Albeluvisol (World Reference Base for Soil Resources) 
were used; for Kuressaare, the Skeletic Regosol prevails. All the soils are sandy silt loam, 
with quite similar hydrological parameters. 
As parameters of variety, the model requires the parameters for photosynthesis, respiration, 
and the growth functions. We used the parameters of the early variety ‘Maret’ and the late 
variety ‘Anti’, both bred for Estonian conditions. The variety-specific photosynthesis 
variables, the initial slope of the photosynthesis irradiance curve a (kg CO2 s--1W--1), the 
irradiation density of adaptation Ra (W m--2), and the photosynthesis and respiration rates at 
the saturated PAR density given per unit mass of leaves, 1 and 2 respectively (kg CO2 kg--1 
s--1), were estimated initially from the literature and adjusted for the specified varieties by a 
calibration method from experimental field data (Saue, 2006). Parameters σ2 and α were 
considered constant throughout the vegetation period, while σ1 and Ra were studied as 
variables. To associate parameters amongst each other, measured data of specific leaf weight 
of leaves,  were used. Specifically, different values were given to the maximum value of σ1 
and to the parameters describing its change within the temperature sums. The scope of 
change of σ1 were first estimated by literature data (Tooming, 1977). Ra was calculated 
through σ1, α and  . To find the most optimal σ1 value, relative errors between measured 

and modelled data at different σ1 values were calculated. Data of leaf area index and the 
biomass of all organs at all measurement dates were used.  
Growth functions (Fig. 4) were determined on the basis of field experiments made from 2001 
to 2006 (Kadaja, 2004, 2006). 
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Fig. 4. Experimentally determined growth functions of late potato variety ‘Anti’ and early 
variety ‘Maret’. Vertical lines denote the beginning of calculations. 

 
2.4 Input data: calculations with future climate 
Climate change could considerably affect the growth and yield of most crops (Adams et al., 
1990; Easterling et al., 1992a, b). For model simulations of future potato production, future 
weather data were required. To achieve temperature and precipitation data for the years 
2050 and 2100, climate change scenarios were generated for Estonia using a simple coupled 
gas-cycle/climate model MAGICC (Model for the Assessment of Greenhouse-gas Induced 
Climate Change) that drives a spatial climate-change scenario generator (SCENGEN). 
MAGICC has been one of the primary models used by  IPCC since 1990 to produce 
projections of future global-mean temperature and sea level rise; we used the 5.3 version of 
the software, which is consistent with the IPCC Fourth Assessment Report  
(http://www.cgd.ucar.edu/cas/wigley/magicc/UserMan5.3.v2.pdf). 
Because projections of climate change depend heavily upon future human activity, climate 
models are run against scenarios. There are over 40 different scenarios, each making 
different assumptions for future greenhouse gas pollution, land-use and other driving 
forces. Assumptions about future technological development as well as the future economic 
development are thus made for each scenario. Four alternative illustrative emission 
scenarios were used in our study to generate climate change scenarios for Estonia: A1B, a 
scenario of an integrated world with rapid economic growth, slowing population increase 
and a quick spread of new and efficient technologies with a balanced emphasis on all energy 
sources; A2, a scenario of a more divided world with continuously increasing population 
and an emphasis on family values and local traditions; B1, scenario of a world of 
“dematerialization” and introduction of clean technologies with rapid economic growth and 
increasing population; B2, a scenario of a world with an emphasis on local solutions to 
economic and environmental sustainability, with moderate economic growth and slowed 
population increase (Nakićenović & Swart, 2000). The highest climate warming is projected 
by A2; the lowest by B1. The year 1990 is used as the reference year in 
MAGICC/SCENGEN, all the climatic changes are calculated with respect to this year. 
Data of changes in mean monthly air temperature and precipitation, averaged over 18 GCM 
experiments available on SCENGEN were applied. The idea of averaging more than one 
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GCM experiment and constructing a composite pattern for future climate change was first 
introduced by Santer et al. (1990); later Hulme et al. (2000) reported the clear supremacy of 
the technique over just only one model. The data are displayed in MAGICC/SCENGEN in a 
grid resolution of 2.5º latitude/longitude, thus the Estonian territory is covered by three 
grid boxes, with medium coordinates 58.8ºN/21.3ºE, 58.8ºN/23.8ºE and 58.8ºN/26.3ºE. 
Kuressaare and Tartu fall into two outermost boxes. However, the direct use of the 
SCENGEN output is not possible, because these predictions are available as changes in 
monthly means, but the crop model depends on daily time-series of weather as one of its 
main inputs. To calculate the future values of MPY, we used observed daily weather data in 
those stations during the baseline period 1965-2006. This shorter period is applied instead of 
previously used longer periods, since in climate change calculations it is necessary to use 
data outside the heretofore growing period. Global radiation was assumed not to change. 
Future daily temperatures and precipitation were calculated by adding the predicted 
monthly corrections to the observed series of daily data. This way, not just the one average 
predicted future value for temperature and precipitation, but 41 possible series of those 
meteorological elements were obtained for the two target years, suggesting the possible 
future weather distribution.  Such setup also leads to the variability in the future climates 
being almost identical to the variability of the historical climate. Although the variability of 
climate in the future may alter (Rind et al., 1989; Mearns, 2000), inducing possible decrease 
in mean crop yields (Semenov & Porter, 1995; Semenov et al., 1996), some researchers 
(Barrow et al., 2000; Wolf, 2002) have reported that for potato, changes in climatic variability 
in northern Europe generally resulted in no changes in mean yields and its coefficient of 
variation. 
Thus converted future weather data series are employed to calculate the date and the value 
of the initial water storage in the soil (or the date when the soil moisture falls below the field 
capacity), the date of the permanent increase in temperature to above 8 °C in the spring, the 
dates of the last and first night frosts (≤ -2 °C), and the date of the permanent drop in 
temperature to below 7 °C in autumn for each individual year of the new series. For 
determination of the soil water status in spring a relationship between radiation balance Rfc 
from permanent transition of temperature over 0º C to soil moisture fall below the field 
capacity, and meteorological data was derived using 30-year data of 13 stations of the 
Estonian Agrometeorological Network. To calculate Rfc , incoming global radiation and 
evaporative energy of precipitation (precipitation multiplied by latent evaporative heat) 
were accounted. The strongest correlations of Rfc were achieved with temperature sums 
from March to April T3-4 and precipitation sums from February to April U2-4: 
 

 Rfc= 468.2 – 1.587 T3-4 – 0.517 U2-4                   r = 0.66     (1) 
 

To apply relationship (1) into the future dataset, a submodel calculates Rfc as well as 
permanent date of temperature rise over 0º C for each year of the new weather data series 
for 2050 and 2100. Next, from that date, the running radiation balance is summarized day-
by-day. The date when the running radiation balance exceeds Rfc is counted as the date of 
achieving the soil field capacity and it is considered as the ‘first possible’ planting date. 
Additionally, ‘optimal planting date’ is applied – the date  achieved by postponing the day 
of planting in model calculations day-by-day until the maximum yield is obtained. To 
prevent staying to a side maximum this postponing is conducted until the MPY drops below 
70% of its maximum value, or until the date of summer equinox.  

The dates of last and first night frosts in the future series are found on the basis of the earlier 
determined relationships between mean daily air temperature and ground level minimum 
temperature, dependent on the radiation sum of previous day.   

 
3. Results 

3.1 Time series of meteorological resources: current climate 
Series of meteorologically possible yield were compiled for early and late maturing potato 
varieties in two different Estonian localities. In Table 1 we present long-term mean yields 
calculated with existing meteorological data series, using real and computed (both first 
possible and optimal) planting dates; the yields thus describe real, possible and optimal 
climatic resources for plant growth during given period.  
With real planting dates, there was practically no  difference in average values of the MPY 
between long and short (from 1965) series. As expected, the late variety produced higher 
yields at all locations. Overall, the MPY series showed only weak and insignificant trends 
(Fig. 5), although reliable trends are apparent for some shorter periods. The longest period 
with a significant (P < 0.05) decreasing trend was observed in Kuressaare from 1977 to 2006. 
Generally, ‘Anti' demonstrated higher variance in yields. For both varieties, the variability 
reached higher in Kuressaare. Variability increases in all cases when using computed 
planting dates instead of real dates.  
Closer investigation of the MPY variability showed a significant increase in variance in 
Tartu since the early 1980s. In the MPY calculations contrived with real meteorological data, 
the standard deviation of MPY was significantly lower for ‘Maret’ in 1901-1980 compared to 
1981-2006 (P = 0.006, according to F test); for ‘Anti’, the change was smaller yet significant (P 
= 0.046). When using shorter time series and optimal planting times, the same difference in 
yield variance was detected both for ‘Maret’ (P = 0.002) and ‘Anti’ (P = 0.015). The 
meteorological elements series revealed no similar changes in climate variability. Reliable 
dispersion differences were detected only in the precipitation series, but their significance 
was lower than that of the yields.  
 

 ANTI MARET 
 Tartu Kuressaare Tartu Kuressaare 
 MPY Var. 

coeff. 
MPY Var. 

coeff. 
MPY Var. 

coeff. 
MPY Var. 

coeff. 
Real dates         
Long series to 2006 55.5 0.20 50.3 0.27 45.0 0.16 37.8 0.21 
1965-2006 54.5 0.21 50.3 0.28 45.1 0.19 37.7 0.22 
1901-1980 56.1 0.18   45.5 0.14   
1981-2006 53.9 0.25   43.5 0.22   
1923-1938   51.0 0.16     
1939-2006   50.1 0.29     
Computed dates         
1965-2006, first 
planting date 

58.8 0.24 49.8 0.33 42.4 0.18 38.2 0.27 

1965-2006, optimum 
planting date 

58.9 0.23 50.2 0.32 44.0 0.19 39.3 0.26 

Table 1. Mean values of MPY and corresponding coefficient of variation for different 
periods. 
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grid boxes, with medium coordinates 58.8ºN/21.3ºE, 58.8ºN/23.8ºE and 58.8ºN/26.3ºE. 
Kuressaare and Tartu fall into two outermost boxes. However, the direct use of the 
SCENGEN output is not possible, because these predictions are available as changes in 
monthly means, but the crop model depends on daily time-series of weather as one of its 
main inputs. To calculate the future values of MPY, we used observed daily weather data in 
those stations during the baseline period 1965-2006. This shorter period is applied instead of 
previously used longer periods, since in climate change calculations it is necessary to use 
data outside the heretofore growing period. Global radiation was assumed not to change. 
Future daily temperatures and precipitation were calculated by adding the predicted 
monthly corrections to the observed series of daily data. This way, not just the one average 
predicted future value for temperature and precipitation, but 41 possible series of those 
meteorological elements were obtained for the two target years, suggesting the possible 
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climate in the future may alter (Rind et al., 1989; Mearns, 2000), inducing possible decrease 
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of the initial water storage in the soil (or the date when the soil moisture falls below the field 
capacity), the date of the permanent increase in temperature to above 8 °C in the spring, the 
dates of the last and first night frosts (≤ -2 °C), and the date of the permanent drop in 
temperature to below 7 °C in autumn for each individual year of the new series. For 
determination of the soil water status in spring a relationship between radiation balance Rfc 
from permanent transition of temperature over 0º C to soil moisture fall below the field 
capacity, and meteorological data was derived using 30-year data of 13 stations of the 
Estonian Agrometeorological Network. To calculate Rfc , incoming global radiation and 
evaporative energy of precipitation (precipitation multiplied by latent evaporative heat) 
were accounted. The strongest correlations of Rfc were achieved with temperature sums 
from March to April T3-4 and precipitation sums from February to April U2-4: 
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To apply relationship (1) into the future dataset, a submodel calculates Rfc as well as 
permanent date of temperature rise over 0º C for each year of the new weather data series 
for 2050 and 2100. Next, from that date, the running radiation balance is summarized day-
by-day. The date when the running radiation balance exceeds Rfc is counted as the date of 
achieving the soil field capacity and it is considered as the ‘first possible’ planting date. 
Additionally, ‘optimal planting date’ is applied – the date  achieved by postponing the day 
of planting in model calculations day-by-day until the maximum yield is obtained. To 
prevent staying to a side maximum this postponing is conducted until the MPY drops below 
70% of its maximum value, or until the date of summer equinox.  

The dates of last and first night frosts in the future series are found on the basis of the earlier 
determined relationships between mean daily air temperature and ground level minimum 
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the standard deviation of MPY was significantly lower for ‘Maret’ in 1901-1980 compared to 
1981-2006 (P = 0.006, according to F test); for ‘Anti’, the change was smaller yet significant (P 
= 0.046). When using shorter time series and optimal planting times, the same difference in 
yield variance was detected both for ‘Maret’ (P = 0.002) and ‘Anti’ (P = 0.015). The 
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Therefore, the separate meteorological elements did not reflect the influence of their 
combined effect on the variability of biological production. Significant differences in yield 
variability, not identified in the meteorological series, were also observed for ‘Anti’ at 
Kuressaare, where the standard deviation was approximately two times lower before 1939 
than in later periods (P < 0.017). 
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Fig. 5. Series of MPY of the early potato variety ‘Maret’ and the late potato variety ‘Anti’ in 
Tallinn and Kuressaare.  

3.2 Relationships between MPY and other indicators 
In Estonia, like elsewhere in temperate zone, crop yield variation is highly influenced by 
weather conditions (Carter, 1996; Karing et al.,1999). When using real, measured potato 
yield data, potato yield variance was found to be mostly dependent on weather conditions, 
while the impact of fertilization and soil management proved less significant and in 
interaction with weather (Saue et al., 2010). Of meteorological  conditions,  potato  proved  
the most  susceptible  to  spring temperatures, yielding higher  in years with a warm  spring; 
negative  linear relation between yields and precipitation during the same period concurred.  
The positive influence of precipitation was expressed after flowering. 
In this paragraph, we will compare simulated yields and direct meteorological series of 
precipitation, temperature and solar radiation, using accumulated values for those 
meteorological elements over different periods, in order to explain the extent to which 
individual factors allow us to describe the whole complex. Correlation analyses (linear and 
second-order polynomial) were performed.  
In Tartu , linear correlations between MPY and the accumulated meteorological factors were 
weak, although they were significant in some cases since the series were long (Table 2). The 
correlations with temperature were slightly higher, but only for the early variety.  
In Kuressaare, significant (P < 0.01) linear correlations were identified between MPY and all 
the accumulated meteorological factors in the selected periods: positive for precipitation and 
negative for solar radiation and temperature. In general, the period with the highest 
correlations began earlier for precipitation (from May for ‘Maret’ and from June for ‘Anti’), 
and later for temperature and radiation (from June and July, respectively). The results for 
Kuressaare are quite different from those for Tartu because its location on the island of 
Saaremaa in the western part of Estonia is characterised by a mild marine climate and dry 
summers. Low precipitation at the beginning of summer causes dry conditions, so water 
deficit is the main limiting factor there. The relationships between MPY and solar radiation 
and temperatures are largely indirect, and these factors correlate negatively with 
precipitation. 
As a rule, if a curve with a maximum describable by a second-order polynomial is applied, 
better correlation will be apparent between MPY and the accumulated meteorological 
elements. This means that for all factors, the limitation derives from both deficit and excess. 
Again, the highest correlations occurred in Kuressaare: for ‘Anti’ with precipitation (June-
August: r = -0.77, May-August: r = -0.76), and for ‘Maret’ with temperature from June to 
September (r = -0.71). The only exception, where the correlations are almost equal on the 
linear and polynomial curves, is the early variety in Kuressaare. There, the conditions are 
dry, especially in the first half of summer, so the limiting factor for the early variety in most 
years is a deficit of precipitation. For the late variety, the decrease in yield is occasionally 
caused by an excess of water. However, the latter is much more common in inland regions, 
represented by Tartu, where intense rainy periods produce soil moisture near its maximum 
content in June and July, causing the loss of soil aeration and a very significant reduction in 
yield. 
The limiting from two sides and high variances between MPY and the cumulative 
meteorological elements allow us to conclude that, under our conditions, MPY gives 
qualitatively new information about climate variability in summer, especially regarding 
climatic favourableness, by integrating the effects of different weather factors. In conditions 
with one very dominant limiting factor, there is no need for such an indicator, e.g., near the 
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Therefore, the separate meteorological elements did not reflect the influence of their 
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3.2 Relationships between MPY and other indicators 
In Estonia, like elsewhere in temperate zone, crop yield variation is highly influenced by 
weather conditions (Carter, 1996; Karing et al.,1999). When using real, measured potato 
yield data, potato yield variance was found to be mostly dependent on weather conditions, 
while the impact of fertilization and soil management proved less significant and in 
interaction with weather (Saue et al., 2010). Of meteorological  conditions,  potato  proved  
the most  susceptible  to  spring temperatures, yielding higher  in years with a warm  spring; 
negative  linear relation between yields and precipitation during the same period concurred.  
The positive influence of precipitation was expressed after flowering. 
In this paragraph, we will compare simulated yields and direct meteorological series of 
precipitation, temperature and solar radiation, using accumulated values for those 
meteorological elements over different periods, in order to explain the extent to which 
individual factors allow us to describe the whole complex. Correlation analyses (linear and 
second-order polynomial) were performed.  
In Tartu , linear correlations between MPY and the accumulated meteorological factors were 
weak, although they were significant in some cases since the series were long (Table 2). The 
correlations with temperature were slightly higher, but only for the early variety.  
In Kuressaare, significant (P < 0.01) linear correlations were identified between MPY and all 
the accumulated meteorological factors in the selected periods: positive for precipitation and 
negative for solar radiation and temperature. In general, the period with the highest 
correlations began earlier for precipitation (from May for ‘Maret’ and from June for ‘Anti’), 
and later for temperature and radiation (from June and July, respectively). The results for 
Kuressaare are quite different from those for Tartu because its location on the island of 
Saaremaa in the western part of Estonia is characterised by a mild marine climate and dry 
summers. Low precipitation at the beginning of summer causes dry conditions, so water 
deficit is the main limiting factor there. The relationships between MPY and solar radiation 
and temperatures are largely indirect, and these factors correlate negatively with 
precipitation. 
As a rule, if a curve with a maximum describable by a second-order polynomial is applied, 
better correlation will be apparent between MPY and the accumulated meteorological 
elements. This means that for all factors, the limitation derives from both deficit and excess. 
Again, the highest correlations occurred in Kuressaare: for ‘Anti’ with precipitation (June-
August: r = -0.77, May-August: r = -0.76), and for ‘Maret’ with temperature from June to 
September (r = -0.71). The only exception, where the correlations are almost equal on the 
linear and polynomial curves, is the early variety in Kuressaare. There, the conditions are 
dry, especially in the first half of summer, so the limiting factor for the early variety in most 
years is a deficit of precipitation. For the late variety, the decrease in yield is occasionally 
caused by an excess of water. However, the latter is much more common in inland regions, 
represented by Tartu, where intense rainy periods produce soil moisture near its maximum 
content in June and July, causing the loss of soil aeration and a very significant reduction in 
yield. 
The limiting from two sides and high variances between MPY and the cumulative 
meteorological elements allow us to conclude that, under our conditions, MPY gives 
qualitatively new information about climate variability in summer, especially regarding 
climatic favourableness, by integrating the effects of different weather factors. In conditions 
with one very dominant limiting factor, there is no need for such an indicator, e.g., near the 
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Polar Circle, where MPY correlates very well with temperature (Sepp et al., 1989) or in arid 
regions, where the dominant factor is water deficit. For the stations analyzed in our work, 
Kuressaare is the most likely to be affected by a single dominant limiting factor, but the 
variance is still quite high there. 
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Table 2. Correlation coefficients r for the linear (LIN) and polynomial (POL) relationships 
between meteorologically possible yield (MPY) and accumulated solar radiation (R), 
precipitation (P), and temperature (T) at two stations. Bold indicates significance levels of P 
< 0.01. 
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also predicted to increase (Fig. 7), however, changes in the annual range of monthly 
precipitation vary highly between models and scenarios and are less certain than changes in 
temperature. On average, the highest change in precipitation is predicted for January and 

November; August and September are predicted a small increase or even a slight decrease. 
All the projected climatic tendencies have already been noted during the last century 
(Jaagus, 2006), indicating evident climate warming in Estonia. In previous analogous works 
(Keevallik, 1998; Karing et al., 1999; Kont et al., 2003), temperature rise has been predicted 
higher; however we believe that moderate warming is more realistic.  
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Fig. 6. Changes in monthly mean temperature (º C) predicted by 18 global climate models 
for the A2 and B1 emissions scenarios for year 2100 compared to the baseline period (1961–
1990) at two Estonian sites. Lines connect the values of monthly mean change, boxes mark 
mean change ± standard deviation and whiskers mark the range of all models.  
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Polar Circle, where MPY correlates very well with temperature (Sepp et al., 1989) or in arid 
regions, where the dominant factor is water deficit. For the stations analyzed in our work, 
Kuressaare is the most likely to be affected by a single dominant limiting factor, but the 
variance is still quite high there. 
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Table 2. Correlation coefficients r for the linear (LIN) and polynomial (POL) relationships 
between meteorologically possible yield (MPY) and accumulated solar radiation (R), 
precipitation (P), and temperature (T) at two stations. Bold indicates significance levels of P 
< 0.01. 
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Fig. 6. Changes in monthly mean temperature (º C) predicted by 18 global climate models 
for the A2 and B1 emissions scenarios for year 2100 compared to the baseline period (1961–
1990) at two Estonian sites. Lines connect the values of monthly mean change, boxes mark 
mean change ± standard deviation and whiskers mark the range of all models.  
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Fig. 7. Changes in monthly sum of precipitation (%) predicted by 18 global climate models 
for the A2 and B1 emissions scenarios for year 2100 compared to the baseline period (1961–
1990) at two Estonian sites. Lines connect the values of monthly mean change, boxes mark 
mean change ± standard deviation and whiskers mark the range of all models.  

 
 3.4 MPY in the future 
From now on, all changes in MPY are referred as compared to baseline period (1965-2006) 
and we will discuss the yields achieved  with optimal planting time. The productivity and 
yield changes related to the rise of CO2 in the atmosphere rise are not considered. 
For the late variety ‘Anti’, the long-term mean MPY values, calculated by using historical 
climate data of 1965-2006 with computed optimal planting time, describing the optimal 
climatic resources for plant growth, are 58.9 t ha-1 in Tartu and 50.2 in Kuressaare (see Table 
1). For the early variety ‘Maret’ the values are 44.0 and 39.3, respectively.  
For early variety, all four considered scenarios predict losses in all given localities (Fig. 8). 
Stronger scenarios cause higher losses, up to 37% in Tartu and 32% in Kuressaare by 2100.  
In Kuressaare, the change in mean MPY is statistically significant for the year 2050 only by 
the strongest, A2 scenario (p=0.03); for the year 2100 all scenarios predict significant loss 
(p<0,001). In Tartu, for the year 2050 the change in MPY is significant by A2 (p=0.002), A1B 
(p=0.01) and B2 (p=0.03) scenarios;  for the year 2100, the loss in MPY is significant by all 
scenarios (p<0.001).  
For late variety, remote rise in yields is predicted for year 2050. Lower temperature rise 
through milder scenarios is more favourable for potatoes – B1 scenario predicts 5.5% yield 

rise in Tartu and 5% in Kuressaare, while for A2 scenario the rise is 2.5 and 2%.  For year 
2100,  all scenarios predict yield losses, stronger scenarios up to 15% in Tartu, up to 19% in 
Kuressaare for 2100 as compared to present climate. The changes in 'Anti' MPY are however 
not statistically significant for any location, year or scenario. 
Compared to yield variability in baseline climate, the predicted yield variability of 'Anti' 
turned to be significantly (p<0.05) lower in Kuressaare in case of the strongest climate 
change (A2 scenario for the year 2100) (standard deviation 11.6 compared to 15.8 t ha-1).  The 
'Maret' MPY variability is also lower in Kuressaare in 2100 by scenarios A1B (p<0.001), A2 
(p<0.001) and B2 (p=0.02), standard deviation declining from 10.1 to 6.3, 5.7 and 7.7 t ha-1, 
respectively. In Tartu, the change in variability was only significant (p=0.009) for A2 in 2100 
(standard deviation 7.8 to 5.4 t ha-1). 
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Fig. 8. Mean values of the meteorologically possible yield (MPY) of late potato variety ‘Anti’ 
and early potato variety ‘Maret’ for baseline period (1965-2006), years 2050 and 2100 by the  
two scenarios predicting the strongest (A2) and weakest (B1) warming. 

 
3.5 Cumulative distribution of MPY 
An applicable method for comparing the extent of MPY variability among different varieties 
and locations is based on their cumulative distributions, which expresses the probabilistic 
climatic yield forecast (Zhukovsky et al., 1990). For the baseline climate, the late variety 
‘Anti’ produced higher yields across the entire range of probabilities and the distribution of 
the yield is not a symmetric one. Low yields, corresponding to extreme meteorological 
conditions and forming deep deviations in time series (Fig. 5), stretch the cumulative 
distribution out in the left part (Fig. 9 & 10). For the current climate, the decline in the 
cumulative distribution is quite steep after the mean value of MPY. High MPY values 
correspond to the years in which the different meteorological resources are well balanced 
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Fig. 7. Changes in monthly sum of precipitation (%) predicted by 18 global climate models 
for the A2 and B1 emissions scenarios for year 2100 compared to the baseline period (1961–
1990) at two Estonian sites. Lines connect the values of monthly mean change, boxes mark 
mean change ± standard deviation and whiskers mark the range of all models.  
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Fig. 8. Mean values of the meteorologically possible yield (MPY) of late potato variety ‘Anti’ 
and early potato variety ‘Maret’ for baseline period (1965-2006), years 2050 and 2100 by the  
two scenarios predicting the strongest (A2) and weakest (B1) warming. 
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An applicable method for comparing the extent of MPY variability among different varieties 
and locations is based on their cumulative distributions, which expresses the probabilistic 
climatic yield forecast (Zhukovsky et al., 1990). For the baseline climate, the late variety 
‘Anti’ produced higher yields across the entire range of probabilities and the distribution of 
the yield is not a symmetric one. Low yields, corresponding to extreme meteorological 
conditions and forming deep deviations in time series (Fig. 5), stretch the cumulative 
distribution out in the left part (Fig. 9 & 10). For the current climate, the decline in the 
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correspond to the years in which the different meteorological resources are well balanced 

www.intechopen.com



Climate Change and Variability380

throughout the summer period. As a rule, these are climatically similar to the climatic norms 
for all the factors in Estonia. The MPY distribution for ‘Anti’ is lower in Kuressaare, 
predominantly in the range of lower and central MPY values, resulting in a smoother 
decline in the range of the highest yields. Even larger inequalities in mean values as well as 
in their distributions appear between two locations for the early variety ‘Maret’. We can 
conclude that the differences in climatic conditions during the first half of summer have a 
greater effect on early varieties. The shape of the distribution curve is more symmetric for 
the early variety.  
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Fig. 9. Cumulative distribution of the MPY for the current climate, achieved by real planting 
dates. 
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Fig. 10. Cumulative distribution of the MPY for baseline climate (1965-2006) and two climate 
change scenarios for the target years 2050 and 2100, achieved by computed planting dates. 

Cumulative distribution of the future MPY values (Fig. 10) shows greater differences 
between scenarios and target years for ‘Maret’, witnessing the higher weather sensitivity of 
early variety. For all cases, A2 scenario certifies definite disadvantage of strong warming 
modelled for the year 2100. For ‘Anti’, the cumulative yield differences between scenarios 
and target years are not very stark, enabling to conclude the advantage of longer maturing 
varieties for future climate warming. 

 
4. Conclusions and discussion 

The main objective of this chapter was to show that computed yields give additional 
information about climatic variability compared with the traditional use of individual 
meteorological elements. Our results indicate that none of the observed separate 
meteorological factors sufficiently reflects the variations in the computed MPY series. We 
found significant linear correlations for only the western Estonian coastal zone, represented 
by the station at Kuressaare, because of the dominant limiting factor, the water deficit 
during the first half of summer in most years. Although the polynomial correlations were 
higher, indicating a dual influence of the factors, there was still high variance. The 
significant changes in MPY variability, as observed in Tartu in the second half of the period, 
were only weakly expressed in the precipitation series and were absent from the 
temperature and radiation data. Evidently, the combined effects of weather conditions on 
plant production processes have a more complex character than can be measured with long-
term statistics for individual meteorological elements. Consequently, the use of MPY to 
express the agrometeorological resources available for plant production in yield units 
introduces additional information about the impact of climatic variability. The changes in 
MPY and their statistical distribution are better indicators of the impact of climate change on 
plant production than are changes in the time series of any individual meteorological 
elements. This holds particularly true if simulations for species adapted to local climatic 
conditions are used. If species are located at the borders of their distribution areas, some 
meteorological factors will predominantly limit their growth and will describe the climatic 
resources without being combined with other factors. The MPY series collected through 83-
106 years revealed no significant trends. However, significant trends do exist in terms of 
shorter periods. The variability of MPY has been increasing in the island regions of Estonia 
since the 1940s and in the continental areas since the 1980s.  
The above-described results have been further expanded into the future and future values of 
meteorologically possible potato crop yield have been generated. This allows to estimate the 
influence of climate change on agrometeorological resources for potato growth in Estonia. 
All of the four climate change scenarios projected the increase in annual mean temperature 
for Estonia, the highest warming during the cold part of the year. Average annual 
precipitation was also predicted to increase, however, changes in the annual range of 
monthly precipitation vary highly between models and scenarios and are less certain than 
changes in temperature. All the projected climatic tendencies have already been noted in 
observations during the last century (Jaagus, 2006), indicating evident climate warming in 
Estonia.  
Changes in MPY were calculated using historical weather variability and projected changes 
in mean monthly values. For early potato variety, all scenarios predict losses in potato 
yields, while the scenarios of more notable warming cause higher losses. For late variety, a 
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throughout the summer period. As a rule, these are climatically similar to the climatic norms 
for all the factors in Estonia. The MPY distribution for ‘Anti’ is lower in Kuressaare, 
predominantly in the range of lower and central MPY values, resulting in a smoother 
decline in the range of the highest yields. Even larger inequalities in mean values as well as 
in their distributions appear between two locations for the early variety ‘Maret’. We can 
conclude that the differences in climatic conditions during the first half of summer have a 
greater effect on early varieties. The shape of the distribution curve is more symmetric for 
the early variety.  
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Fig. 9. Cumulative distribution of the MPY for the current climate, achieved by real planting 
dates. 
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Fig. 10. Cumulative distribution of the MPY for baseline climate (1965-2006) and two climate 
change scenarios for the target years 2050 and 2100, achieved by computed planting dates. 

Cumulative distribution of the future MPY values (Fig. 10) shows greater differences 
between scenarios and target years for ‘Maret’, witnessing the higher weather sensitivity of 
early variety. For all cases, A2 scenario certifies definite disadvantage of strong warming 
modelled for the year 2100. For ‘Anti’, the cumulative yield differences between scenarios 
and target years are not very stark, enabling to conclude the advantage of longer maturing 
varieties for future climate warming. 

 
4. Conclusions and discussion 

The main objective of this chapter was to show that computed yields give additional 
information about climatic variability compared with the traditional use of individual 
meteorological elements. Our results indicate that none of the observed separate 
meteorological factors sufficiently reflects the variations in the computed MPY series. We 
found significant linear correlations for only the western Estonian coastal zone, represented 
by the station at Kuressaare, because of the dominant limiting factor, the water deficit 
during the first half of summer in most years. Although the polynomial correlations were 
higher, indicating a dual influence of the factors, there was still high variance. The 
significant changes in MPY variability, as observed in Tartu in the second half of the period, 
were only weakly expressed in the precipitation series and were absent from the 
temperature and radiation data. Evidently, the combined effects of weather conditions on 
plant production processes have a more complex character than can be measured with long-
term statistics for individual meteorological elements. Consequently, the use of MPY to 
express the agrometeorological resources available for plant production in yield units 
introduces additional information about the impact of climatic variability. The changes in 
MPY and their statistical distribution are better indicators of the impact of climate change on 
plant production than are changes in the time series of any individual meteorological 
elements. This holds particularly true if simulations for species adapted to local climatic 
conditions are used. If species are located at the borders of their distribution areas, some 
meteorological factors will predominantly limit their growth and will describe the climatic 
resources without being combined with other factors. The MPY series collected through 83-
106 years revealed no significant trends. However, significant trends do exist in terms of 
shorter periods. The variability of MPY has been increasing in the island regions of Estonia 
since the 1940s and in the continental areas since the 1980s.  
The above-described results have been further expanded into the future and future values of 
meteorologically possible potato crop yield have been generated. This allows to estimate the 
influence of climate change on agrometeorological resources for potato growth in Estonia. 
All of the four climate change scenarios projected the increase in annual mean temperature 
for Estonia, the highest warming during the cold part of the year. Average annual 
precipitation was also predicted to increase, however, changes in the annual range of 
monthly precipitation vary highly between models and scenarios and are less certain than 
changes in temperature. All the projected climatic tendencies have already been noted in 
observations during the last century (Jaagus, 2006), indicating evident climate warming in 
Estonia.  
Changes in MPY were calculated using historical weather variability and projected changes 
in mean monthly values. For early potato variety, all scenarios predict losses in potato 
yields, while the scenarios of more notable warming cause higher losses. For late variety, a 
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slight rise in yields is predicted for 2050, which turns to  loss by 2100. However, the changes 
are not statistically significant for the late variety. This result is a development from 
previous results with the same model (Kadaja & Tooming, 1998; Karing et al., 1999; Kadaja, 
2006), which predicted yield rise with moderate scenarios for late variety and loss only 
occurs with strong warming scenarios.  
There have been several researches in different regions about possible climate-change-
related variation in potato growth. Peiris et al. (1996) calculated increases in tuber yield by 
temperature rise for potato in Scotland due to faster crop emergence and canopy expansion 
and thus a longer growth period. Wolf (1999 a, 2002) has reported small to considerable 
increases in a mean tuber yield with climate change in the Northern Europe, being caused 
by the higher CO2 concentration and by the temperature rise. Wolf and van Oijen (2002) 
showed yield increase for the year 2050 in all regions of the EU, mainly due to the positive 
yield response to increased CO2. Such disagreement with our results likely derives from the 
fact that in our study no effect of CO2 rise on potato growth has been considered. There is 
clear evidence since 1950s (Keeling et al., 1995) that atmospheric CO2 is increasing, and plant 
physiologists have repeatedly demonstrated that such increases likely have already caused 
substantial increases in leaf photosynthesis of C3 species (Sage, 1994). The presence of large 
sinks for assimilates in tubers makes potato crop a good candidate for large growth and 
yield responses to rising CO2; this effect tends to be smaller for late cultivars (Miglietta et al., 
2000). However, since the optimal temperature range for tuber growth (between 16 and 22 
ºC) is small (Kooman, 1995), and since with climate change the prevailing temperature 
during tuber growth will likely be different, the positive effect of CO2 may be counteracted 
by the effect of a concominant temperature rise. Wolf (1999a; 2002) has shown such effect for 
central and southern Europe, where the negative effect of temperature rise was expected 
sometimes to exceed the positive effect of CO2 enrichment. Under hotter and wetter 
scenarios for Great Britain, Wolf (1999b) demonstrated tuber yields to become lower, caused 
by the temperature rise, which speeded the phenological development of the crop and 
reduced the time for growth and biomass production. At the same time, under the smaller 
temperature rise the yield had mainly increased at the same locations. Rosenzweig et al. 
(1996) have also calculated decreases in tuber yield  for most sites in the USA due to the 
negative effect of temperature rise on yield that was stronger than the positive effect of CO2 
enrichment. Miglietta et al (2000) have described a model experiment for Dutch weather 
conditions, where the elevated temperature reduced the positive effect of elevated CO2. For 
predicted future temperature rise (without an increase in atmospheric CO2) over England 
and Wales, Davies et al. (1997) calculated variable and little changes in tuber yield of potato.  
Based on this knowledge and  our current research result, we can thus say that the climatic 
resources for potato growth are predicted to become worse under climatic change because 
of increased temperature and variable rainfall; however in higher latitudes this effect may 
be altered and turned positive by the change in plants photosynthetic activity and 
production.  
The variability of potato yields is predicted to decrease slightly due to climate change. This 
is however not a plausible result, since the change in meteorological variability has not been 
counted in. Further investigation need rises in this area. Also Wolf (1999a) has shown the 
variability of non-irrigated tuber yield to essentially zero to moderately decrease in 
Northern Europe.  
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