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1. Introduction  

The bulk of the evidence indicating that global climatic alterations occur as a result of 
increasing concentrations of greenhouse gases in the atmosphere has created pressure to 
develop strategies to reduce these changes (IPCC, 2001). Carbon dioxide is considered to be 
the main gas of the greenhouse effect, both in terms of emission and its climate-altering 
potential.  
In 1997, the signatory countries of the Kyoto Protocol agreed to reduce CO2 emissions in an 
agreement that established the need to develop carbon dioxide sequestering processes. Thus 
the various technologies available for carbon capture and storage need to be evaluated from 
the point of view of obtaining carbon credits, aiming to stabilize emissions of this pollutant 
(UNFCCC, 1997). In addition to technologies available for immediate use, other CO2 capture 
methods are being developed for application in the near future. The choice of these 
methodologies will depend on factors such as cost, capture capacity, environmental impact 
and the speed with which the technology can be introduced in addition to social factors 
such as public acceptance (IPCC, 2007a).  
In this context, the use of biotechnological processes for carbon dioxide biofixation is 
considered viable for reducing emissions of this pollutant. These processes are based on the 
use of reactors used to develop photosynthetic reactions in which microalgae are used as 
biocatalysts in a series of biochemical reactions responsible for the conversion of CO2 into 
photosynthetic metabolic products (Jacob-Lopes et al., 2010). With this in mind, the 
objectives of this present chapter are to present an overview of a potential technology for 
carbon dioxide transformation into biomolecules and to describe the current state of the art 
in the biological conversion of CO2 in photobioreactors thereby facilitating worldwide 
advances in this research area. 

2. Carbon dioxide emissions 

Global monitoring of atmospheric CO2 concentration during the last century indicated an 
increase in carbon dioxide concentration from 295ppm in 1900 to 377ppm in 2004, 

Source: Biomass, Book edited by: Maggie Momba and Faizal Bux,  
 ISBN 978-953-307-113-8, pp. 202, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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representing an increase of 27.8% (Thitakamol et al., 2007). On a global basis, it is estimated 
that more than 25 GtCO2 are emitted annually as a result of burning fossil fuels. The 
magnitude of the influence of human activities on the biological carbon cycles suggests the 
need for high managerial levels and the mitigation of emissions of this compound into the 
atmosphere (IPCC, 2007b). 
Sources of carbon dioxide emission can be classified as stationary, mobile or natural. The 
industrial processes most contributing to increasing atmospheric CO2 concentrations consist 
of electrical energy generating plants, hydrogen and ammonia production plants, cement 
factories, and fermentative and chemical oxidation processes. In addition to the carbon 
dioxide emitted industrially, the CO2 generated in residences, buildings and commercial 
complexes also contributes to the stationary emissions, as do forest and agricultural fires. 
The mobile emission sources mainly consist of the carbon dioxide generated by passenger 
and cargo transport including cars, trucks, buses, planes, trains and ships. Human and 
animal metabolism, plant and animal degradation and volcanic and oceanic activities are the 
main natural carbon dioxide sources. Sources of anthropogenic emissions include stationary 
and mobile sources but exclude the natural sources (Song, 2006). 
Microalgae-based systems are restricted to the use of stationary industrial emissions. 
Sources of high purity CO2 emission at reduced temperatures should be identified and the 
photobioreactors adapted to these conditions (Francisco et al., 2010). 

3. Microalgae 

Current taxonomic concepts and standards classify microalgae into groups as diatoms, 
chlorophyceae and cyanobacteria (Anand, 1998). 
Photosynthesis is the main metabolic model of the microalgae, a process that had a central 
role in the rise in the oxygen level of the terrestrial atmosphere during the evolution of the 
current biosphere (Schmetterer, 1994). Nevertheless these microorganisms have great 
versatility in the maintenance of their structures, using different energy metabolisms such as 
respiration and nitrogen fixation (Demeyer et al., 1982; Grossman et al., 1994). 
Some genera of microalgae have high concentrations of pigments, including chlorophyll a, 
considered essential for photosynthesis. Another two pigment classes involved in light 
energy capture are the carotenoids and phycobilins. The carotenoids are red, orange or 
yellow lipid-soluble pigments, found in association with chlorophyll a. The third class of 
accessory pigments is the phycobilins: phycocyanin, a blue pigment present in microalgae, 
and phycoerythrin, a red pigment sometimes absent (Fay, 1983). In addition to these 
pigments, these microorganisms have a highly developed intracytoplasmatic system, 
indicating photosynthesis as the preferred metabolic pathway. 
The microalgae are capable of using free CO2 and bicarbonate ions as a source of inorganic 
carbon during photosynthesis, transporting them across the fine plasmatic membrane where 
they accumulate in the cell as an inorganic carbon reservoir for photosynthesis. The 
bicarbonate is converted into CO2 by the enzyme carbonic anhydrase (Zak et al., 2001; 
Badger & Price, 2003). 
The main characteristic of photosynthesis, first elucidated in algae and higher plants, can 
also be applied to the microalgae, although there are some aspects specific to some 
microalgae. The spectral light absorption characteristic of these strains is different from that 
of the other photosynthetic organisms, since high photosynthetic activity rates are measured 
not only in the spectral region from 665 to 680nm, where the light is better absorbed by 
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chlorophyll a, but also from about 620nm to 560nm, where phycocyanin and phycoerythrin 
respectively absorb light effectively. This shows that the light absorbed by the 
phycobiliproteins is used by these microalgae as efficiently as light absorbed by chlorophyll, 
suggesting a very high photosynthetic activity by these microorganisms (Campbell et al., 
1998). 

3.1 Photosynthetic metabolism 

Photosynthesis is characterized by a two-stage mechanism: a photochemical reaction and a 
carbon fixation reaction. In this way, carbon dioxide is incorporated into ribulose 1,5 
diphosphate (rubisco) energy being required during the catalytic reaction of the primary 
enzyme rubisco carboxylase. The reaction product is broken into three carbon molecules, 
phosphoglyceric acid (PGA) and the reduction of the PGA caused by the electron 
transporter NADPH (nicotinamide adenine dinucleotide phosphate) leads to the production 
of a series of intermediary phosphorylated sugars and finally to glucose. This sequence of 
metabolic transformations is known as the Calvin-Benson cycle (Calvin and Benson, 1948).  
Carbon dioxide fixation is not directly light dependent and thus the process is called the 
photosynthetic dark reaction. The demands for energy in the form of ATP and NADPH 
translate the transformations of the Calvin-Benson cycle, entirely dependent on the 
photochemical reaction, which occurs in the tilacoid or intracytoplasmatic membrane 
(Campbell et al., 1998). In this stage the light energy is absorbed by the highly organized 
structures of the photosynthetic pigments and electron transporters, known as 
photosystems I and II, thus exciting the chlorophyll a molecule. This leads to an explosion of 
excited electrons and their flow determines the redox potential gradient, which results in the 
formation of strongly electronegative electron transporters such as ferridoxin and NADPH. 
Part of the energy liberated is incorporated into ATP in the phosphorylation process during 
electron transport. The last electron source for photosynthesis is H2O, which gives up 
hydrogen atoms and electrons during the photolysis process, or Hill’s reaction, and releases 
O2, the product of photosynthesis by microalgae and green plants (Fromme et al., 2006).  
Although carboxylation by rubisco is the main CO2 incorporation pathway in microalgae 
under optimum photosynthesizing conditions, this is not the only carbon dioxide fixation 
pathway. The carboxylation of phosphenol pyruvate, catalyzed by the enzyme phosphenol 
pyruvate carboxylase, is another CO2 fixation pathway. Oxaloacetate is easily converted into 
C4 dicarboxylic acids, for example into malate or citrate, and subsequently into amino acids 
such as aspartate or glutamate. This pathway, left over from the C4 dicarboxylic acid 
pathway in higher plants, complements the pentose phosphate-reducing pathway in 
microalgae. The presence of two carboxylation systems, operating in parallel, could 
represent an important adaptation of the microalgae to sharp environmental changes. Under 
limited light conditions, carbon assimilation is preferentially channeled in the direction of 
the synthesis of amino acids and other essential cell constituents, but under saturated light 
conditions, sugars and starch are formed via the pentose phosphate-reducing pathway. This 
indicates that with intense illumination, the CO2 fixation rate can exceed the rate of nitrogen 
assimilation and, thus, the excess carbon and energy derived from photosynthesis are stored 
in the form of glycogen (Fay, 1983; Campbell et al., 1998; Zak et al., 2001).    
The dark endogenous metabolism serves mainly as an agent for the photosynthetic and 
biosynthetic mechanisms for the subsequent active light period. Glycogen is the main 
reserve product, which can support limited dark metabolism and provide the energy 
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maintenance required for essential cell processes in the dark. It is first converted into 
glucose-6-phosphate, which is then metabolized via the respiratory pathways (Fay, 1983). 
Although enzymes from the glycolytic pathway have been identified in microalgae, they 
show extremely low activity. The energy metabolism of the dark metabolism of the 
microalgae is distinctly dependent on O2 and its main pathway is the pentose-6-phosphate 
oxidative cycle (Schmetterer, 1994). 

3.2 Carbon concentration mechanisms in microalgae                                              

The way in which the different species of microalgae adapt to a wide range of carbon 
dioxide concentrations is related to an essential biophysical mechanism denominated the 
carbon concentration mechanism (CCM), which concentrates the carbon dioxide at the 
photosynthetic carboxylation sites. This mechanism corresponds to complex metabolic 
pathways, since different forms of inorganic carbon are involved in these biological 
processes (Jaiswal & Kashyap, 2002).  
The function of the carbon concentration mechanism is to raise the intracellular inorganic 
carbon levels, compensating for limitations in the carbon dioxide supply that could reduce 
the photosynthetic rates. This mechanism is responsible for pumping CO2 to the 
carboxylation sites (Falkowski, 1997). 
Microalgae are capable of using three different inorganic carbon assimilation pathways: (i) 
direct carbon dioxide assimilation via the plasmatic membrane; (ii) the use of bicarbonate by 
inducing the enzyme carbonic anhydrase, which converts the HCO3- into CO2; and (iii) 
direct transport of bicarbonate via the plasmatic membrane. The enzymes carbonic 
anhydrase and ribulose 1,5 bisphosphate carboxylase/dehydrogenase (rubisco) are 
responsible for the biocatalysis of these reactions, in which the enzyme carbonic anhydrase 
converts bicarbonate into carbon dioxide, and rubisco uses this compound as a substrate to 
produce phosphoglycerate. The rate of this reaction may be slow due to limited carbon 
dioxide production. Thus the elevated efficiency of the enzyme carbonic anhydrase, capable 
of increasing the intracellular carbon dioxide levels to concentrations 1000 times higher than 
those in the external fluid, results in an efficiency carbon fixation reaction in these 
organisms. These mechanisms are consistent with various results found in the literature 
about microalgae with high carbon dioxide requirements and capable of accumulating high 
internal levels of inorganic carbon (Fridlyand et al., 1996; Marcus, 1997; Tchernov et al., 
1997; Badger & Price, 2003; Cuaresma et al., 2006). 

4. Photobioreactors  

Biotechnological processes have been conducted in the evaluation of the mass and energy 
transference phenomena, in the dimensioning and construction of equipment processing 
biotransformations and in the operation of control systems and instrument applications for 
accompanying the transformation kinetics (Merchuk & Wu, 2004). 
Photobioreactors using microalgae to treat polluting compounds and produce biomolecules  
are based on five basic criteria: elevated efficiency in the use of light energy, an adequate 
mixing system, easy control of the reaction conditions, reduced hydrodynamic stress on the 
cells and ease in scale-up (Muñoz & Guieysse, 2006). 
Systems using photobioreactors are based on natural processes in which the photosynthetic 
metabolism of the microorganisms converts light energy, heat and CO2 into photosynthetic 
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products (Contreras et al., 1999). The use of photobioreactors to cultivate microalgae 
requires the presence of light, carbon dioxide and dissolved nutrients for growth of the 
microorganism. Consequently, these processes require systems for illumination, gas 
exchange (addition of CO2 and removal of O2), the addition of nutrients and temperature 
control (Rorrer & Cheney, 2004). 
Photosynthetic microorganisms can be cultivated in open or closed photobioreactors. The 
closed systems are characterized by elevated photosynthetic efficiency associated with a 
precise control of the operational variables, showing a lower risk of contamination and 
minimization of water loss by evaporation, highly significant factors in open systems. On 
the other hand, closed systems are more expensive, since they must be constructed with 
transparent materials, and are more complicated to operate and more difficult to scale up. 
The ratio of volume per unit area is another criterion to be considered when choosing the 
system, since the implementation of open systems requires the availability of large areas for 
the elevated reaction volumes (Borowitzka, 1999; Molina Grima et al., 1999). 
Various configurations have been proposed for closed photobioreactors. The main types 
include bubble column, air-lift, tubular (loop) and stirred tank reactors (Jacob-Lopes et al., 
2009). Open pond systems can be oval (raceway), circular or rectangular (Borowitzka, 1999).  

4.1 Carbon dioxide transfer in photobioreactors 

Carbon dioxide is usually the main carbon source in the photosynthetic cultivation of 
microalgae and can be transferred continually or intermittently from the gas phase to the 
liquid phase of the culture medium (Molina Grima et al., 1999). 
The reactivity of carbon dioxide in aqueous solutions establishes various equilibriums in its 
contact with water. The first equilibrium refers to the dissolution of the gas in the water, 
forming carbonic acid. The carbonic acid undergoes almost instantaneous dissociation into 
bicarbonate and carbonate ions with the total inorganic carbon concentration being given by 
the sum of the species CO32-, HCO3- and CO2 (Rorrer & Mullikin, 1999). 
Simple CO2 bubbling in the liquid phase does not lead to a total dissolution, since a fraction 
of the injected CO2 is lost in the gas outlet. CO2 absorption is mainly a function of the 
volumetric mass transfer coefficient, the mass transfer driving force and the gas retention 
time (Merchuk et al., 2000).  
In terms of solubility, carbon dioxide is approximately ten times more soluble in water than 
oxygen gas. Nevertheless, due to the low solubility of both gases in aqueous solution, there 
is a need to provide these elements throughout the process (Klasson et al., 1991). 
Thus an efficient carbon dioxide transfer system is required for photobioreactors. Efficiency 
in carbon dioxide transfer is necessary so as to raise the volumetric mass transfer coefficients 
KLa (CO2) allowing for improved transfer of gas to the liquid phase (Baquerisse et al., 1999). 
According to these authors, the volumetric mass transfer coefficients depend mainly on the 
physical properties of the fluid, the fluid flow and the system and geometry of the gas 
injector. 
Carbon dioxide transfer in bioreactors becomes a limiting factor in the processes, since the 
dissolved carbon dioxide concentration decreases with increase in temperature and also 
with an increase in the concentration of dissolved salts. This factor is relevant in processes 
for the transfer and removal of CO2 by microalgae, suggesting the need for higher values of 
saturation concentration (Rorrer & Cheney, 2004). 

www.intechopen.com



 Biomass 

 

140 

5. Carbon dioxide biotransformation by microalgae 

Microalgae are microorganisms that are being applied in the reduction of carbon dioxide 
emissions into the atmosphere, where this compound is biotransformed in the presence of 
light energy. Evidence of a highly developed photosynthetic system has led to the 
suggestion of using microalgae in the treatment of gaseous effluents with elevated CO2 
concentrations, generated by industrial discharges (Hsueh et al., 2007). 
Much research was developed in the nineties, especially in Japan, on processes for the 
biofixation of carbon dioxide using microalgae. These studies are being intensified, aiming 
at projecting systems that operate efficiently and economically with the objective of 
developing technologies for the reduction of gaseous pollutants (Watanabe & Hall, 1996; 
Watanabe & Saiki, 1997; Cheng et al., 2006; Ono & Cuello, 2007; Jacob-Lopes et al., 2008; 
Jacob-Lopes et al., 2009, Francisco et al., 2010). 
The use of microalgae in carbon dioxide convertion processes is considered a promising 
alternative, since the element carbon can be converted by different mechanisms. In the first 
step, the carbon dioxide dissolved in the aqueous phase of the system can be sequestered by 
chemical precipitation due to the reaction of the ions bicarbonate and carbonate with 
elements present in the culture medium, such as calcium and magnesium. These reactions 
are catalyzed by the growth and physiology of the microalgae (Marcus, 1997; Lee et al., 
2004). Another carbon-fixing pathway is related to the Calvin-Benson cycle, where 
specialized enzymes present in these organisms catalyze reactions that incorporate carbon 
atoms coming from the CO2 involved in photosynthesis (Falkowski, 1997). The biological 
conversion of carbon dioxide results in products of the photosynthetic metabolism such as 
cells, oxygen, biopolymers soluble in the culture medium and volatile organic compounds 
(VOC’s) (Ishida et al., 1997; Muñoz et al., 2004; Jacob-Lopes et al., 2010). 
The CO2 conversion into biomass is high only under conditions where the CO2 mass loading 
rate is low. At a high CO2 mass loading rate, the formation of volatile organic compounds is 
the main CO2 biotransformation route (Fig. 1). 
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Fig. 1. Percentage of effectively sequestered carbon fixed into biomass. 15% of CO2 at a flow 
rate of 1VVM. Source: Jacob-Lopes et al. (2010). 
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6. Potential uses for the bioproducts  

The main advantages of producing biomolecules from photosynthetic organisms are related 
to their rapid reproduction and the low cost of the sources of energy and nutrients used for 
their multiplication. Evidently this is done for the cost of the medium in which the 
microorganisms develop, which can be composed of a wide variety of substrates, some of 
which, including industrial residues, are cheap, thus solving problems of an environmental 
nature and also serving to produce consumables (Anupama & Ravindra, 2000). 
 The biochemical composition of the microalgal cells includes characteristics of commercial 
interest, significant proportions of proteins, lipids, carbohydrates and pigments, which can 
be used as ingredients of foods destined for human consumption and animal feeds and in 
the extraction of biomolecules and the production of biofuels (Harun et al., 2010). In this 
way, the use of these microorganisms in carbon sequester processes associates the treatment 
of polluting compounds with the production of consumables that can be recycled in a 
variety of forms. Table 1 shows some potential uses for the bioproducts formed by the 
biological conversion of carbon dioxide in photobioreactors.  
An analysis of Table 1 demonstrates a wide variety of possible uses for the microalgal 
biomass. According to Spolaore et al. (2006), the microalgal biomass industry currently 
produces more than 5000 tons of dried mass/year with an annual revenue greater than US$ 
1.25x109, not including processed products, demonstrating the exploration potential of this 
type of biotechnological process. 
 

 Application Examples Reference 

Human food 
Source of single-cell protein and use in the 
supplementation of products such as pastas, 
soups and beverages. 

Rodriguez-Garcia 
and Guil-
Guerrero (2008) 

Animal feed 
Frequent use of some species in the feeding of 
fish and shellfish. 

Olvera-Novoa et 
al. (1999) 

High-value 
molecules 

Source of chlorophyll a, phycocyanin, ┚-
carotene, ┛-linolenic acid, eicosapentaenoic acid 
and stable isotope biochemicals 

Spolaore et al. 
(2006) 

Fertilizers 
Use of the biomass as a source of nitrogen and 
phosphorous in tillable land. 

Chae et al. (2006) 

Natural gas  
production  

Production of CH4 in fermenters by the 
digestion of biomass.  

Yen and Brune 
(2007) 

Biodiesel 
production 

Production of biodiesel from the lipid fraction of 
the cells.  

Miao and Wu 
(2006) 

Syngas 
production  

Production of synthesis gas from the biomass. Amin (2009) 

Inorganic salts 
production 

Source of carbonates and bicarbonates Lee et al. (2004) 

Renewable 
production 
polymers  

Source of exocellular sugars and proteins. 
Ishida et al. 
(1997) 

Volatile organic 
compounds 
production  

Production of hydrocarbons, aldehydes and  
organohalogens 

Muñoz et al. 
(2004) 

Table 1. Potential uses of the bioproducts 
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Besides the use of biomass and its derivatives, carbonates and bicarbonates are other 
products likely to be formed in photobioreactors. The use of Generally Recognized as Safe 
(GRAS) species and airstreams without toxic compounds, e.g., bioethanol plants, can 
produce chemicals of commercial value (Huijgen et al., 2007). 
In addition, extracellular proteins and mainly sugars can be secreted into culture media in 
photobioreactors. Such compounds have several applications in pharmaceutical and food 
industries, since some may have unique properties for special applications, not found in the 
polymers currently available. These include use as a bioemulsifier, bioflocculant, agar-agar 
substitute or cosmetic material as well as other (De Philippis & Vicenzini, 1998). 
Finally, microalgae cells can produce non methane hydrocarbon (ethane, ethylene, propane, 
propylene, butane, isobutane, pentane, hexane, isoprene and ethylene) (Schobert & Elstner, 
1980; Shaw et al., 2003), organohalogens (chloroform, trichloroethylene, bromomethane, 
chloromethane, iodomethane) (Scarratt & Moore, 1996) and aldehydes (propanal, hexanal, 
n-heptanal, formaldehyde, acetaldehyde, furfural and valeraldehyde) (Schobert & Elstner, 
1980; Nuccio et al., 1995). These compounds are continuously being formed and released 
from the aqueous phase of photobioreactors. The production of renewable polymers is an 
emergent area for industrial practice.  
Thus, microalgae-based systems are one the most promising emerging biorefinery 
platforms. These systems are a means of resolving environmental problems and providing 
effective solutions to the energy crisis at the same time. This biorefinery type mediates 
between environment and society and has positive economic impacts. 

7. Applicability of the process 

Full-scale processes with microalgae are mainly based on open photobioreactors. Some 
successful initiatives have been carried out in closed systems, and in this case, the scale is 
normally semi-pilot or pilot. The intensification of these processes represents an important 
step in the consolidation of the technology for the biological transformation of carbon 
dioxide into photosynthetic products. 
Open photobioreactors are suitable for the production of high-value products. The carbon 
dioxide sequestration rates are low and are not viable for processes that aim only to obtain 
carbon credits.  
Closed photobioreactors have higher rates of biotransformation of carbon dioxide into 
bioproducts, and the greatest potential for commercial application. However, there are still 
high hurdles to overcome before these processes can be fully scalable.  
Although it is believed that there is high availability of industrial CO2, for use in microalgae-
based systems in the practice this is not true. Biologically mediated processes require cold 
gases, rarely obtained in the conventional industrial flue gases, which can reach thousands 
of degrees Celsius, limiting the use of most sources of industrial gases.  
In addition, flue gases are usually composed of carbon dioxide and water vapor as well as 
nitrogen and excess oxygen remaining from the intake combustion air. They also contains a 
significant percentage of other compounds such as particulate matter, carbon monoxide, 
nitrogen oxides and sulfur oxides, which have a toxic and/or inhibitor effect on microalgal 
growth.  
Finally, there is no consensus on the shape of closed photobioreactors for full-scale 
application. Bubble column, air-lift, flat-panel and tubular reactors and variations of these 
are the main options, but they are still far from industrial reality.  
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