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1. Introduction    

This chapter describes our recent advances in automatic speech recognition, with a focus on 
improving the robustness against environmental noise. In particular, we investigate a new 
approach for performing recognition using noisy speech samples without assuming prior 
information about the noise. The research is motivated in part by the increasing deployment 
of speech recognition technologies on handheld devices or the Internet. Due to the mobile 
nature of such systems, the acoustic environments and hence the noise sources can be highly 
time-varying and potentially unknown. This raises the requirement for noise robustness in 
the absence of information about the noise. Traditional approaches for noisy speech 
recognition include noise filtering or noise compensation. Noise filtering aims to remove the 
noise from the speech signal. Typical techniques include spectral subtraction (Boll, 1979), 
Wiener filtering (Macho et al., 2002) and RASTA filtering (Hermansky & Morgan, 1994), 
each assuming a priori knowledge of the noise spectra. Noise compensation aims to 
construct a new acoustic model to match the noisy environment thereby reducing the 
mismatch between the training and testing data. Typical approaches include parallel model 
combination (PMC) (Gales & Young, 1993), multicondition training (Lippmann et al., 1987; 
Pearce & Hirsch, 2000), and SPLICE (Deng et al., 2001). PMC composes a noisy acoustic 
model from a clean model by incorporating a statistical model of the noise; multicondition 
training constructs acoustic models suitable for a number of noisy environments through 
the use of training data from each of the environments; SPLICE improves noise robustness 
by assuming that stereo training data exist for estimating the corruption characteristics. 
More recent studies are focused on the approaches requiring less information about the 
noise, since this information can be difficult to obtain in mobile environments subject to 
time-varying, unpredictable noise. For example, recent studies on missing-feature theory 
suggest that, when knowledge of the noise is insufficient for cleaning up the speech features, 
one may alternatively ignore the severely corrupted features and focus the recognition only 
on the features with little or no contamination. This can effectively reduce the influence of 
noise while requiring less knowledge than usually needed for noise filtering or 
compensation (e.g., Lippmann & Carlson, 1997; Raj et al., 1998; Cooke et al., 2001; Ming et 
al., 2002). However, missing-feature theory is only effective given partial feature corruption, 
i.e., the noise only affects part of the speech representation and the remaining part not 

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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severely affected by noise can thus be exploited for recognition. This assumption is not 
realistic for many real-world applications in which the noise will affect all time-frequency 
components of the speech signal, i.e., we face a full feature corruption problem. 
In this chapter, we investigate speech recognition in noisy environments assuming a highly 
unfavourable scenario: an accurate estimation of the nature and characteristics of the noise is 
difficult, if not impossible. As such, traditional techniques for noise removal or 
compensation, which usually assume a prior knowledge of the noise, become inapplicable. 
We describe a new noise compensation approach, namely universal compensation, as a 
solution to the problem. The new approach combines subband modeling, multicondition 
model training and missing-feature theory as a means of minimizing the requirement for the 
information of the noise, while allowing any corruption type, including full feature 
corruption, to be modelled. Subband features are used instead of conventional fullband 
features to isolate noisy frequency bands from usable frequency bands; multicondition 
training provides compensations for expected or generic noise; and missing-feature theory 
is applied to deal with the remaining training and testing mismatch, by ignoring the 
mismatched subbands from scoring.  
The rest of the chapter is organized as follows. Section 2 introduces the universal 
compensation approach and the algorithms for incorporating the approach into a hidden 
Markov model for speech recognition. Section 3 describes experimental evaluation on the 
Aurora 2 and 3 tasks for speech recognition involving a variety of simulated and realistic 
noises, including new noise types not seen in the original databases. Section 4 presents a 
summary along with the on-going work for further developing the technique. 

2. Universal Compensation 

2.1 The model 

Let 0 denote the training data set, containing clean speech data, and let p(X|s, 0) represent 
the likelihood function of frame feature vector X associated with speech state s trained on 
data set 0. In this study, we assume that each frame vector X consists of N subband 
features: X=(x1, x2, ..., xN), where xn represents the feature for the n’th subband. We obtain X 
by dividing the whole speech frequency-band into N subbands, and then calculating the 
feature coefficients for each subband independently of the other subbands. Two different 
methods have been used to create the subband features. The first method produces the 
subband MFCC (Mel-frequency cepstral coefficients), obtained by first grouping the Mel-
warped filter bank uniformly into subbands, and then performing a separate DCT (discrete 
cosine transformation) within each subband to obtain the MFCC for that subband (Ming et 
al., 2002). It is assumed that the separation of the DCT among the subbands helps to prevent 
the effect of a band-limited noise from being spread over the entire feature vector, as usually 
occurs within the traditional fullband MFCC. The second method uses the decorrelated log 
filter-bank energies as the subband features, which are obtained by filtering the log filter-
bank energies using a high-pass filter (Ming, 2006). The subband feature framework allows 
the isolation of noisy bands and selection of the optimal subbands for recognition, thereby 
improving the robustness against band-selective noise.  
The universal compensation approach comprises two steps. The first step is to simulate the 
effect of noise corruption. This is done by adding noise into the clean training data 0. We 
have primarily added white noise at variable signal-to-noise ratios (SNRs) to simulate the 
variation of noise, but different types of noises could be used depending on the expected 
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environments. Assume that this leads to multiple training sets 0, 1, …, K, where k

denotes the k’th training set derived from 0 with the addition of a specific level of 
corruption. Then a new likelihood function for the test frame vector can be formed by 
combining the likelihood functions trained on the individual training sets: 

s)|)P(s,|p(Xs)|p(X k

K

0k
k

=

=  (1) 

where p(X|s, k) is the likelihood function of frame vector X associated with state s trained 
on data set k, and P( k|s) is the prior probability for the occurrence of the corruption 
condition k at state s. Eq. (1) is a multicondition model. A recognition system based on Eq. 
(1) should have improved robustness to the noise conditions seen in the training sets { k}, as 
compared to a system based on p(X|s, 0).
The second step of the approach is to make Eq. (1) robust to noise conditions not fully 
matched by the training sets { k} without assuming extra information about the noise. One 
way to achieve this is to ignore the heavily mismatched subbands and focus the score only 
on the matching subbands. Let X=(x1, x2, ..., xN) be a test frame vector and Xk be a specific 
subset of features in X which are corrupted at noise condition k. Then, using Xk in place of 
X as the test vector for each training noise condition k, Eq. (1) can be modified as 
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K

0k
kk

=

=  (2) 

where p(Xk|s, k) is the marginal likelihood of the matching feature subset Xk, derived from 
p(X|s, k) with the mismatched subband features ignored to improve mismatch robustness 
between the test frame X and the training noise condition k. For simplicity, assume 
independence between the subband features. So the marginal likelihood p(Xsub|s, k) for 
any subset Xsub in X can be written as 
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where p(xn|s, k) is the likelihood function of the n’th subband feature at state s trained 
under noise condition k.
Multicondition or multi-style model training (e.g., Eq. (1)) has been a common method used 
in speech recognition to account for varying noise sources or speaking styles. The universal 
compensation model expressed in Eq. (2) is novel in that it combines multicondition model 
training with missing-feature theory, to ignore noise variations outside the given training 
conditions. This combination makes it possible to account for a wide variety of testing 
conditions based on limited training conditions (i.e., 0 through K), as will be 
demonstrated later in the experiments.  
Missing-feature theory is applied in Eq. (2) for ignoring the mismatched subbands. 
However, it should be noted that the approach in Eq. (2) extends beyond traditional 
missing-feature approaches. Traditional approaches assess the usability of a feature against 
its clean data, while the new approach assesses this against the data containing variable 
degrees of corruption, modelled by the different training conditions 0 through K. This 
allows the model to use noisy features, close to or matched by the noisy training conditions, 
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for recognition. These noisy features, however, may become less usable or unusable with 
traditional missing-feature approaches due to their mismatch against the clean data.  
Given a test frame X, the matching feature subset Xk for each training noise K may be 
defined as the subset in X that gains maximum likelihood over the appropriate noise 
condition. Such an estimate for Xk is not directly obtainable from Eq. (3). This is because the 
values of p(Xsub|s, k) for different sized subsets Xsub are of a different order of magnitude 
and are thus not directly comparable. One way around this is to select the matching feature 
subset Xk for noise condition k that produces maximum likelihood ratio for noise condition 

k as compared to all other noise conditions j k. This effectively leads to a posterior 
probability formulation of Eq. (2). Define the posterior probability of state s and noise 
condition k given test subset Xsub as

Φ
=

j, jjsub

kksub
subk
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 (4) 

On the right, Eq. (4) performs a normalization for p(Xsub|s, k) using the average likelihood 
of subset Xsub calculated over all states and training noise conditions, with P(s, k) = 
P( k|s)P(s) being a prior probability of state s and noise condition k. The normalization 
makes it possible to compare the probabilities associated with different feature subsets Xsub

and to obtain an estimate for Xk based on the comparison. Specifically, we can obtain an 
estimate for Xk by maximizing the posterior probability P(s, k|Xsub) with respect to Xsub.
Dividing the numerator and denominator of Eq. (4) by p(Xsub|s, k) gives  

≠
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Therefore maximizing posterior probability P(s, k|Xsub) with respect to Xsub is equivalent to 
the maximization of likelihood ratios p(Xsub|s, k)/p(Xsub| , j), for all ( , j)  (s, k), by 
choosing Xsub. The universal compensation model, Eq. (2), can be expressed in terms of the 
posterior probabilities P(s, k|Xsub) as follows (the expression will be derived later) 

=
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where the maximization at each noise condition k accounts for the selection of the optimal 
set of subband features for that noise condition.

2.2 Incorporation into a hidden Markov model (HMM) 

Assume a speech signal represented by a time sequence of T frames X1~T=(X(1), X(2), …, 
X(T)), and assume that the signal is modelled by an HMM with parameter set . Based on 



Speech Recognition in Unknown Noisy Conditions 179

the HMM formulation, the likelihood function of X1~T, given the state sequence S1~T=(s(1),
s(2), …, s(T)), where s(t) is the state for frame X(t), can be written as 

∏
=

=
T

1t
T~1T~1 s(t))|p(X(t)),S|p(X  (7) 

where p(X|s) is the state-based observation probability density function with the HMM. To 
incorporate the above universal compensation approach into the HMM, we first express the 
state-based observation density p(X|s) in terms of P(s, k|X), i.e., the posterior probabilities 
of state s and noise condition k given frame vector X. Using Bayes’s rules it follows 
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The last term in Eq. (8), p(X), is not a function of the state index and thus has no effect in 
recognition. Substituting Eq. (8) into Eq. (7), replacing each P(s, k|X) with the maximized 
posterior probability for selecting the optimal set of subbands and assuming an equal prior 
probability P(s) for all the states, we obtain a modified HMM which incorporates the 
universal compensation approach 
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where P(s, k|Xsub) is defined in Eq. (4) with P(s, k) replaced by P( k|s) due to the 
assumption of a uniform prior P(s). In our experiments, we further assume a uniform prior 
P( k|s) for noise conditions k, to account for the lack of prior knowledge about the noise. 

2.3 Algorithm for implementation 

The search in Eq. (9) for the matching feature subset can be computationally expensive for 
frame vectors with a large number of subbands (i.e., N). We can simplify the computation 
by approximating each p(Xsub|s, k) in Eq. (4) using the probability for the union of all 
subsets of the same size as Xsub. As such, p(Xsub|s, k) can be written, with the size of Xsub

indicated in brackets, as (Ming et al. 2002) 

⊂′

′∝
X(M)Xall

ksubksub
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where Xsub(M) represents a subset in X with M subband features (M N). Since the sum in 
Eq. (10) includes all feature subsets, it includes the matching feature subset that can be 
assumed to dominate the sum due to the best data-model match. Therefore Eq. (4) can be 
rewritten, by replacing p(Xsub|s, k) with p(Xsub(M)|s, k), as 
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Note that Eq. (11) is not a function of the identity of Xsub but only a function of the size of 
Xsub (i.e., M). Using P(s, k|Xsub(M)) in place of P(s, k|Xsub) in Eq. (9), we therefore 
effectively turn the maximization for the exact matching feature subset, of a complexity of 
O(2N), to the maximization for the size of the matching feature subset, with a lower 
complexity of O(N). The sum in Eq. (10) over all p(Xsub(M)|s, k) for a given number of M 
features, for 0<M  N, can be computed efficiently using a recursive algorithm assuming 
independence between the subbands (i.e., Eq. (3)). We call Eq. (11) the posterior union model,
which has been studied previously (e.g., Ming et al., 2006) as a missing-feature approach 
without requiring identity of the noisy data. The universal compensation model Eq. (9) is 
reduced to a posterior union model with single, clean condition training (i.e., K=0). 

3. Experimental Evaluation 

The following describes the experimental evaluation of the universal compensation model 
on the Aurora 2 and 3 databases, involving a variety of simulated and realistic noises, 
including additional noise types not seen in the original databases. In all the experiments, 
the universal compensation system assumed no prior information about the noise. 

3.1 Experiments on Aurora 2 

Aurora 2 (Pearce & Hirsch, 2000) is designed for speaker independent recognition of digit 
sequences in noisy conditions. Aurora 2 involves nine different environments (eight noisy 
and one noise-free) and two different channel characteristics. The eight environmental 
noises include: subway, bubble, car, exhibition hall, restaurant, street, airport and train 
station. The two channel characteristics are G712 and MIRS. Aurora 2 has been divided into 
three test sets, each corresponding to a different set of noise conditions and/or channel 
characteristics. These are: 1) test set A - including clean data and noisy data corrupted by 
four different noises: subway, babble, car and exhibition hall, each at six different SNRs: 20 
dbB, 15 dB, 10 dB, 5 dB, 0 dB and -5 dB, filtered with a G712 characteristic; 2) test set B - 
including data corrupted by four different noises: restaurant, street, airport and train station, 
each at the same range of SNRs as in test set A, filtered with a G712 characteristic; and 3) test 
set C - including data corrupted by two different noises: subway and street, each at the same 
range of SNRs as in test set A, filtered with an MIRS characteristic. 
Aurora 2 offers two training sets, for two different training modes: 1) clean training set, 
consisting of only clean training data filtered with a G712 characteristic; and 2) 
multicondition training set, consisting of both clean data and multicondition noisy data 
involving the same four types of noise as in test set A, each at four different SNRs: 20 dB, 15 
dB, 10 dB, 5 dB, and filtered with a G712 characteristic - also the same as for test set A. As 
such, it is usually assumed that the multicondition training set matches test set A more 
closely than it matches test set B. However, as noted in (Pearce & Hirsch, 2000), the noises in 
test set A seem to cover the spectral characteristics of the noises in test set B, and therefore 
no significant differences in performance have been found between test set A and test set B 
based on the model trained on the multicondition data. Mismatches exist between the 
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multicondition training data and test set C, because of the different channel characteristics 
(i.e., G712 versus MIRS).  
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Figure 1. Word accuracy on the Aurora 2 database 

The universal compensation model was compared with two baseline systems. The first 
baseline system was trained on the clean training set and the second was trained on the 
multicondition training set. The universal compensation model was trained using only the 
clean training set. This clean training set was expanded by adding computer-generated 
wide-band noise to each of the training utterances at ten different SNR levels, starting with 
SNR = 20 dB, reducing 2 dB every level, until SNR = 2 dB. This gives a total of eleven 
corruption levels (including the no corruption condition) for training the universal 
compensation model. The wide-band noise used in the training was computer-generated 
white noise filtered by a low-pass filter with a 3-dB bandwidth of 3.5 kHz. In modelling the 
digit words, the same HMM topology was adopted for all the three models: each word 
being modelled with 16 states, and each state being modelled with Gaussian mixture 
densities. Thirty two mixtures were used in each state for the universal compensation model 
and the multicondition baseline model, while 3 mixtures were used in each state for the 
clean baseline model trained only on the clean data. The speech signal, sampled at 8 kHz, 
was divided into frames of 25 ms at a frame period of 10 ms. The universal compensation 
model used subband features, consisting of 6 subbands derived from the decorrelated log 
filter-bank energies, as the feature set for each frame. The baseline systems used fullband 
MFCC as the feature set. Both models included the first- and second-order time differences 
as dynamic features. More details of the implementation can be found in (Ming, 2006). 
Fig. 1 shows the word accuracy rates for the three systems: clean baseline, multicondition 
baseline and universal compensation, as a function of SNR averaged over all the noise 
conditions in test set A, B and C. As indicated in Fig. 1, the universal compensation model 
significantly improved over the clean baseline model, and achieved an average performance 
close to that obtained by the multicondition baseline model trained on the Aurora noisy 
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training data. Note that the universal compensation model achieved this based only on the 
clean training data and simulated noisy training data, without having assumed any 
knowledge about the actual test noise. 

Figure 2. Spectrograms of three new noises unseen in Aurora 2. From top to bottom: mobile 
phone ring, pop song, broadcast news 

To further investigate the capability of the universal compensation model to offer 
robustness for a wide variety of noises, three new noise conditions unseen in the Aurora 2 
database were added in the test. The three new noises are: 1) a polyphonic mobile phone 
ring, 2) a pop song segment with a mixture of background music and the voice of a female 
singer, and 3) a broadcast news segment from a male speaker. Fig. 2 shows the spectral 
characteristics of the three new noises. Fig. 3 shows a comparison between the universal 
compensation model and the multicondition baseline model across the Aurora 2 noise 
conditions and the new noise conditions. As expected, the multicondition baseline trained 
using the Aurora data performed better than the universal compensation model under the 
Aurora 2 noise conditions. However, the multicondition baseline performed poorer than the 
universal compensation model for all the unseen noises, due to the mismatched conditions 
between the training and testing. The universal compensation model achieved a better 
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average performance across all the noise conditions, indicating improved robustness for 
dealing with unknown/mismatched noises. 

50

60

70

80

90

100

Set A Set B Set C Ring Song News Ave.

Noise condition

W
o

rd
 a

cc
u

ra
cy

 (
%

)

Multicondition baseline
Universal compensation

Figure 3. Word accuracy in different noise conditions within and outside the Aurora 2 
database (averaged over SNRs between 0-10 dB)  

The universal compensation approach involves a combination of multicondition model 
training and missing-feature theory. The importance of the combination, in terms of 
improved recognition performance, is studied. We first considered a system which was built 
on the same simulated noisy training data as used for the universal compensation model, 
but did not apply missing-feature theory to optimally select the subbands for scoring. The 
system thus used the full set of subbands for recognition. Comparisons were conducted for 
all the Aurora 2 noises and the three new noises as described above. Fig. 4 shows the 
absolute improvement in word accuracy obtained by the universal compensation model 
over the system without optimal subband selection. The results indicate that the optimal 
subband selection in the universal compensation model has led to improved accuracy in all 
tested noisy conditions. As expected, the improvement is more significant for those noises 
with a spectral structure significantly different from the wide-band noise spectral structure 
as used in the universal compensation model for noise compensation. In our experiments, 
these noises include, for example, the mobile phone ring, pop song, broadcast news and 
airport noises. Fig. 4 also indicates that the absolute improvement from the optimal subband 
selection is more significant in low SNR conditions (except for the exhibition-hall noise). 
The above experimental results indicate the importance of the missing-feature component in 
the universal compensation model, for achieving robustness to mismatched training and 
testing. Likewise, the multicondition training component in the model plays an equally 
important role, particularly for dealing with broad-band noise corruption for which the 
conventional missing-feature methods usually fail to function. To show this, we considered 
a system which performed optimal subband selection as the universal compensation model, 
but was not trained using the simulated multicondition noisy data. Rather, it was trained 
using only the clean training data. Comparisons were conducted on test set A of the Aurora 
2 database. Fig. 5 shows the absolute improvement in word accuracy obtained by the 
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universal compensation model over the system with the missing-feature component but 
without being trained on the multicondition data. This missing-feature system performed 
better than the clean baseline model (i.e., the baseline model trained on the clean training 
data), due to the optimal selection of the subbands, but worse than the universal 
compensation model. The broad-band nature of the noises in test set A causes the poor 
performance for this missing-feature system. 
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Figure 4. Absolute improvement in word accuracy obtained by optimal subband selection 
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3.2 Experiments on Aurora 3 

Unlike Aurora 2, the Aurora 3 database consists of digit sequences (in four languages – 
Danish, Finnish, German and Spanish) recorded in real-world in-car environments, with 
realistic noise and channel effects. Speech data were recorded in three different noisy 
(driving) conditions - quite, low noise and high noise, and each utterance was recorded 
simultaneously by using two microphones, a close-talk microphone and a hand-free 
microphone. Three experimental conditions are defined in Aurora 3: 1) well-matched 
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condition in which the training and testing data sets contain well-matched data for both the 
microphones and noise conditions; 2) moderately-mismatched condition in which the 
training and testing data are both from the hand-free microphone but differ in noise levels - 
quite and low-noise data for training and high-noise data for testing; 3) highly-mismatched 
condition in which the training and testing sets differ in both the microphone and noise 
levels - the data collected using the close-talk microphone in all the three conditions are 
used for training and the data collected using the hand-free microphone in the low-noise 
and high-noise conditions are used for testing. The hand-free microphone picked up more 
noise than the close-talk microphone from the background. In our experiments, the 
universal compensation model was trained using the training data for the highly-
mismatched condition, by treating the close-talk data as “clean” data. The close-talk training 
data were expended by adding simulated wide-band noise at ten different SNRs between 2 
– 20 dB. These simulated noisy speech data were used to train the universal compensation 
model, which used the same subband feature structure as for Aurora 2. 

Training vs. Testing Danish Finnish German Spanish Average 

Well matched 12.7 7.3 8.8 7.1 8.9 

Moderately mismatched 32.7 19.5 18.9 16.7 21.9 

Highly mismatched 60.6 59.5 26.8 48.5 48.9 

Average 35.3 28.8 18.2 24.1 26.6 

Table 1. Word error rates on the Aurora 3 database, by the ETSI baseline system 

Training vs. Testing Danish Finnish German Spanish Average 

Well matched 11.2 6.1 7.5 6.7 7.9 

Moderately mismatched 26.8 17.2 16.3 15.5 18.9 

Highly mismatched 19.9 12.5 13.7 12.2 14.6 

Average 19.3 11.9 12.5 11.5 13.8 

Table 2. Word error rates on the Aurora 3 database, by the universal compensation model 

Table 1 shows the word error rates produced by the ETSI (European Telecommunications 
Standards Institute) baseline system, included for comparison. Table 2 shows the word error 
rates produced by the universal compensation model. As indicated in Tables 1 and 2, the 
universal compensation model performed equally well as the baseline system trained and 
tested in the well-matched conditions. The universal compensation model outperformed the 
baseline system when there were mismatches between the training and testing conditions. 
The average error reduction is 70.1%, 13.7% and 11.2%, respectively, for the highly-
mismatched, moderately-mismatched and well-matched conditions. 

4. Conclusion 

This chapter investigated the problem of speech recognition in noisy conditions assuming 
absence of prior information about the noise. A method, namely universal compensation, 
was described, which combines multicondition model training and missing-feature theory 
to model noises with unknown temporal-spectral characteristics. Multicondition training 
can be conducted using simulated noisy data, to provide a coarse compensation for the 
noise, and missing-feature theory is applied to refine the compensation by ignoring noise 
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variations outside the given training conditions, thereby accommodating mismatches 
between the training and testing conditions. Experiments on the noisy speech databases 
Aurora 2 and 3 were described. The results demonstrate that the new approach offered 
improved robustness over baseline systems without assuming knowledge about the noise. 
Currently we are considering an extension of the principle of universal compensation to 
model new forms of signal distortion, e.g., handset variability, room reverberation, and 
distant/moving speaking. To make the task tractable, these factors can be “quantized” as we 
did for the SNR. Missing-feature approaches will be used to deemphasize the mismatches 
while exploiting the matches arising from the quantized data. 
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