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Introduction 

The problem of controller reduction plays an important role in control theory and has 
attracted lots of attentions[1-10] in the fields of control theory and application. As noted by 
Anderson and Liu[2], controller reduction could be done by either direct or indirect methods. 
In direct methods, designers first constrain the order of the controller and then seek for the 
suitable gains via optimization. On the other hand, indirect methods include two reduction 
methodologies: one is firstly to reduce the plant model, and then design the LQG controller 
based on this model; the other is to find the optimal LQG controller for the full-order model, 
and then get a reduced-order controller by controller reduction methods. Examples of direct 
methods include optimal projection theory[3-4] and the parameter optimization approach[5] . 
Examples of indirect methods include LQG balanced realization[6-8], stable factorization[9] 
and canonical interactions[10]. 
In the past, several model reduction methods based on the information theoretic measures 
were proposed, such as model reduction method based on minimal K-L information 
distance[11], minimal information loss method(MIL)[12] and minimal information loss based 
on cross-Gramian matrix(CGMIL)[13]. In this paper, we focus on the controller reduction 
method based on information theoretic principle. We extend the MIL and CGMIL model 
reduction methods to the problem of LQG controller reduction. 
The proposed controller reduction methods will be introduced in the continuous-time case. 
Though, they are applicable for both of continuous- and discrete-time systems. 
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LQG Control 

LQG is the most fundamental and widely used optimal control method in control theory. It 
concerns uncertain linear systems disturbed by additive white noise. LQG compensator is 
an optimal full-order regulator based on the evaluation states from Kalman filter. The LQG 
control method can be regarded as the combination of the Kalman filter gain and the 
optimal control gain based on the separation principle, which guarantees the separated 
components could be designed and computed independently. In addition, the resulting 
closed-loop is (under mild conditions) asymptotically stable[14]. The above attractive 
properties lead to the popularity of LQG design. 
The LQG optimal closed-loop system is shown in Fig. 1 
 

x̂

 
Fig. 1. LQG optimal closed-loop system 
 
Consider the nth-order plant 
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where ( ) nx t R , ( ) mw t R , ( ), ( ) py t v t R . , ,A B C  are constant matrices with 

appropriate dimensions. ( )w t and ( )v t are mutually independent zero-mean white 

Gaussian random vectors with covariance matrices Q  and R ,respectively, and 
uncorrelated with x0. The performance index is given by 
 

 1 2lim T T

t
J E x R x u R u


  , 1 20, 0.R R                   (2) 

 
While in the latter part, the optimal control law u  would be replaced with the 
reduced-order suboptimal control law, such as ru and Gu . 
 
The optimal controller is given by 
 

ˆ ˆ ˆ ˆ( ) ( ) ,x Ax Bu L y y A BK LC x Ly                      (3) 

ˆ.u Kx                                (4) 
 

where L and K are Kalman filter gain and optimal control gain derived by two Riccati 
equations, respectively. 

 
Model Reduction via Minimal Information Loss Method (MIL)[12] 

Different from minimal K-L information distance method, which minimizes the information 
distance between outputs of the full-order model and reduced-order model, the basic idea of 
MIL is to minimize the state information loss caused by eliminating the state variables with 
the least contributions to system dynamics. 
Consider the n-order plant 
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where ( ) nx t R , ( ) mw t R , ( ), ( ) py t v t R . , ,A B C  are constant matrices with 

appropriate dimensions. ( )w t and ( )v t are mutually independent zero-mean white 

Gaussian random vectors with covariance matrices Q  and R ,respectively, and 
uncorrelated with x0. 
To approximate system (5), we try to find a reduced-order plant 
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where ( ) l
rx t R , l n , ( ) p

ry t R , , ,r r rA B C are constant matrices. 
Define 

( ) ( ),rx t x t                                  (7) 
 

where ( )rx t is the aggregation state vector of ( )x t and l nR  is the aggregation matrix. 
From (5), (6) and (7), we obtain 
 

, , .r r rA A B B C C                              (8) 
 

In information theory, the information of a stochastic variable is measured by the entropy 
function[15]. The steady-state entropy of system (5) and (6) are 
 

1( ) ln(2 ) ln det ,
2 2
nH x e                          (9) 
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1( ) ln(2 ) ln det .
2 2r r
lH x e                        (10) 

where  

r
                                    (11) 

 
The steady-state information loss from (5) and (6) is defined by 
 

( ; ) ( ) ( ).r rIL x x H x H x                           (12) 
 

From (11), (12) can be transformed to  
 

1( ) ( ) ln(2 ) ln det( ).
2 2r

n lH x H x e 
                (13) 

 
The aggregation matrixminimizing (13) consists of l eigenvectors corresponding to the l 
largest eigenvalues of the steady-state covariance matrix . 

 
MIL-RCRP: Reduced-order Controller Based-on Reduced-order Plant Model 

The basic idea of this method is firstly to find a reduced-order model of the plant, then 
design the suboptimal LQG controller according to the reduced-order model. 
We have obtained the reduced-order model as (6). The LQG controller of the reduced-order 
model is given by 

1 1 1 1ˆ ˆ ,r c r cx A x B y                                 (14) 

1 1 1ˆ ,r c ru C x                                     (15) 
 

where 1 1 1 1 1 1c r r r r rA A B K L C   , 1 1c rB L , 1 1c rC K .The l-order suboptimal filter 

gain 1rL and suboptimal control gain 1rK are given by 
 

1
1 1( ) ,T T

r r rL S C V   1
1 1,

T T
r rK R B P                      (16) 

 
where 1rS and 1rP are respectively the non-negative definite solutions to two certain Riccati 
equations as following: 
 

1
1 1 1 1 1 1 1 1 0,T T

r r r r r r r rP A A P P B R B P Q                    (17) 
1

1 1 1 1 1 1 1 1 0.T T
r r r r r r r rA S S A S C V C S W                   (18) 

 
The stability of the closed-loop system is not guaranteed and must be verified. 

MIL-RCFP: Reduced-order Controller Based on Full-order Plant Model 

In this method , the basic idea is first to find a full-order LQG controller based on the 
full-order plant model, then get the reduced-order controller by minimizing the information 
loss between the states of the closed-loop systems with full-order and reduced-order 
controllers. 
The full-order LQG controller is given by as (3) and (4). Then we use MIL method to obtain 
the reduced-order controller, which approximates the full-order controller. 
The l-order Kalman filter is given by 
 

2 2 2 2ˆ ˆ ,r c r cx A x B y                              (19) 
 

where 2 ,c c c c c c cA A BK LC         1
2 2 .T

c r c cB L L SC V    
And the l-order control gain is given by 
 

2 2 2ˆ ,r c ru C x                                (20) 
 

where 1
2 2

T
c r c cC K K R B P          . c is the aggregation matrix consists 

of the l eigenvectors corresponding to the l largest eigenvalues of the steady-state covariance 
matrix of the full-order LQG controller. 
In what follows, we will propose an alternative approach, the CGMIL method, to the LQG 
controller-reduction problem. This method is based on the information theoretic properties 
of the system cross-Gramian matrix[16]. The steady-state entropy function corresponding to 
the cross-Gramian matrix is used to measure the information loss of the plant system. The 
two controller-reduction methods based on CGMIL, called CGMIL-RCRP and CGMIL-RCFP, 
respectively, possess the similar manner as MIL controller reduction methods. 

 
Model Reduction via Minimal Cross-Gramian  
Information Loss Method (CGMIL)[16] 

In the viewpoint of information theory, the steady state information of (5) can be measured 
by the entropy function ( )H x , which is defined by the steady-state covariance matrix  . 

Let   denote the steady-state covariance matrix of the state x  of the dual system of (5). 
When Q , the covariance matrix of the zero-mean white Gaussian random noise ( )w t  is 

unit matrix I ,   and   are the unique definite solutions to  
 

0,
0,

T T

T T

A A BB
A A C C
   

    
                         (21) 

 
respectively. 
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From Linear system theory, the controllability matrix and observability matrix satisfy the 
following Lyapunov equation respectively: 
 

0

0.

T T
C C

T T
O O

AW W A BB
A W W A C C

  

  
                        (22) 

 
By comparing the above equations, we observe that the steady-state covariance matrix is 
equal to the controllability matrix of (5), and the steady-state covariance matrix of the dual 
system is equal to the observability matrix. We called ( )H x  and ( )H x  the 
“controllability information” and “observability information”, respectively. In MIL method, 
only “controllability information” is involved in deriving the reduced-order model, while 
the “observability information” is not considered.  
In order to improve MIL model reduction method, CGMIL model reduction method was 
proposed in [13]. By analyzing the information theoretic description of the system, a 
definition of system “cross-Gramian information” (CGI) was defined based on the 
information properties of the system cross-Gramian matrix. This matrix indicates the 
“controllability information” and “observability information” comprehensively. 
Fernando and Nicholson first define the cross-Gramian matrix by the step response of the 
controllability system and observability system. The cross-Gramian matrix of the system is 
defined by the following equation: 
 

T T T
cross 0 0

(e )(e ) e et t t tdt dt,
 

  A A A AG b c bc               (23) 

 
which satisfies the following Sylvester equation: 
 

cross cross 0.  G GA A bc                       (24) 
 

From [16], the cross-Gramian matrix satisfies the relationship between the controllability 
matrix and the observability matrix as the following equation: 
 

2
cross .C OW WG                              (25) 

 
As we know that, the controllability matrix CW  corresponds to the steady-state covariance 

matrix of the system, while the observability matrix OW  corresponds to the steady-state 
covariance matrix of the dual system, which satisfy the following equations: 
 

Tlim { ( ) ( )},C t
E t t


W = x x                         (26) 

Tlim { ( ) ( )}.O t
E t t


 W = x x                         (27) 

 

Combine equation (25)、(26) and (27), we obtain: 
 

2 T T
cross lim { ( ) ( )} { ( ) ( )}.C O t

W W E t t E t t


  G = x x x x             (28) 

 
The cross-Gramian matrix corresponds to the steady-state covariance information of the 
original system and the steady-state covariance information of the dual system. Here we 
define a new stochastic state vector ( )t , and the relationship among ( )t , ( )x t and ( )x t  
satisfies the following equation: 
 

T

T T 2
cross

lim { ( ) ( )} lim ( ( ), ( ))

lim { ( ) ( )} { ( ) ( )} .
t t

t

E t t f t t

E t t E t t
 





 



 

  x x

x x x x G
      (29) 

 
We called ( )t as “cross-Gramian stochastic state vector”, which denotes the cross-Gramian 
information of the system. 
From the above part, we know that the steady-state covariance matrix of ( )t is the 

cross-Gramian matrix 2
crossG , the steady information entropy is called cross-Gramian 

information 2
cross cross( )I G , which satisfies the following equation: 

 
2

cross cross( )I H ( )G                           (30) 
 

where is the steady form of the stochastic state vector ( )t , that is lim ( )
t

t


  , and the 

information entropy of the steady-state is defined as follows: 
 

2 2
cross cross cross

1( ) ln(2 e) ln det .
2 2
nI H   ( )G G              (31) 

 
And the following equation can be obtained: 
 

2
cross cross

1( ) ln(2 e) ln det .
2 2
nI   G PQ                 (32) 

2
cross cross

( ) ( )( ) .
2

H HI 


x xG                    (33) 

 
From the above, we get that the cross-Gramian matrix indicates the controllability matrix 
and observability matrix comprehensively. 
CGMIL model reduction method is suit for SISO system. The basic idea of the algorithm is 
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W = x x                         (26) 

Tlim { ( ) ( )}.O t
E t t


 W = x x                         (27) 

 

Combine equation (25)、(26) and (27), we obtain: 
 

2 T T
cross lim { ( ) ( )} { ( ) ( )}.C O t

W W E t t E t t


  G = x x x x             (28) 

 
The cross-Gramian matrix corresponds to the steady-state covariance information of the 
original system and the steady-state covariance information of the dual system. Here we 
define a new stochastic state vector ( )t , and the relationship among ( )t , ( )x t and ( )x t  
satisfies the following equation: 
 

T

T T 2
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t t

t

E t t f t t

E t t E t t
 
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

 



 

  x x

x x x x G
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We called ( )t as “cross-Gramian stochastic state vector”, which denotes the cross-Gramian 
information of the system. 
From the above part, we know that the steady-state covariance matrix of ( )t is the 

cross-Gramian matrix 2
crossG , the steady information entropy is called cross-Gramian 

information 2
cross cross( )I G , which satisfies the following equation: 

 
2

cross cross( )I H ( )G                           (30) 
 

where is the steady form of the stochastic state vector ( )t , that is lim ( )
t

t


  , and the 

information entropy of the steady-state is defined as follows: 
 

2 2
cross cross cross

1( ) ln(2 e) ln det .
2 2
nI H   ( )G G              (31) 

 
And the following equation can be obtained: 
 

2
cross cross

1( ) ln(2 e) ln det .
2 2
nI   G PQ                 (32) 

2
cross cross

( ) ( )( ) .
2

H HI 


x xG                    (33) 

 
From the above, we get that the cross-Gramian matrix indicates the controllability matrix 
and observability matrix comprehensively. 
CGMIL model reduction method is suit for SISO system. The basic idea of the algorithm is 
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presented as follows, for continuous-time linear system. 
The cross-Gramian matrix of the full-order system and the reduced-order system are as 
follows: 

cross cross 0,  G GA A bc                        (34) 

cross cross 0.r r  G GA A bc                        (35) 
 

When the system input is zero mean Gaussian white noise signal, the cross-Gramian 
information of the two systems can be obtained as: 
 

2 2
cross cross cross

1( ) ln(2 e) ln det ,
2 2
nI H   ( )G G            (36) 

r 2 r 2 r
cross cross r cross

1( ) ln(2 e) ln det .
2 2
lI H   ( )G G           (37) 

 
The cross-Gramian information loss is: 
 

2 r 2 r
cross cross cross cross cross r

2 2 r
cross cross

( ) ( )
1ln(2 e) [ln det ln det ].

2 2

I I I H H
n l

    


   

( ) ( )G G

G G

 
         (38) 

 
In order to minimize the information loss, we use the same method with the MIL method: 
 

2 2 .r
cross crossG G                            (39) 

 
where the aggregation matrix  is adopted as the l  ortho-normal eigenvectors 
corresponding to the l th largest eigenvalues of the cross-Gramian matrix, then the 
information loss is minimized. 
Theoretical analysis and simulation verification show that, cross-Gramian information is a 
good information description and CGMIL algorithm is better than the MIL algorithm in the 
performance of model reduction. 

 
CGMIL-RCRP: Reduced-order Controller Based-on  
Reduced-order Plant Model By CGMIL 

In this section, we apply the similar idea as method 1 of MIL model reduction to obtain the 
reduced-order controller. 
The LQG controller of the reduced-order model consists of Kalman filter and control law as 
follows: 

1 1 1 1ˆ ˆ ,GC GC GC GCx A x B y                         (40) 

1 1 1ˆ .G GC Gu C x                           (41) 
 

where 1 1 1 1 1 1GC G G G G GA A B K L C   , 1 1,GC GB L 1 1.GC GC K  
 
The r-order filer gain and control gain are obtained: 
 

1 1
1 1 1 1 1( ) ,T T T

G G G G GL S C V S C V                    (42) 
1 1

1 1 1 1 1.
T T T

G G G G GK R B P R B P                       (43) 
 

where 1GS and 1GP satisfy the following Riccati equations 
 

1
1 1 1 1 1 1 1 1 0,T T

G G G G G G G GP A A P P B R B P Q                 (44) 
1

1 1 1 1 1 1 1 1 0.T T
G G G G G G G GA S S A S C V C S W                (45) 

 
And the state space equation of the r -order closed-loop system is as follow: 
 

1

1 1 1 1 1 1 1 11

1

1 1 1 1 1 1 1 1

ˆˆ

       ,
ˆ

GC

GC G G GC GC G G GG

G

G G G G G G G G

x A BC x w
B C A B C B C x L vx

A BK x w
L C A B K L C x L v

       
               

     
            




              (46) 

 1
1

0 .
ˆG

G

x
y C v

x
 

  
 

                       (47) 

 
CGMIL-RCFP: Reduced-order Controller Based  
on Full-order Plant Model By CGMIL 

Similar to the second method of MIL controller reduction method，the reduced-order 
controller obtained by the full-order controller using CGMIL method is: 
 

2 2 2 2ˆ ˆ ,G GC G GCx A x B y                           (48) 

2 2 2ˆ .G GC Gu C x                              (49) 
 

where 2 2 2 ,GC G c GA A   2 2 ,GC GB L 2 2GC GC K  , 2G is the aggregation 

matrix consists of the l largest eigenvalues corresponding to the l th largest eigenvectors of 
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controller obtained by the full-order controller using CGMIL method is: 
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the cross-Gramian matrix of the full-order controller. The r -order filter gain and control 
gain is obtained: 

1
2 2 2 ,T

G G GL L SC V                           (50) 
1

2 2 2 .T
G G GK K R B P                          (51) 

 
The state space equation of the reduced-order controller is then given by: 
 

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

ˆ ˆ ˆ( )
ˆ ˆ .

G GC G GC G G G G G G G G

G GC G G G

x A x B y A BK LC x Ly
u C x K x

  



         

   


(52) 

 
Stability Analysis of the Reduced-Order Controller 

Here we present our conclusion in the case of discrete systems. 
Suppose the full-order controller is stable, and we analyze the stability of the reduced-order 
controller obtained by method MIL-RCFP. 
Conclusion 1.1 [Lyapunov Criterion] The discrete-time time-invariant linear autonomous 
system, when the state 0ex  is asymptotically stable, that is the amplitude of all of the 

eigenvalues of G ( )i G ( 1,2,..., )i n less than 1. If and only if for any given positive 

definite symmetric matrix Q , the discrete-time Lyapunov equation: 
 

,TG PG Q P                             (53) 
 

has the uniquely positive definite symmetric matrix P . 
The system parameter of the full-order controller is: cA A BK LC   . From 
Lyapunov Criterion, the following equation is obtained: 
 

.T
c cA PA Q P                             (54) 

 

Multiplying leftly by the aggregation matrix c  and rightly by T
c , we get: 

 

( ) .T T T
c c c c c c c cA P A Q P                       (55) 

 
Because 2c c c cA A   , the following equation is obtained: 
 

2 2 .T T T
c c c c c c c cA P A Q P                        (56) 

 

When '
1[ , ,..., ]T T

c c l n    is assumed, where 1,...,l n  is the n-l smallest 
eigenvectors corresponding to the n-l smallest eigenvalues of the steady-state covariance 

matrix c . The aggregation matrix '
c consists of the orthogonal eigenvectors, when 

P and Q are positive definite matrix, ' '( )T
c cP  and ' '( )T

c cQ  are positive definite. 

The matrix ( )T
c cP  consists of the first l l main diagonal elements of 

matrix ' '( )T
c cP  ; similarly, the matrix ( )T

c cQ  consists of the first l l main 

diagonal elements of matrix ' '( )T
c cQ  . If ' '( )T

c cP  and ' '( )T
c cQ  are positive 

definite, then ( )T
c cP  and ( )T

c cQ  are positive definite. As a result, the 
reduced-order controller obtained from method MIL-RCFP is stable. 

 
Illustrative Example  

1. Lightly Damped Beam 
We applied these two controller-reduction methods to the lightly damped, simply 
supported beam model described in [11] as (5). 
The full-order Kalman filter gain and optimal control gain are given by 
 

[2.0843  2.2962  0.1416  0.1774  -0.2229
       -0.4139  -0.0239  -0.0142  0.0112  -0.0026] ,T

L 
               (57) 

[0.4143  0.8866  0.0054  0.0216  -0.0309
        -0.0403  0.0016  -0.0025  -0.0016  0.0011].
K 

                (58) 

 
The proposed methods are compared with that given in [11], which will be noted by method 
3 later. The order of the reduced controller is 2. We apply the two CGMIL controller 
reduction methods and the first MIL controller reduction method (MIL-RCRP) to this model. 
The reduced-order Kalman filter gains and control gains of the reduced-order closed-loop 
systems are given as follows: 
 

MIL-RCRP: 1 1[-1.5338;-2.6951] , [-0.1767   -0.9624]T
r rL K   

CGMIL-RCRP: 1 1[-3.0996  -0.0904] , [-0.9141  -0.3492]T
G GL K   

CGMIL-RCFP: 2 2[0.4731  0.9706] , [0.4646  -0.9785]T
G GL K   

Method 3: 3 3[2.1564  2.2826] , [0.3916   0.8752].T
r rL K   

 
Three kinds of indices are used to illustrate the performances of the reduced-order 
controllers. 
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systems are given as follows: 
 

MIL-RCRP: 1 1[-1.5338;-2.6951] , [-0.1767   -0.9624]T
r rL K   

CGMIL-RCRP: 1 1[-3.0996  -0.0904] , [-0.9141  -0.3492]T
G GL K   

CGMIL-RCFP: 2 2[0.4731  0.9706] , [0.4646  -0.9785]T
G GL K   

Method 3: 3 3[2.1564  2.2826] , [0.3916   0.8752].T
r rL K   

 
Three kinds of indices are used to illustrate the performances of the reduced-order 
controllers. 

www.intechopen.com



Stochastic Control364

a) We define the output mean square errors to measure the performances of the 
reduced-order controllers 

 
* 2

*0
( ) / ,

T

aE y t dt T                             (59) 

 
where * 1,2,3  indicates the closed-loop systems obtained from method 1,2,3, 
respectively. T is the simulation length. 

b) We compare the reduced-order controllers with the full-order one by using 
relative error indices 
 

* 2
*0

( ( ) ( )) / ,
T

bE y t y t dt T                         (60) 

 
where ( )y t is the system output of the full-order closed-loop system. 

c) We also use the LQG performance indices given by following equations, to 
illustrate the controller performances 

 

 *
* *0

1 ( ) ( ) ( ) ( )  .
T T TJ x t Qx t u t Ru t dt

T
                   (61) 

 
The performances of the reduced-order controllers are illustrated by simulating the 
responses of the zero-input and Gaussian white noise, respectively. The simulation results 
are shown in the following figures and diagrams. 
As shown in Fig. 1 (Response to initial conditions), when input noise and observation noise 
are zero, the system initial states are set as (0) 1/ , 1,...10ix i i  .The reduced-order 
closed-loop system derived by method 3 is close to the full-order one. 
 

 

 
Fig. 1. Zero-input response for full-order system and reduced-order system 
 
In Fig. 2 (Response of Gaussian white noise), almost all the reduced-order closed-loop system 
are close to the full-order one except the reduced-order system obtained by CGMIL 2. 
 

 
Fig. 2. Gaussian white noise response for full-order system and reduced-order system 

 
As illustrated in Fig. 3 (Bode Plot), the reduced-order closed-loop systems obtained from 
method 1 and 3 are close to the full-order closed-loop system. 
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Fig. 2. Gaussian white noise response for full-order system and reduced-order system 

 
As illustrated in Fig. 3 (Bode Plot), the reduced-order closed-loop systems obtained from 
method 1 and 3 are close to the full-order closed-loop system. 
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Fig. 3. Bode plots for full-order system and reduced-order system 
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Diagram.1 Performances of the reduced-order controllers 

 
2. Deethanizer Model 
Distillation column is a common operation unit in chemical industry. We apply these two 
MIL controller-reduction methods to a 30th-order deethanizer model. 
The order of the reduced-order controller is 2. The reduced-order Kalman filter gains and 
control gains of the reduced-order closed-loop systems are given as follows: 
 

MIL-RCRP: 1 [-0.0031 0.0004]T
rL  , 1 [-0.2289   -0.1007;-0.3751   -0.5665]T

rK  ; 

MIL-RCFP: 1 [-0.0054 -0.0082]T
rL  , 2 [32.8453    2.0437;-9.4947    6.6710]T

rK  ; 
 
We use the same performances as example 1 to measure the reduced-order controller. 
 

Fig. 4 (Impulse Response): When the system input is impulse signal, the reduced-order 
closed-loop system is close to the full-order system. 
 

 
Fig. 4. Impulse response for full-order system and reduced-order system 

 
Fig. 5 (Step Response): When the system input is step signal, the reduced-order closed-loop 
system is close to the full-order system. 
 

 
Fig. 5. Step response for full-order system and reduced-order system 

 
Fig. 6 (Gaussian white noise Response): When the system input is Gaussian white noise, the 
reduced-order closed-loop system is close to the full-order system and outputs are near 
zero. 
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Fig. 6. Gaussian white response for full-order system and reduced-order system 

 
Fig. 7 (Bode Plot): 
 

 
Fig. 7. Bode plots for full-order system and reduced-order system 

 

 MIL-RCRP MIL-RCFP Full-order system 

aE  3.0567e-019 2.4160e-022 0 

bE  2.1658e-005 2.1658e-005 2.1658e-005 
J  2.1513e-005 2.1513e-005 2.1513e-005 

Diagram.2 Performances of the reduced-order controllers 

Conclusion 

1. This paper proposed two controller-reduction methods based on the information 
principle—minimal information loss(MIL). Simulation results show that the 
reduced-order controllers derived from the proposed two methods can approximate 
satisfactory performance as the full-order ones. 

2. According to the conclusion of literature [17], the closed-loop system with optimal 
LQG controller is stable. However, its own internal stability can not be guaranteed. If 
the full-order controller is internal stability, the reduced-order controller is generally 
stable. We would modify the parameters such as the weighting matrix or noise 
intensity to avoid the instability of the controller. 

3. The performances of the two reduced-order controllers obtained by CGMIL method 
approximate the full-order one satisfactorily and under certain circumstances. CGMIL 
method is a better information interpretation instrument of the control system relative 
to the MIL method, while it is only suit for single-variable stable system.  
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