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1. Introduction

Information flow, or information transfer as referred in the literature, is a fundamental physics
concept that has applications in a wide variety of disciplines such as neuroscience (e.g., Pereda
et al., 2005), atmosphere-ocean science (Kleeman, 2002; 2007; Tribbia, 2005), nonlinear time
series analysis (e.g., Kantz & Schreiber, 2004; Abarbanel, 1996), economics, material science,
to name several. In control theory, it helps to understand the information structure and
hence characterize the cause-effect notion of causality in nonsequential stochastic control
systems (e.g., Andersland & Teneketzis, 1992). Given the well-known importance, it has
been an active arena of research for several decades (e.g.,Kaneko, 1986; Vastano & Swinney,
1988; Rosenblum et al., 1996; Arnhold et al., 1999; Schreiber, 2000; Kaiser & Schreiber, 2002).
However, it was not until recently that the concept is formalized, on a rigorous mathematical
and physical footing. In this chapter we will introduce the rigorous formalism initialized in
Liang & Kleeman (2005) and established henceforth; we will particularly focus on the part of
the studies by Liang (2008) and Liang & Kleeman (2007a,b) that is pertaining to the subjects
of this book. For formalisms in a more generic setting or of broader interest the reader should
consult and cite the original papers.

The concept of information flow/transfer was originally introduced to overcome the short-
coming of mutual information in reflecting the transfer asymmetry between the transmitter
and the recipient. It is well known that mutual information tells the amount of information
exchanged (cf. Cove & Thomas, 1991), but does not tell anything about the directionality of
the exchange. This is the major thrust that motivates many studies in this field, among which
are Vastano & Swinney (1988) and Schreiber (2000). Another thrust, which is also related to
the above, is the concern over causality. Traditionally, causality, such as the Granger causality
(Granger, 1969), is just a qualitative notion. While it is useful in identifying the causal relation
between dynamical events, one would like to have a more accurate measure to quantify this
relation. This would be of particular use in characterizing the intricate systems with two-way
coupled events, as then we will be able to weigh the relative importance of one event over
another. Information flow is expected to function as this quantitative measure.
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The third thrust is out of the consideration from general physics. Information flow is
a physical concept seen everywhere in our daily life experiences. The renowned baker
transformation (cf. section 5 in this chapter), which mimics the kneading of a dough, is such
an example. It has been argued intuitively that, as the transformation applies, information
flows continuingly from the stretching direction to the folding direction, while no transfer is
invoked the other way (e.g., Lasota & Mackey, 1994). Clearly the central issue here is how
much the information is transferred between the two directions.

Historically information flow formalisms have been developed in different disciplines (par-
ticularly in neuroscience), usually in an empirical or half-empirical way within the context
of the problems in question. These include the time-delayed information transfer (Vastano &
Swinney, 1988) and the more sophisticated transfer entropy associated with a Markov chain
(Schreiber, 2000). Others, though in different appearances, may nevertheless be viewed as the
varieties of these two types. Recently, it was observed that even these two are essentially of
the same like, in that both deal with the evolution of marginal entropies (Liang & Kleeman,
2005; 2007a). With this observation, Liang & Kleeman realized that actually this important
concept can be rigorously formulated, and the corresponding formulas analytically derived
rather than empirically proposed. The so-obtained transfer measure possesses nice proper-
ties as desired, and has been verified in different applications, with both benchmark systems
and real world problems. The objective of this chapter is to give a concise introduction of
this formalism. Coming up next is a setup of the mathematical framework, followed by two
sections (§3 and §4) where the transfer measures for different systems are derived. In these
sections, one will also see a very neat law about entropy production [cf. Eq. (18) in §3.1.2],
paralleling the law of energy conservation, and the some properties of the resulting trans-
fer measures (§4.3). Section 5 gives two applications, one about the afore-mentioned baker
transformation, the other about a surprisingly interesting causality inference with two highly
correlated time series. The final section (section 6) is a brief summary. Through the chapter
only two-dimensional systems are considered; for high dimensional formalisms, see Liang &
Kleeman (2007)a,b. As a convention in the literature, the terminologies “information flow”
and “information transfer” will be used interchangeably throughout.

2. Mathematical formalism

Let Ω be the sample space and x ∈ Ω the vector of state variables. For convenience, we follow
the convention of notation in the physics literature, where random variables and deterministic
variables are not distinguished. (In probability theory, they are usually distinguished with
lower and upper cases like x and X.) Consider a stochastic process of x, which may take a
continuous time form {x(t), t ≥ 0} or a discrete time form {x(τ), τ}, with τ being positive
integers signifying discrete time steps. Throughout this chapter, unless otherwise indicated,
we limit out discussion within two-dimensional (2D) systems x = (x1, x2)

T ∈ Ω only. The
stochastic dynamical systems we will be studying with are, in the discrete time case,

x(τ + 1) = Φ(x(τ)) + B(x, τ)v (1)

and, in the continuous time case,

dx = F(x, t)dt + B(x, t)dw. (2)

Here Φ is a 2-dimensional transformation

Φ : Ω → Ω, (x1, x2) �→ (Φ1(x), Φ2(x)), (3)
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F the vector field, v the white noise, w a standard Wiener process, and B a 2 × 2 matrix
of the perturbation amplitude. The sample space Ω is assumed to be a Cartesian product
Ω1 × Ω2. We therefore just need to examine how information is transferred between the
two components, namely x1 and x2, of the system in question. Without loss of generality, it
suffices to consider only the information transferred from x2 to x1, or T2→1 for short.

Associated with each state x ∈ Ω is a joint probability density function

ρ = ρ(x) = ρ(x1, x2) ∈ L
1(Ω),

and two marginal densities

ρ1(x1) =
∫

Ω2

ρ(x1, x2) dx2,

ρ2(x2) =
∫

Ω1

ρ(x1, x2) dx1,

with which we have a joint (Shannon) entropy

H = −
∫∫

Ω
ρ(x) log ρ(x) dx, (4)

and marginal entropies

H1 = −
∫

Ω1

ρ(x1) log ρ(x1) dx1, (5)

H2 = −
∫

Ω2

ρ(x2) log ρ(x2) dx2. (6)

As x evolves, the densities evolve subsequently. Specifically, corresponding to (2) there is
a Fokker-Planck equation that governs the evolution of ρ; if x moves on according to (1),
the density is steered forward by the Frobenius-Perron operator (F-P operator henceforth).
(Both the Fokker-Planck equation and the F-P operator will be introduced later.) Accordingly
the entropies H, H1, and H2 also change with time. As reviewed in the introduction, the
classical empirical/half-empirical information flow/transfer formalisms, though appearing in
different forms, all essentially deal with the evolution of the marginal entropy of the receiving
component, i.e., that of x1 if T2→1 is considered. With this Liang & Kleeman (2005) noted
that, by carefully classifying the mechanisms that govern the marginal entropy evolution, the
concept of information transfer or information flow actually can be put on a rigorous footing.
More specifically, the evolution of H1 can be decomposed into two exclusive parts, according
to their driving mechanisms: one is from x2 only, another with the effect from x2 excluded.
The former, written T2→1, is the very information flow or information transfer from x2 to x1.

Putting the latter as
dH1\2

dt
for the continuous case, and ∆H1\2 for the discrete case, we therefore

have:

(1) For the discrete system (1), the information transferred from x2 to x1 is

T2→1 = ∆H1 − ∆H1\2; (7)

(2) For the continuous system (2), the rate of information transferred from x2 to x1 is

T2→1 =
dH1

dt
−

dH1\2

dt
. (8)
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Likewise, the information flow from x1 to x2 can be defined. In the following we will be
exploring how these are evaluated.

3. Deterministic systems with random inputs

We begin with the deterministic counterparts of (1) and (2), i.e.,

x(τ + 1) = Φ(x(τ)), (9)

and

dx

dt
= F(x, t), (10)

respectively, with randomness limited within initial conditions, and then extend it to generic
systems. This is not just because that (9) [resp. (10)] makes a special case of (1) [resp. (2)],
but also because historically it is the idiosyncrasy of deterministic systems (Liang & Kleeman,
2005) that stimulates the rigorous formulation for this important physical notion, namely in-
formation flow or information transfer.

3.1 Entropy production

We first examine how entropy is produced with the systems (9) and (10). In this subsection,
the system dimensionality is not limited to 2, but can be arbitrary.

3.1.1 Entropy evolution with discrete systems

Let ρ = ρ(x) be the joint density of x at step τ, with the dependence on τ suppressed for
simplicity. Its evolution is governed by the Frobenius-Perron operator, or F-P operator as will
be called,

P : L1(Ω) �→ L1(Ω),

which is given by, in a loose sense,
∫

ω
Pρ(x) dx =

∫

Φ−1(ω)
ρ(x) dx, (11)

for any ω ⊂ Ω. [A rigorous definition with measure theory can be seen in Lasota & Mackey
(1994).] If Φ is nonsingular and invertible, the right hand side of (11) is

∫

Φ−1(ω)
ρ(x) dx

y=Φ(x)
=====

∫

ω
ρ
[

Φ
−1(y)

] ∣

∣

∣
J−1

∣

∣

∣
dy,

where J is the Jacobian of Φ:

J = J(x) = det

[

∂Φ(x1, x2

∂(x1, x2)

]

.

and J−1 its inverse. So in this case P can be explicitly written out:

Pρ(x) = ρ
[

Φ
−1(x)

] ∣

∣

∣
J−1

∣

∣

∣
. (12)

With P , the change of the joint entropy H from time step τ to step τ + 1 is, by (4),

∆H = H(τ + 1)− H(τ)
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= −
∫∫

Ω
Pρ(x) logPρ(x) dx +

∫∫

Ω
ρ(x) log ρ(x) dx. (13)

In the case of nonsingular and invertible Φ, the above can be evaluated:

∆H = −
∫∫

Ω
ρ
[

Φ−1(x)
] ∣

∣

∣
J−1

∣

∣

∣
· log

(

ρ
[

Φ−1(x)
] ∣

∣

∣
J−1

∣

∣

∣

)

dx +
∫∫

Ω
ρ log ρ dx

y=Φ−1(x)
===== −

∫∫

Ω
ρ(y)

[

log ρ(y) + log
∣

∣

∣
J−1

∣

∣

∣

]

dy +
∫∫

Ω
ρ log ρ dx

=
∫∫

Ω
ρ(y) |J| dy.

We hence have the following theorem:

Theorem 3.1. If the system (9) has a nonsingular and invertible mapping Φ, then the entropy change
can be expressed as, in a concise form,

∆H = E log |J| ,
(14)

where E is the mathematical expectation with respect to ρ.

Equation (14), which was established in Liang & Kleeman (2005), states that the entropy in-
crease for a discrete system upon one application of an invertible transformation is simply the
average logarithm of the rate of area change under the transformation. This extremely concise
form of evolution gives us a hint on how the information flow concept may be easily obtained,
as will be clear soon.

3.1.2 Entropy evolution with continuous systems

Now consider the continuous system (10). Here the dimensionality is not just limited to 2, but
can be any positive integer n. First discretize it on the infinitesimal interval [t, t + ∆t]:

x(t + ∆t) = x(t) + F(x(t), t)∆t. (15)

This equation defines a mapping Φ : Ω → Ω, x �→ x + F(x, t)∆t, with a Jacobian

J = det

[

∂Φ(x1, x2, ..., xn)

∂(x1, x2, ..., xn)

]

= det













1 + ∂F1
∂x1

∆t ∂F1
∂x2

∆t ... ∂F1
∂xn

∆t
∂F2
∂x1

∆t 1 + ∂F2
∂x2

∆t ... ∂F2
∂xn

∆t

...
...

. . .
...

∂Fn
∂x1

∆t ∂Fn
∂x2

∆t ... 1 + ∂Fn
∂xn

∆t













= ∆t ∑
i

∂Fi

∂xi
+ O(∆t2). (16)

As ∆t → 0, it is easy to show that Φ is always nonsingular and invertible; in fact, Φ−1 : Ω → Ω

can be explicitly found:

Φ−1(x) = x − F(x, t)∆t + O(∆t2). (17)
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So by (14), as ∆t → 0,

dH

dt
= lim

∆t→0

E log |J|

∆t

= E lim
∆t→0

1

∆t
log

(

1 + ∆t ∑
i

∂Fi

∂xi
+ O(∆t2)

)

= E

(

∑
i

∂Fi

∂xi

)

.

This fulfills the proof of the following important theorem:

Theorem 3.2. For the deterministic system (10), the entropy H evolves according to

dH

dt
= E(∇ · F).

(18)

Like (14), Eq. (18) is also in an extremely concise form. It states that the time rate of change
of H is totally controlled by the contraction or expansion of the phase space. This important
theorem was established by Liang & Kleeman (2005), using the Liouville equation correspond-
ing to (10). But the derivation therein requires some assumption (though very weak) at the
boundaries, while here no assumption is invoked.

3.2 Information flow

The elegant formula (18) allows us to obtain with ease the information flow for the continuous
system (10). Indeed, this is precisely what Liang & Kleeman (2005) did in establishing the first
formalism in a rigorous sense. To be short, consider only the rate of information transfer from
x2 to x1, namely T2→1, which is the difference between the rate of change of the marginal

entropy dH1
dt and that with the effect from x2 excluded, i.e.,

dH1\2

dt . In a 2D system,
dH1\2

dt is

actually equivalent to the rate of H1 evolution due to x1 its own, denoted
dH∗

1
dt . Observing the

obvious additivity property of (18), Liang & Kleeman (2005) intuitively argued that

dH∗
1

dt
= E

(

∂F1

∂x1

)

.

We hence obtain the following theorem:

Theorem 3.3. For the 2D system (10),

dH1\2

dt
= E

(

∂F1

∂x1

)

=
∫∫

Ω
ρ

∂F1

∂x1
dx1dx2. (19)

(The proof of this theorem is deferred to later in this subsection.) The information flow from
x2 to x1 therefore follows easily from (8).
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Theorem 3.4. For the 2D system (10), the rate of information transferred from x2 to x1 is

T2→1 = −E2|1

(

∂(F1ρ1)

∂x1

)

, (20)

where E is an integration operator defined with respect to the conditional density

ρ2|1(x1|x1) =
ρ(x1, x2)

ρ1(x1)
(21)

such that, for any function f = f (x1, x2),

E2|1 f =
∫∫

Ω
ρ2|1(x2|x1) · f (x1, x2) dx1dx2. (22)

Proof
Corresponding to (10) is the Liouville equation

∂ρ

∂t
+∇ · (Fρ) = 0 (23)

that governs the density evolution. Integrating it with respect to x2 over the subspace Ω2,

∂ρ1

∂t
+

∂

∂x1

∫

Ω2

ρF1 dx2 = 0. (24)

The other term is integrated out with the compact support assumption for ρ. Multiplication
by −(1 + log ρ1), followed by an integration over Ω1, gives

dH1

dt
=

∫∫

Ω

[

log ρ1
∂(ρF1)

∂x1

]

dx1dx2

= −
∫∫

Ω
ρ

[

F1

ρ1

∂ρ1

∂x1

]

dx1dx2.

In the second step integration by parts is used; also used is the compact support assumption
for ρ. So

T2→1 =
dH1

dt
−

dH1\2

dt

=
dH1

dt
− E

(

∂F1

∂x1

)

= −
∫∫

Ω

(

F1

ρ1

∂ρ1

∂x1
+

∂F1

∂x1

)

ρ dx1dx2

= −
∫∫

Ω
ρ2|1(x2|x1)

∂(F1ρ1)

∂x1
dx1dx2.

Q.E.D.

One may argue that, following the same way with (14), the information flow for the discrete
system (9) can be obtained. Indeed this is true, but only in part, as the neat formula (14) re-
quires that the mapping Φ and its components be nonsingular and invertible. Unfortunately,
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for many important 2D mappings like the baker transformation we will be introducing in
section 5, the requirements are generally not met. We therefore need to consider more generic
situations.

By (7), we need to find ∆H1 and ∆H1\2 as the system (9) moves forward from step τ to τ + 1. As
in the continuous case, it is easy to obtain ∆H1 from the given mapping Φ. The key is how to
find ∆H1\2, which is the entropy increase in direction 1 as the system goes from τ to τ + 1 under

Φ with x2 frozen instantaneously at step τ, given x1(τ). As ∆H1\2 = H1\2(τ + 1)− H1(τ), we

are done if H1\2(τ + 1) is evaluated. This is the marginal entropy for the first component
evolved from H1 with contribution from x2 excluded from τ to τ + 1. Consider the quantity

f ≡ − logP1\2ρ1(y1), (25)

where y1 = Φ1(x), and P1\2ρ1(y1) is the marginal density in direction 1 at step τ + 1, as the
density ρ1 evolves from step τ to step τ + 1 under the transformation:

Φ\2 : y1 = Φ1(x1, x2) (26)

i.e., the map Φ with x2 frozen instantaneously at τ as a parameter. Note here we use
y1 = Φ1(x) for the state of component 1 at step τ + 1 (x1 is for that at step τ); We do not use x1

with some superscript or subscript in order to avoid any possible confusion in distinguishing
the states of x1 at these two time steps.

With our notation introduced above, H1\2(τ + 1) is the mathematical expectation of f . (Recall
how Shannon entropy is defined.) In other words, it is equal to the integration of f times
some probability density function over the corresponding sample space. The first density to
be multiplied is P1\2ρ1(y1). But f also depends on x2, we thence need another density for x2.

Recall that the freezing of x2 is performed on interval [τ, τ + 1], given all other components
(here only x1 in this 2D system) at step τ. What we need is therefore the conditional density
of x2 given x1 at τ, i.e., ρ(x2|x1). Put all these together, we therefore have the following result.

Proposition 3.1. As the system (9) evolves from time step τ to time step τ + 1, if x2 is instantaneously
frozen as a parameter at step τ, the marginal entropy of x2 at step τ + 1 is

H1\2(τ + 1) = −
∫∫

Ω

P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2, (27)

where y1 is given by (26).

Note here we do not do another averaging with respect to x1, as x1 is already embedded in
y1.

The information transferred from x2 to x1 is now easy to obtain. Since H1(τ) is the same, the
right hand side of (7) is simply the difference between

H1(τ + 1) = −
∫∫

Ω

(Pρ)1(y1) log(Pρ)1(y1) dy1, (28)

where (Pρ)1 is the marginal density at step τ + 1, and H1\2(τ + 1). We hence arrive at the
following theorem on information flow.
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Theorem 3.5. For system (9), the information transferred from x2 to x1 is

T2→1 = −
∫

Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1

+
∫

Ω
P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2. (29)

Likewise the information flow from x1 to x2 can be obtained. Note in arriving at (29) no issue
about the invertibility of Φ or either of its components is ever invoked. But if invertibility is
guaranteed, then the formula may be further simplified.

Corollary 3.1. In the system (9), if the mapping Φ has a component Φ1 that is invertible, then

∆H1\2 = E log |J1| , where J1 =
∂Φ1(x)

∂x1
, (30)

and hence

T2→1 = ∆H1 − E log |J1| . (31)

Remark: This concise result is just one would expect by the similar heuristic argument in
arriving at Theorem 3.3 and Theorem 3.4.

Proof
By (27),

∆H1\2 = −
∫∫

Ω1×Ω2

P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2

+
∫

Ω1

ρ1 log ρ1 dx1,

When Φ1 is invertible, J1 = ∂Φ1
∂x1

�= 0, by (12),

P1\2ρ1(y1) = ρ
[

Φ−1
1 (y1, x2)

] ∣

∣

∣
J−1
1

∣

∣

∣

= ρ1(x1)
∣

∣

∣
J−1
1

∣

∣

∣
. (32)

So

∆H1\2 = −
∫∫

ρ1(x1)
∣

∣

∣
J−1
1

∣

∣

∣
log

(

ρ1(x1)
∣

∣

∣
J−1
1

∣

∣

∣

)

ρ(x2|x1) |J1| dx1dx2

+
∫

ρ1 log ρ1 dx1

= −
∫∫

ρ1(x1) ρ(x2|x1) log
∣

∣

∣
J−1
1

∣

∣

∣
dx1dx2

=
∫∫

ρ(x1, x2) log |J1| dx1dx2

= E log |J1| , (33)

and the second part follows subsequently.
Q.E.D.
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We are now able to prove the first theorem of this subsection, namely Theorem 3.3, which
originally was obtained by Liang & Kleeman (2005) through heuristic physical argument.

Proof of Theorem 3.3.
As before, look at an infinitesimal time interval [t, t + ∆t] and, for clarity, write the state vari-
ables at time t and t + ∆t as, respectively, x and y. Discretization of (10) yields a mapping

Φ = (Φ1, Φ2) : Ω → Ω, x = (x1, x2) �→ y = (y1, y2),

Φ :

{

y1 = x1 + ∆t · F1(x, t),
y2 = x2 + ∆t · F2(x, t).

(34)

As shown before, as ∆t → 0, Φ is nonsingular and always invertible, so are its components
Φ1 and Φ2. Moreover, the Jacobian for Φ1 is

J1 =
∂y1

∂x1
= 1 + ∆t

∂F1

∂x1
+ O(∆t2). (35)

By Corollary 3.1, ∆H1\2 = E log |J1|. So

dH1\2

dt
= lim

∆t→0

∆H1\2

∆t

= lim
∆t→0

1

∆t
E

(

log

∣

∣

∣

∣

1 + ∆t
∂F1

∂x1

∣

∣

∣

∣

+ O(∆t2)

)

= E

(

∂F1

∂x1

)

.

Q.E.D.

4. Stochastic systems

With the information flow for deterministic systems derived, we now take into account
stochasticity and re-consider the problem. We first consider discrete systems in the form of
(1), then continuous systems (2).

4.1 Discrete stochastic systems

As our convention, write x(τ + 1) as y to avoid confusion. Eq. (1) then defines a mapping
sending x to y:

y = Φ(x) + B(x)v, (36)

where v is a vector of white noise defined on R
2, B = (bij) is a matrix of the perturbation

amplitude, and the dependence on τ in the terms is suppressed for notation simplicity.
Corresponding to this mapping is a Markov operator P : L1(Ω) → L1(Ω), similar to the
F-P operator for the system (9), that sends ρ(x(τ)) to ρ(x(τ + 1)) or ρ(y). To find P , we

need just find ρ(y), given ρ(x), Φ, B, and ρ(v) which is also written as ρv(v) for clarity. For
convenience, B is assumed to be nonsingular.

www.intechopen.com



Information low and causality quantiication in discrete and continuous stochastic systems 339

Let Π be a transformation of (x, v) into (z, y) such that

Π :

{

z = x,
y = Φ(x) + B(x)v.

(37)

Its Jacobian is

J = det

[

∂(z, y)

∂(x, v)

]

= det

[

I
2

0
2

∂(y1,y2)
∂(x1,x2

B

]

= det B, (38)

where I
2

and 0
2

are 2× 2 identity and zero matrices, respectively. Given that B is nonsingular,
det B is nonzero, and hence Π is invertible:

Π
−1 :

{

x = z,

v = B−1(z)
(

y − Φ(z)
)

.
(39)

We now look at how the joint distribution of (z, y) is expressed in terms of (x, v).

For any ωx ∈ Ω, ωv ∈ R
2,

∫∫∫∫

ωx×ωv

ρz,y(z, y) dzdy =
∫∫∫∫

Π−1(ωx×ωv)
ρx,v(x, v) dxdv

=
∫∫∫∫

ωx×ωv

ρx,v

(

Π
−1(z, y)

)

·

∣

∣

∣
J−1

∣

∣

∣
dzdy. (40)

As ωx and ωv are arbitrarily chosen, the integrands must be equal, and hence

ρz,y(z, y) = ρx,v

(

Π
−1(z, y)

)

·

∣

∣

∣
J−1

∣

∣

∣

= ρx,v

[

z, B−1(z)(y − Φ(z))
]

·

∣

∣

∣
J−1

∣

∣

∣

= ρx(z) · ρv

[

B−1(z)(y − Φ(z))
]

·
[

det B(z)
]−1

.

In the last step, the fact that x and v are independent has been used. Integrate z out and we
obtain

ρy(y) =
∫∫

Ω

ρz,y(z, y) dz

=
∫∫

Ω

ρx(z) · ρv

[

B−1(z)(y − Φ(z))
]

·
[

det B(z)
]−1

dz.

This equation defines a Markov operator P (corresponding to the F-P operator in the deter-
ministic case) for system (1):

Pρ(x) =
∫∫

Ω

ρ(z) · ρv

[

B−1(z)(y − Φ(z))
]

·
[

det B(z)
]−1

dz. (41)

In this case ρv is a Gaussian distribution with zero mean and an identity covariance matrix,
and hence P can be computed. With it one may calculate the marginal density (Pρ)1 and
hence the marginal entropy at time step τ + 1:

H1(τ + 1) = −

∫

Ω1

(Pρ)1(y1) · log(Pρ)1(y1) dy1. (42)
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Next look at H1\2(τ + 1). Freezing x2 at step τ modifies the dynamics to

Φ\2 : y1 = Φ1(x1, x2) + b11v1 + b12v2. (43)

Here we distinguish several cases: (1) If b11 = b12 = 0, then this degenerates into a de-
terministic system, and the Markov operator is the F-P operator as we derived before; (2) if
either of the last two terms vanishes, then follow the same procedure as above and a mod-
ified Markov operator P1\2 is obtained; (3) if b11 and b12 have no dependence on x1, then

b11v1 + b12v2 ∼ N(0, b2
11 + b2

12) can be combined to be one random variable with known distri-
bution, and, again, the above procedure applies, and P1\2 follows accordingly; (4) if neither of

the perturbations are zero, then we need to do a transformation from (x1, v1, v2) to (z1, z2, y1)
with some random variables z1 and z2 as simple as possible. The so-obtained joint density of
(z1, z2, y1) is then integrated over the sample spaces of z1 and z2, and the resulting marginal
entropy is the desired P1\2. So anyway P1\2 can be computed, giving

H1\2(τ + 1) = −

∫∫

Ω

P1\2ρ1(y1) · logP1\2ρ1(y1) · ρ(x2|x1) dy1dx2

by Proposition 3.1. This subtracted from H1(τ + 1) results the information transferred from
x2 to x1:

T2→1 = H1(τ + 1)− H1\2(τ + 1). (44)

In principle, following the above procedure all the information flows between the system
components can be computed. But more often than not this turn out to be very tedious and
difficult. In practice, we would like to suggest different approaches, depending on the prob-
lem itself.

4.2 Continuous stochastic systems

For the continuous system (2), there is a Fokker-Planck equation governing the density evolu-
tion:

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
=

1

2

2

∑
i,j=1

∂2(gijρ)

∂xi∂xj
, (45)

where

gij = gji =
2

∑
k=1

bikbjk, ij = 1, 2, (46)

and bij are the entries of the perturbation matrix B. From this it is easy to obtain the evolution
of all the entropies, and H1 in particular.

Proposition 4.1. For system (2), the marginal entropy of x1 evolves according to

dH1

dt
= −E

(

F1
∂ log ρ1

∂x1

)

−
1

2
E

(

g11
∂2 log ρ1

∂x2
1

)

, (47)

where E stands for expectation with respect to ρ.
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Proof.
Integrate (45) with respect to x2 over Ω2 to get

∂ρ1

∂t
+

∫

Ω2

∂(F1ρ)

∂x1
dx2 =

1

2

∫

Ω2

∂2(g11ρ)

∂x2
1

dx2. (48)

Here we have done integration by parts, and applied the compact support assumption for ρ
and its derivatives. For simplicity, hereafter we will suppress the integral domain Ω, unless
otherwise noted. Multiplication of (48) by −(1 + log ρ1), followed by an integration with
respect to x1 over Ω1, yields

dH1

dt
−

∫∫

log ρ1
∂(F1ρ)

∂x1
dx1dx2 = −

1

2

∫∫

log ρ1
∂2(g11ρ)

∂x2
1

dx1dx2.

Integrate by parts again, and (47) follows. Q.E.D.

As before, the key part is the evaluation of
dH1\2

dt . The result is summarized in the following
theorem:

Proposition 4.2. For the system (2), the time rate of change of the marginal entropy of x1 with x2

frozen instantaneously is

dH1\2

dt
= E

(

∂F1

∂x1

)

−
1

2
E

(

g11
∂2 log ρ1

∂x2
1

)

−
1

2
E

(

1

ρ1

∂2(g11ρ1)

∂x2
1

)

. (49)

Proof.
Examine a small time interval [t, t + ∆t]. We are going to prove the proposition by taking the
limit:

dH1\2

dt
= lim

∆t→0

H1\2(t + ∆t)− H1(t)

∆t
,

which boils down to the derivation of H1\2(t + ∆t), namely the marginal entropy of x1 at time
t + ∆t as x2 frozen as a parameter instantaneously at t. In principle this may be obtained
using the strategy in the preceding subsection, but the evaluation of the convolution proves
to be very difficult. To avoid the difficulty, Liang (2008) took a different approach, which we
will follow hereafter.

In the stochastic system (2), the state x = (x1, x2)
T is carried forth as time goes on. When

time reaches t, freeze x2 instantaneously and see how the state may evolves thenceforth until
t + ∆t. For convenience, denote by x1\2 the first component of x with x2 frozen as a parameter.
The system (2) is then modified to

dx1\2 = F1(x1\2, x2, t)dt + ∑
k

b1kdwk, on [t, t + ∆t], (50)

x1\2 = x1 at time t. (51)

Just as (45), correspondingly there is a modified Fokker-Planck equation for the density of x1\2,
written ρ1\2:

∂ρ1\2

∂t
+

∂(F1ρ1\2)

∂x1
=

1

2

∂2(g11ρ1\2)

∂x2
1

, t ∈ [t, t + ∆t] (52)

ρ1\2 = ρ1 at t. (53)
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Here g11 is the same as that defined in (46), i.e., g11 = ∑k b2
1k. Eq. (52) divided by ρ1\2 yields

∂ ft

∂t
+

1

ρ1\2

∂F1ρ1\2

∂x1
=

1

ρ1\2

∂2g11ρ1\2

∂x2
1

,

where ft is a function of x1,
ft(x1) = log ρ1\2(t, x1). (54)

We are doing this in the hope of obtaining an evolution law for H1\2, as by the definition

of Shannon entropy we will just need to consider how the expectation of − ft(x1) evolves.
Discretizing,

ft+∆t(x1) = ft(x1)−
∆t

ρ1

∂(F1ρ1)

∂x1
+

∆t

2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2),

where the fact ρ1\2 = ρ1 at time t has been used. For simplicity, the arguments have been

suppressed for functions evaluated at x1(t), and this convention will be kept throughout this
subsection. So

ft+∆t(x1\2(t + ∆t)) = ft(x1\2(t + ∆t))−
∆t

ρ1

∂(F1ρ1)

∂x1
+

∆t

2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2).

Using the Euler-Bernstein approximation (e.g., Lasota & Mackey, 1994) of (50), the x1\2(t + ∆t)
in the argument of ft on the right hand side can be expanded as

x1\2(t + ∆t) = x1(t) + F1∆t + ∑
k

b1k∆wk + O(∆t2).

And hence

ft+∆t(x1\2(t + ∆t))

= ft

(

x1 + F1∆t + ∑
k

b1k∆wk

)

−
∆t

ρ1

∂(F1ρ1)

∂x1
+

∆t

2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2)

= ft(x1) +
∂ ft

∂x1

(

F1∆t + ∑
k

b1k∆wk

)

+
1

2

∂2 ft

∂x2
1

(

F1∆t + ∑
k

b1k∆wk

)2

−
∆t

ρ1

∂(F1ρ1)

∂x1
+

∆t

2ρ1

∂2(g11ρ1)

∂x2
1

+ O(∆t2), (55)

where Taylor series expansion has been performed. Take expectations on both sides with
respect to their respective random variables. Recalling how density evolution is defined,
these expectations are equal (see Lasota & Mackey, 1994). Thus the left hand side results
in −H1\2(t + ∆t), and the first term on the right hand side is −H1(t). Notice that for a Wiener

process wk, ∆wk ∼ N(0, ∆t), that is to say,

E∆wk = 0, E(∆wk)
2 = ∆t;

also notice that ∆wk are independent of (x1, x2). So

E

(

∂ f1

∂x1
∑
k

b1k∆wk

)

= E

(

∂ f1

∂x1

)

∑
k

b1kE∆wk = 0.
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Hence the second term on the right hand side is

∆t · E

(

F1
∂ ft

∂x1

)

.

For the same reason, the third term after expansion leaves only one sub-term of order ∆t:

1

2
E





∂2 ft

∂x2
1

∑
k

b1k∆wk ∑
j

b1j∆wj





=
1

2
E





∂2 ft

∂x2
1



∑
k

b2
1k(∆wk)

2 + ∑
k �=j

b1kb1j∆wk∆wj







 .

Using the independence between the perturbations, the summation over k �=j inside the paren-
theses must vanish upon applying expectation. The first summation is equal to g11∆t, by the
definition of gij and the fact E(∆wk)

2 = ∆t. So the whole term is

∆t

2
E

[

g11
∂2 ft

∂x2
1

]

.

These, plus the fact that
ft = log ρ1\2(t; x1) = log ρ1,

all put together, (55) followed by an expectation on both sides yields

H1\2(t + ∆t) = H1(t)− ∆t · E

(

F1
∂ log ρ1

∂x1

)

−
∆t

2
E

(

g11
∂2 log ρ1

∂x2
1

)

+∆t · E

(

1

ρ1

∂(F1ρ1)

∂x1

)

−
∆t

2
E

(

1

ρ1

∂2(g11ρ1)

∂x2
1

)

+ O(∆t2).

The second and fourth terms on the right hand side can be combined to give

∆t · E

(

−F1
∂ log ρ1

∂x1
+

1

ρ1

∂(F1ρ1)

∂x1

)

= ∆t · E

(

∂F1

∂x1

)

.

So

dH1\2

dt
= lim

∆t→0

H1\2(t + ∆t)− H1(t)

∆t

= E

(

∂F1

∂x1

)

−
1

2
E

(

g11
∂2 log ρ1

∂x2
1

)

−
1

2
E

(

1

ρ1

∂2(g11ρ1)

∂x2
1

)

.

Q.E.D.

With
dH1\2

dt evaluated, now it is easy to obtain T2→1, namely, the information flow from x2 to
x1.

Theorem 4.1. For the system (2), the time rate of information transferred from x2 to x1 is
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T2→1 = −E2|1

(

∂(F1ρ1)

∂x1

)

+
1

2
E2|1

(

∂2(g11ρ1)

∂x2
1

)

, (56)

where E2|1 is the integration operator defined in Theorem 3.4.

Proof.
Subtracting (49) from (47), one obtains

T2→1 = −E

(

F1
∂ log ρ1

∂x1

)

− E

(

∂F1

∂x1

)

+
1

2
E

(

1

ρ1

∂2(g11ρ1)

∂x2
1

)

= −E

(

1

ρ1

∂(F1ρ1)

∂x1

)

+
1

2
E

(

1

ρ1

∂2(g11ρ1)

∂x2
1

)

, (57)

where E is the expectation with respect to ρ(x1, x2). Notice that the conditional density of x2

given x1 is

ρ2|1(x2|x1) =
ρ(x1, x2)

ρ1(x1)
.

The operator

E

(

1

ρ1
·

)

=
∫∫

Ω

(

ρ

ρ1
·

)

dx

is then simply the integration operator E2|1 as defined before in Theorem 3.4. The result thus
follows.

Notice that in (56), the first term on the right hand side is precisely that in (20) i.e., the result
of Liang & Kleeman (2005) based on intuitive argument for deterministic systems. This
derivation supplies an alternative proof of the argument, and hence Theorem 3.4.

Above is the information flow from x2 to x1. Likewise, the flow from x1 to x2 can be derived.
It is

T1→2 = −E1|2

(

∂(F2ρ2)

∂x2

)

+
1

2
E1|2

(

∂2(g22ρ2)

∂x2
2

)

, (58)

where ρ2 =
∫

ρ dx1 is the marginal density of x2, and E1|2 is the operator such that, for any

function f ∈ L1(Ω), E1|2 f =
∫∫

Ω
ρ1|2(x1|x2) f (x) dx.

4.3 Properties

The above-derived information flow between system components possesses a very impor-
tant property, namely the property of transfer directionality or asymmetry as emphasized in
Schreiber (2000). One may have observed that the transfer in one direction need not imply
anything about the transfer in the other direction, in contrast to the traditional correlation
analysis or mutual information analysis. Particularly, in the extreme case that one component
evolves independently from the other, the observation is concretized in the following theorem.

Theorem 4.2. (Causality)
If the evolution of x1 is independent of x2, then T2→1 = 0.
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Proof.

This property holds for formalisms with all the systems, but we here just prove with the
continuous case. For the discrete system, the proof is lengthy, and the reader is referred to
Liang & Kleeman (2007a) for details.

In (56), if F1 = F1(x1), and g11 is independent of x2, integration can be taken for ρ2|1 with
respect to x2 inside the double integrals, which gives

∫

Ω2

ρ2|1(x2|x1) dx2 = 1.

The right hand side hence becomes

−
∫

Ω1

∂(F1ρ1)

∂x1
dx1 +

∫

Ω1

∂(g11ρ1)

∂x2
dx1.

By the compact support assumption, these integrations both vanish, leaving a zero T2→1.

Alternatively, if neither F1 nor g11 has dependency on x2, the integrals in (48) can be taken
within the integrands, making ρ into ρ1. This way the whole equation becomes a 1D
Fokker-Planck equation for ρ1, and hence x1 is totally decoupled from the system, behaving
like an independent variable. By intuition there should be no information flowing from x2.
Q.E.D.

This theorem shows that, between two evolving state variables x1 and x2, evaluation of T2→1

and T1→2 is able to tell which one causes which one and, in a quantitative way, tell how
important one is to the other. Our information analysis thus gives a quantitative measure of
the causality between two dynamical events. For this reason, this property is also referred to
as the property of causality.

Another property holds only for the continuous system (2). Observe that the two terms of
(56), the first is the same in form as that in (20), i.e., the corresponding deterministic system.
Stochasticity contributes from the second term. An interesting observation is that:

Theorem 4.3. Given a stochastic system component, if the stochastic perturbation is independent of
another component, then the information transfer from the latter is the same in form as that for the
corresponding deterministic system.

Proof.

It suffices to consider only component x1. If the stochastic perturbation g11 = ∑k b2
1k is inde-

pendent of x2, then

E2|1

(

∂2(g11ρ1)

∂x2
1

)

=
∫

∂2(g11ρ1)

∂x2
1

dx1 = 0.

Here we have used the fact
∫

ρ2|1dx2 = 1. In this case, (56) and (20) have precisely the same
form. Q.E.D.

This property is also very interesting since a great deal of noise in real systems appear to
be additive; in other words, bij, and hence gij, are often constants. By the theorem these
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stochastic systems thus function like deterministic in terms of information flow. Of course,
the similarity is just in form; they are different in reality. The “deterministic” part of (56)
(i.e., the first term) actually need not be deterministic, for stochasticity contributes to the state
evolution and hence is embedded in the marginal density. As an illustration of the difference,
the differential entropy for deterministic systems may go to minus infinity, e.g., in the case of
the attractor of a fixed point or limit cycle, while this does not make an issue for stochastic
systems (Ruelle, 1997).

5. Applications

The information flow formalism has been verified with benchmark problems, and applied to
the study of several important dynamical system problems. Particularly, in Liang & Kleeman
(2007a) we computed the transfers within a Hénon map, and obtained a result unique to our
formalism just as one may expect on physical ground. In this section, we present two of these
applications/verifications, echoing the challenges initially posed in the introduction.

5.1 Baker transformation

The baker transformation is a 2D mapping Φ : Ω → Ω, Ω = [0, 1] × [0, 1], that mimics the
kneading of a dough; it is given by

Φ(x1, x2) =

{

(2x1, x2
2 ) 0 ≤ x1 ≤ 1

2 , 0 ≤ x2 ≤ 1

(2x1 − 1, 1
2 x2 +

1
2 )

1
2 < x1 ≤ 1, 0 ≤ x2 ≤ 1

. (59)

As introduced in the beginning, physicists have observed and intuitively argued that,
upon applying the transformation, information flows continuingly from the stretching
direction (here x1) to the folding direction (x2), while no transfer occurs the other way (see
Lasota & Mackey, 1994). However, until Liang & Kleeman (2007a), this important physical
phenomenon had not ever been quantitatively studied. In the following, we give a brief
presentation of the Liang & Kleeman result.

To start, first look at the F-P operator. It is easy to check that the baker transformation is
invertible, and measure preserving (the Jacobian J = 1), so by Eq. (14) its joint entropy stays
unchanged. (But one of its components is not; see below.) The inverse map is given by

Φ
−1(x1, x2) =

{

( x1
2 , 2x2) 0 ≤ x2 ≤ 1

2 , 0 ≤ x1 ≤ 1

( x1+1
2 , 2x2 − 1) 1

2 ≤ x2 ≤ 1, 0 ≤ x1 ≤ 1
(60)

Using Φ
−1, we can find the counterimage of [0, x1]× [0, x2] to be

1) 0 ≤ x2 <
1
2 ,

Φ
−1([0, x1]× [0, x2]) = [0,

x1

2
]× [0, 2x2]; (61)

2) 1
2 ≤ x2 ≤ 1,

Φ
−1([0, x1]× [0, x2]) = Φ

−1

(

[0, x1]× [0,
1

2
]

)

∪ Φ
−1

(

[0, x1]× [
1

2
, x2]

)

= [0,
x1

2
]× [0, 1] ∪ [

1

2
,

x1 + 1

2
]× [0, 2x2 − 1]. (62)
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The F-P operator P is thus (cf. Lasota & Mackey, 1994)

Pρ(x1, x2) =
∂2

∂x2∂x1

∫∫

Φ−1([0,x1]×[0,x2])
ρ(s, t) dsdt,

which, after a series of transformations, leads to

Pρ(x1, x2) =

{

ρ( x1
2 , 2x2), 0 ≤ x2 <

1
2 ,

ρ( 1+x1
2 , 2x2 − 1), 1

2 ≤ x2 ≤ 1.
(63)

We now prove the following important result:

Theorem 5.1. For the baker transformation (59),

(a) T2→1 = 0,

(b) T1→2 > 0,

at any time steps.

Proof.

(a) With (63), we know that, upon one transformation, the marginal density of x1 increases
from

ρ1 =
∫ 1

0
ρ(x1, x2) dx2

to
∫ 1

0
Pρ(x1, x2) dx2 =

∫ 1/2

0
ρ(

x1

2
, 2x2) dx2 +

∫ 1

1/2
ρ(

x1 + 1

2
, 2x2 − 1) dx2

=
1

2

∫ 1

0

[

ρ
( x1

2
, x2

)

+ ρ

(

x1 + 1

2
, x2

)]

dx2

=
1

2

[

ρ1

( x1

2

)

+ ρ1

(

x1 + 1

2

)]

. (64)

Note that the (59) as a whole is invertible. Its x1 direction, however, is not. Consider x1 only,
the transformation reduces to a dyadic mapping, Φ1 : [0, 1] → [0, 1], Φ1(x1) = 2x1 (mod 1). It
is easy to obtain

Φ
−1
1 ([0, x1]) = [0,

x1

2
] ∪ [

1

2
,

1 + x1

2
]

for x1 < 1. So it has an F-P operator

(Pρ)1\2(x1) =
∂

∂x1

∫

Φ
−1
1 ([0,x1])

ρ1(s) ds

=
∂

∂x1

∫ x1/2

0
ρ1(s) ds +

∂

∂x1

∫ (1+x1)/2

1/2
ρ1(s) ds

=
1

2

[

ρ1

( x1

2

)

+ ρ1

(

1 + x1

2

)]

.

This is exactly the same as (64), implying that

T2→1 = 0, (65)
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which is just as expected.

(b) To compute the transfer in the opposite direction, first compute the marginal distribution

∫ 1

0
Pρ(x1, x2) dx1 =

{
∫ 1

0 ρ
( x1

2 , 2x2

)

dx1, 0 ≤ x2 <
1
2 ;

∫ 1
0 ρ

(

x1+1
2 , 2x2 − 1

)

dx1, 1
2 ≤ x2 ≤ 1.

(66)

This substituted in

∆H2 = −
∫ 1

0

∫ 1

0
Pρ(x1, x2) ·

[

log

(

∫ 1

0
Pρ(λ, x2)dλ

)]

dx1dx2

+
∫ 1

0

∫ 1

0
ρ(x1, x2) ·

[

log

(

∫ 1

0
ρ(λ, x2)dλ

)]

dx1dx2, (67)

after a series of transformation of variables, gives

∆H2 = − log 2 + (I + II), (68)

where

I =
∫ 1

0

∫ 1/2

0
ρ(x1, x2) ·

[

log

∫ 1
0 ρ(λ, x2)dλ

∫ 1/2
0 ρ(λ, x2)dλ

]

dx1dx2, (69)

II =
∫ 1

0

∫ 1

1/2
ρ(x1, x2) ·



log

∫ 1
0 ρ(λ, x2)dλ

∫ 1
1/2 ρ(λ, x2)dλ



 dx1dx2. (70)

Note both I and II are nonnegative, because ρ(x1, x2) ≥ 0 and

∫ 1

0
ρ(x1, x2) dx1 ≥

∫ 1/2

0
ρ(x1, x2) dx1 (71)

∫ 1

0
ρ(x1, x2) dx1 ≥

∫ 1

1/2
ρ(x1, x2) dx1. (72)

Moreover, the two equalities cannot hold simultaneously, otherwise ρ will be zero, contra-
dicting to the fact that it is a density distribution. So I + II is strictly positive.

On the other hand, in the folding or x2 direction the transformation is always invertible, and
the Jacobian J2 = 1

2 . By Corollary 3.1,

∆H2\1 = E log
1

2
= − log 2. (73)

So,

T1→2 = ∆H2 − ∆H2\1 = I + II > 0. (74)

Q.E.D.

In plain language, Eqs. (74) and (65) tell that there is always information flowing from x1 or
the stretching direction to x2 or the folding direction (T1→2 > 0), while no transfer occurs the
other way (T2→1 = 0). Illustrated in Fig. 1 is such a scenario, which has been intuitively argued
in physics. Our formalism thus yields a result just as one may have expected on physical
grounds.
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Fig. 1. Illustration of the baker transformation, and the associated information flow (middle)
between the components.

5.2 Langevin equation

The formulas (56) and (58) with the stochastic system (2) are expected to be applicable in a
wide variety of fields. To help further understand them, Liang (2008) examined a 2D linear
system which hereafter we will be using:

dx = A xdt + Bdw, (75)

where w is a Wiener process, and A = (aij) and B = (bij) are constant matrices. For conve-
nience, suppose that initially x is Gaussian:

x ∼ N(µ, C).

Then it is Gaussian all the time because the system is linear (cf. Gardiner, 1985). Write the
mean and covariance as

µ(t) =

(

µ1(t)
µ2(t)

)

, C(t) =

(

c11(t) c12(t)
c21(t) c22(t)

)

.

It is easy to find the equations according to which they evolve:

dµ

dt
= A µ, (76a)

dC

dt
= A C + C A

T + B B
T . (76b)

(B B
T is the matrix (gij) we have seen before.) Solve them for µ and C, and we obtain the

probability density distribution at any time:

ρ(x) =
1

2π(det C)1/2
e−

1
2 (x−µ)T

C
−1(x−µ). (77)

Substitute this into (56) and (58), and the transfers T2→1 and T2→2 are obtained accordingly.

As an example, let A =

[

−0.5 0.1
a21 −0.5

]

, B =

[

1 1
1 1

]

. It is easy to show that both the

eigenvalues of A are negative; the system is hence stable and has an equilibrium solution:

µ(∞) =

(

0
0

)

, C(∞) =

(

2.44 2.20
2.20 2.00

)

,
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Fig. 2. A solution of (76) and the corresponding information transfers with the matrices A and
B and initial condition as shown in the text. (a) µ1 and µ2; (b) c11, c12 = c21, c22; (c) a sample
path starting from (1,2); (d) the computed information transfers T2→1 (upper) and T1→2 = 0.

no matter how the system is initialized. Figs. 2a,b give the time evolutions of µ and C with

initial conditions µ(0) =

(

1
2

)

, and C(0) =

(

9 0
0 9

)

; For reference, in Fig. 2c we also plot

a sample path starting from x(0) = µ(0). Clearly, though initially x1 (red line) and x2 (blue
line) they differ by a significant value, soon they begin to merge and thenafter almost follow
the same path. To analyze the information transfer, observe that in this case the vector field
component

F2 = −0.5x2,

has no dependence on x1; furthermore,

gij = ∑
k

bikbjk

are all constants. So by Theorem 4.2, the information transferred from x1 to x2 should vanish
at all times:

T1→2 = 0.

This assertion is confirmed by the computed result. In Fig. 2d, T1→2 is zero through time. The
other transfer, T2→1, increases monotonically and eventually approaches to a limit.

Comparing Figs. 2c and 2d one may have more to talk about. Obviously the typical sample
paths of x1 and x2 in the former are highly correlated—-In fact they are almost the same. This

www.intechopen.com



Information low and causality quantiication in discrete and continuous stochastic systems 351

0

1

2

(a)

1

2

0

2

4

6

8
(b)

c11 c22
c12

0 2 4 6 8 10
−2

0

2

4

6 x
1

x
2

t

(c)

0 2 4 6 8 10
0

0.05

0.1

t

(d)

T2 1

T1 2=0

is in drastic contrast to the zero information flow from x1 to x2, namely T1→2, in the latter.
The moral here is, even though x1(t) and x2(t) are highly correlated, the evolution of x2 has
nothing to do with x1. To x1, x2 is causal, while to x2, x1 is not. Through this simple example
one sees how information transfer extends the traditional notion of correlation analysis
and/or mutual information analysis by including causality.

6. Summary

The past few years have seen a major advance in the formulation of information flow or in-
formation transfer, a fundamental general physics and dynamical system concept which has
important applications in different disciplines. This advance, beginning with an elegant for-
mula obtained by Liang & Kleeman (2005) for the law of entropy production

dH

dt
= E(∇ · F)

for system (10), has led to important scientific discoveries in the applied fields such as at-
mospheric science and oceanography. In this chapter, a concise introduction of the system-
atic research has been given within the framework of 2D dynamical systems. The resulting
transfer is measured by the rate of entropy transferred from one component to another. The
measure possesses a property of transfer asymmetry and, if the stochastic perturbation to the
receiving component does not rely on the giving component, has a form same as that for the
corresponding deterministic system. Explicit formulas, i.e., (56) and (58), have been obtained
for generic stochastic systems (2), which we here write down again for easy reference:

T2→1 = −E

[

1

ρ1

∂(F1ρ1)

∂x1

]

+
1

2
E

[

1

ρ1

∂2(g11ρ1)

∂x2
1

]

,

T1→2 = −E

[

1

ρ2

∂(F2ρ2)

∂x2

]

+
1

2
E

[

1

ρ2

∂2(g22ρ2)

∂x2
2

]

,

where E stands for the mathematical expectation, and gij = ∑
2
k=1 bikbjk, i = 1, 2.

We have applied the results to examine the information flow within the baker transformation
and a linear system. In the former, it is proved that there is always information flowing from
the stretching direction to the folding direction, while no information is transferred the other
way. In the latter, one sees that correlation does not necessarily mean causality; for two highly
correlated time series, the one-way information transfer could be zero. Information flow anal-
ysis thus extends the traditional notion of correlation analysis with causality quantitatively
represented, and this quantification is firmly based on a rigorous mathematical and physical
footing.
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