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1. Introduction

Although the general optimal solution of the filtering problem for nonlinear state and obser-
vation equations confused with white Gaussian noises is given by the equation for the condi-
tional density of an unobserved state with respect to observations (see (1–6)), there are a very
few known examples of nonlinear systems where that equation can be reduced to a finite-
dimensional closed system of filtering equations for a certain number of lower conditional
moments (see (7–10) for more details). Some relevant results on filtering for nonlinear stochas-
tic systems can be found in (11–14). There also exists a considerable bibliography on robust
filtering for the "general situation" systems (see, for example, (15–23)). Apart form the "gen-
eral situation," the optimal finite-dimensional filters have recently been designed for certain
classes of polynomial system states over linear observations with invertible ((24; 25; 27; 28))
or non-invertible ((26; 29)) observation matrix. However, the cited papers never consider fil-
tering problems with nonlinear, in particular, polynomial observations.
This work presents the optimal finite-dimensional filter for linear system states over polyno-
mial observations, continuing the research in the area of the optimal filtering for polynomial
systems, which has been initiated in ((24–27; 29)). Designing the optimal filter over polyno-
mial observations presents a significant advantage in the filtering theory and practice, since
it enables one to address some filtering problems with observation nonlinearities, such as the
optimal cubic sensor problem (30). The optimal filtering problem is treated proceeding from
the general expression for the stochastic Ito differential of the optimal estimate and the error
variance (31). As the first result, the Ito differentials for the optimal estimate and error vari-
ance corresponding to the stated filtering problem are derived. It is then proved that a closed
finite-dimensional system of the optimal filtering equations with respect to a finite number of
filtering variables can be obtained for a polynomial observation equation, additionally assum-
ing a conditionally Gaussian initial condition for the higher degree states. This assumption is
quite admissible in the filtering framework, since the real distribution of the entire state vec-
tor is actually unknown. In this case, the corresponding procedure for designing the optimal
filtering equations is established.
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As an illustrative example, the closed system of the optimal filtering equations with respect to
two variables, the optimal estimate and the error variance, is derived in the explicit form for
the particular case of the third degree polynomial observations. This filtering problem gen-
eralizes the optimal cubic sensor problem stated in (30), where nonexistence of a closed-form
solution is indicated for the "general situation" case, without any assumptions for the third
order state distribution. In our paper, taking into account that the real distributions of the first
and third degree states are unknown, a conditionally Gaussian initial condition is additionally
assumed for the third degree state. The resulting filter yields a reliable and rapidly converg-
ing estimate, in spite of a significant difference in the initial conditions between the state and
estimate and very noisy observations, in the situation where the unmeasured state itself is a
time-shifted Wiener process and the extended Kalman filter (EKF) approach fails.

2. Filtering Problem for Linear States over Polynomial Observations

Let (Ω, F, P) be a complete probability space with an increasing right-continuous family of
σ-algebras Ft, t ≥ t0, and let (W1(t), Ft, t ≥ t0) and (W2(t), Ft, t ≥ t0) be independent Wiener
processes. The Ft-measurable random process (x(t), y(t) is described by a linear differential
equation for the system state

dx(t) = (a0(t) + a(t)x(t))dt + b(t)dW1(t), x(t0) = x0, (1)

and a nonlinear polynomial differential equation for the observation process

dy(t) = h(x, t)dt + B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t) ∈ Rm is the observation vector. The initial con-
dition x0 ∈ Rn is a Gaussian vector such that x0, W1(t), and W2(t) are independent. It is
assumed that B(t)BT(t) is a positive definite matrix. All coefficients in (1)–(2) are determinis-
tic functions of time of appropriate dimensions. The nonlinear function h(x, t) forms the drift
in the observation equation (2).
The nonlinear function h(x, t) is considered a polynomial of n variables, components of the
state vector x(t) ∈ Rn, with time-dependent coefficients. Since x(t) ∈ Rn is a vector, this
requires a special definition of the polynomial for n > 1. In accordance with (27), a p-degree
polynomial of a vector x(t) ∈ Rn is regarded as a p-linear form of n components of x(t)

h(x, t) = α0(t) + α1(t)x + α2(t)xxT + . . . + αp(t)x . . .p times . . . x, (3)

where α0(t) is a vector of dimension n, α1 is a matrix of dimension n × n, α2 is a 3D tensor
of dimension n × n × n, αp is an (p + 1)D tensor of dimension n × . . .(p+1) times . . . × n, and
x× . . .p times . . .× x is a pD tensor of dimension n× . . .p times . . .× n obtained by p times spatial
multiplication of the vector x(t) by itself (see (27) for more definition). Such a polynomial can
also be expressed in the summation form

hk(x, t) = α0 k(t) + ∑
i

α1 ki(t)xi(t) + ∑
ij

α2 kij(t)xi(t)xj(t) + . . .

+ ∑
i1 ...ip

αp ki1 ...ip
(t)xi1

(t) . . . xip
(t), k, i, j, i1, . . . , ip = 1, . . . , n.

The estimation problem is to find the optimal estimate x̂(t) of the system state x(t), based on
the observation process Y(t) = {y(s), 0 ≤ s ≤ t}, that minimizes the Euclidean 2-norm

J = E[(x(t)− x̂(t))T(x(t)− x̂(t)) | FY
t ]

www.intechopen.com



Optimal iltering for linear states over polynomial observations 263

at every time moment t. Here, E[ξ(t) | FY
t ] means the conditional expectation of a stochastic

process ξ(t) = (x(t)− x̂(t))T(x(t)− x̂(t)) with respect to the σ - algebra FY
t generated by the

observation process Y(t) in the interval [t0, t]. As known (31), this optimal estimate is given
by the conditional expectation

x̂(t) = mx(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra FY
t generated by the observation process

Y(t) in the interval [t0, t]. As usual, the matrix function

P(t) = E[(x(t)− mx(t))(x(t)− mx(t))
T | FY

t ]

is the estimation error variance.
The proposed solution to this optimal filtering problem is based on the formulas for the Ito
differential of the optimal estimate and the estimation error variance (cited after (31)) and
given in the following section.

3. Optimal Filter for Linear States over Polynomial Observations

Let us reformulate the problem, introducing the stochastic process z(t) = h(x, t). Using the
Ito formula (see (31)) for the stochastic differential of the nonlinear function h(x, t), where x(t)
satisfies the equation (1), the following equation is obtained for z(t)

dz(t) =
∂h(x, t)

∂x
(a0(t) + a(t)x(t))dt +

∂h(x, t)

∂t
dt+ (4)

1

2

∂2h(x, t)

∂x2
b(t)bT(t)dt +

∂h(x, t)

∂x
b(t)dW1(t), z(0) = z0.

Note that the addition 1
2

∂2h(x,t)
∂x2 b(t)bT(t)dt appears in view of the second derivative in x in the

Ito formula.
The initial condition z0 ∈ Rn is considered a conditionally Gaussian random vector with re-
spect to observations. This assumption is quite admissible in the filtering framework, since the
real distributions of x(t) and z(t) are actually unknown. Indeed, as follows from (32), if only
two lower conditional moments, expectation m0 and variance P0, of a random vector [z0, x0]
are available, the Gaussian distribution with the same parameters, N(m0, P0), is the best ap-
proximation for the unknown conditional distribution of [z0, x0] with respect to observations.
This fact is also a corollary of the central limit theorem (33) in the probability theory.
A key point for further derivations is that the right-hand side of the equation (4) is a polyno-

mial in x. Indeed, since h(x, t) is a polynomial in x, the functions
∂h(x,t)

∂x ,
∂h(x,t)

∂x x(t), ∂h(x,t)
∂t , and

∂2h(x,t)
∂x2 are also polynomial in x. Thus, the equation (4) is a polynomial state equation with a

polynomial multiplicative noise. It can be written in the compact form

dz(t) = f (x, t)dt + g(x, t)dW1(t), z(t0) = z0, (5)

where

f (x, t) =
∂h(x, t)

∂x
(a0(t) + a(t)x(t)) +

∂h(x, t)

∂t
+

1

2

∂2h(x, t)

∂x2
b(t)bT(t), g(x, t) =

∂h(x, t)

∂x
b(t).
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In terms of the process z(t), the observation equation (2) takes the form

dy(t) = z(t)dt + B(t)dW2(t). (6)

The reformulated estimation problem is now to find the optimal estimate [mz(t), mx(t)] of the
system state [z(t), x(t)], based on the observation process Y(t) = {y(s), 0 ≤ s ≤ t}. This
optimal estimate is given by the conditional expectation

m(t) = [mz(t), mx(t)] = [E(z(t) | FY
t ), E(x(t) | FY

t )]

of the system state [z(t), x(t)] with respect to the σ - algebra FY
t generated by the observation

process Y(t) in the interval [t0, t]. The matrix function

P(t) = E[([z(t), x(t)]− [mz(t), mx(t)])×

([z(t), x(t)]− [mz(t), mx(t)])
T | FY

t ]

is the estimation error variance for this reformulated problem.
The obtained filtering system includes two equations, (4) (or (5)) and (1), for the partially
measured state [z(t), x(t)] and an equation (6) for the observations y(t), where z(t) is a mea-
sured polynomial state with polynomial multiplicative noise, x(t) is an unmeasured linear
state, and y(t) is a linear observation process directly measuring the state z(t). Hence, the
optimal filter for the polynomial system states with unmeasured linear part and polynomial
multiplicative noise over linear observations, obtained in (29), can be applied to solving this
problem. Indeed, as follows from the general optimal filtering theory (see (31)), the optimal
filtering equations take the following particular form for the system (5), (1), (6)

dm(t) = E( f̄ (x, t) | FY
t )dt+ (7)

P(t)[I, 0]T(B(t)BT(t))−1(dy(t)− mz(t)dt),

dP(t) = (E(([z(t), x(t)]− m(t))( f̄ (x, t))T | FY
t )+ (8)

E( f̄ (x, t)([z(t), x(t)]− m(t))T) | FY
t )+

E(ḡ(x, t)ḡT(x, t) | FY
t )−

P(t)[I, 0]T(B(t)BT(t))−1[I, 0]P(t))dt+

E((([z(t), x(t)]− m(t))([z(t), x(t)]− m(t))×

([z(t), x(t)]− m(t))T | FY
t )×

[I, 0]T(B(t)BT(t))−1(dy(t)− mz(t)dt),

where f̄ (x, t) = [ f (x, t), a0(t) + a(t)x(t)] is the polynomial drift term and ḡ(x, t) =
[g(x, t), b(t)] is the polynomial diffusion (multiplicative noise) term in the entire system of
the state equations (4), (1), and the last term should be understood as a 3D tensor (under
the expectation sign) convoluted with a vector, which yields a matrix. The matrix [I, 0] is
the m × (n + m) matrix composed of the m × m-dimensional identity matrix and m × n-
dimensional zero matrix. The equations (7), (8) should be complemented with the initial con-
ditions m(t0) = [mz(t0), mx(t0)] = E([z0, x0] | FY

t0
) and P(t0) = E[([z0, x0]− m(t0)([z0, x0]−

m(t0)
T | FY

t0
].

The result given in (27; 29) claims that a closed system of the filtering equations can be ob-
tained for the state [z(t), x(t)] over the observations y(t), in view of the polynomial properties
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of the functions in the right-hand side of the equation (4). Indeed, since the observation ma-
trix in (6) is the identity one, i.e., invertible, and the initial condition z0 is assumed condition-
ally Gaussian with respect to observations, the random variable z(t)− mz(t) is conditionally
Gaussian with respect to the observation process y(t) for any t ≥ t0 ((27; 29)). Moreover, the
random variable x(t)− mx(t) is also conditionally Gaussian with respect to the observation
process y(t) for any t ≥ t0, because x(t) is Gaussian, in view of (1), and y(t) depends only
on z(t), in view of (6), and the assumed conditional Gaussianity of the initial random vec-
tor z0 ((26; 29)). Hence, the entire random vector [z(t), x(t)]− m(t) is conditionally Gaussian
with respect to the observation process y(t) for any t ≥ t0, and the following considerations
outlined in (26; 27; 29) are applicable.
First, since the random variable x(t) − m(t) is conditionally Gaussian, the conditional third
moment E((([z(t), x(t)] − m(t))([z(t), x(t)] − m(t))([z(t), x(t)] − m(t))T | FY

t ) with respect
to observations, which stands in the last term of the equation (8), is equal to zero, because
the process [z(t), x(t)] − m(t) is conditionally Gaussian. Thus, the entire last term in (8) is
vanished and the following variance equation is obtained

dP(t) = (E(([z(t), x(t)]− m(t))( f̄ (x, t))T | FY
t )+

E( f̄ (x, t)([z(t), x(t)]− m(t))T) | FY
t )+ (9)

E(ḡ(x, t)ḡT(x, t) | FY
t )−

P(t)[I, 0]T(B̄(t)B̄T(t))−1[I, 0]P(t))dt,

with the initial condition P(t0) = E[([z0, x0]− m(t0)([z0, x0]− m(t0)
T | FY

t0
].

Second, if the functions f̄ (x, t) and ḡ(x, t) are polynomial functions of the state x with time-
dependent coefficients, the expressions of the terms E( f̄ (x, t) | FY

t ) in (4) and E(([z(t), x(t)]−
m(t)) f̄ T(x, t)) | FY

t ) and E(ḡ(x, t)ḡT(x, t) | FY
t ), which should be calculated to obtain a

closed system of filtering equations (see (31)), would also include only polynomial terms
of x. Then, those polynomial terms can be represented as functions of m(t) and P(t) us-
ing the following property of Gaussian random variable [z(t), x(t)] − m(t): all its odd con-
ditional moments, m1 = E[([z(t), x(t)] − m(t)) | Y(t)], m3 = E[([z(t), x(t)] − m(t))3 |
Y(t)], m5 = E[([z(t), x(t)]− m(t))5 | Y(t)], ... are equal to 0, and all its even conditional mo-
ments m2 = E[([z(t), x(t)] − m(t))2 | Y(t)], m4 = E[([z(t), x(t)] − m(t))4 | Y(t)], .... can be
represented as functions of the variance P(t). For example, m2 = P, m4 = 3P2, m6 = 15P3, ...
etc. After representing all polynomial terms in (7) and (9), that are generated upon expressing
E( f̄ (x, t) | FY

t ), E(([z(t), x(t)] − m(t)) f̄ T(x, t)) | FY
t ), and E(ḡ(x, t)ḡT(x, t) | FY

t ), as func-
tions of m(t) and P(t), a closed form of the filtering equations would be obtained. The
corresponding representations of E( f (x, t) | FY

t ), E(([z(t), x(t)] − m(t))( f (x, t))T | FY
t ) and

E(ḡ(x, t)ḡT(x, t) | FY
t ) have been derived in (24–27; 29) for certain polynomial functions f (x, t)

and g(x, t).
In the next example section, a closed form of the filtering equations will be obtained for a
particular case of a scalar third degree polynomial function h(x, t) in the equation (2). It should
be noted, however, that application of the same procedure would result in designing a closed
system of the filtering equations for any polynomial function h(x, t) ∈ Rn in (2).

4. Example: Third Degree Sensor Filtering Problem

This section presents an example of designing the optimal filter for a linear state over third de-
gree polynomial observations, reducing it to the optimal filtering problem for a second degree

www.intechopen.com



Stochastic Control266

polynomial state with partially measured linear part and second degree polynomial multi-
plicative noise over linear observations, where a conditionally Gaussian state initial condition
is additionally assumed.
Let the unmeasured scalar state x(t) satisfy the trivial linear equation

dx(t) = dt + dw1(t), x(0) = x0, (10)

and the observation process be given by the scalar third degree sensor equation

dy(t) = (x3(t) + x(t))dt + dw2(t), (11)

where w1(t) and w2(t) are standard Wiener processes independent of each other and of a
Gaussian random variable x0 serving as the initial condition in (10). The filtering problem is
to find the optimal estimate for the linear state (10), using the third degree sensor observations
(11).
Let us reformulate the problem, introducing the stochastic process z(t) = h(x, t) = x3(t) +
x(t). Using the Ito formula (see (31)) for the stochastic differential of the cubic function
h(x, t) = x3(t) + x(t), where x(t) satisfies the equation (10), the following equation is ob-
tained for z(t)

dz(t) = (1 + 3x(t) + 3x2(t))dt + (3x2(t) + 1)dw1(t), z(0) = z0. (12)

Here,
∂h(x,t)

∂x = 3x2(t) + 1, 1
2

∂2h(x,t)
∂x2 = 3x(t), and

∂h(x,t)
∂t = 0; therefore, f (x, t) = 1 + 3x(t) +

3x2(t) and g(x, t) = 3x2(t) + 1. The initial condition z0 ∈ R is considered a conditionally
Gaussian random vector with respect to observations (see the paragraph following (4) for
details). This assumption is quite admissible in the filtering framework, since the real distri-
butions of x(t) and z(t) are unknown. In terms of the process z(t), the observation equation
(11) takes the form

dy(t) = z(t)dt + dw2(t). (13)

The obtained filtering system includes two equations, (12) and (10), for the partially measured
state [z(t), x(t)] and an equation (13) for the observations y(t), where z(t) is a completely
measured quadratic state with multiplicative quadratic noise, x(t) is an unmeasured linear
state, and y(t) is a linear observation process directly measuring the state z(t). Hence, the
designed optimal filter can be applied for solving this problem. The filtering equations (7),(9)
take the following particular form for the system (12),(10),(13)

dm1(t) = (1 + 3m2(t) + 3m2
2(t) + 3P22(t))dt+ (14)

P11(t)[dy(t)− m1(t)dt],

dm2(t) = 1 + P12(t)[dy(t)− m1(t)dt], (15)

with the initial conditions m1(0) = E(x0 | y(0)) = m10 and m2(0) = E(x3
0 | y(0)) = m20,

Ṗ11(t) = 12(P12(t)m2(t)) + 6P12(t) + 27P2
22(t)+ (16)

54P22(t)m
2
2(t) + 9m4

2(t) + 6P22(t) + 6m2
2 + 1 − P2

11(t),

Ṗ12(t) = 6(P22(t)m2(t)) + 3P22(t)+ (17)

3(m2
2(t) + P22(t)) + 1 − P11(t)P12(t),
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Ṗ22(t) = 1 − P2
12(t), (18)

with the initial condition P(0) = E(([x0, z0]
T − m(0))([x0, z0]

T − m(0))T | y(0)) = P0. Here,
m1(t) is the optimal estimate for the state z(t) = x3(t) + x(t) and m2(t) is the optimal estimate
for the state x(t).
Numerical simulation results are obtained solving the systems of filtering equations (14)–(18).
The obtained values of the state estimate m2(t) satisfying the equation (15) are compared to
the real values of the state variable x(t) in (10).
For the filter (14)–(18) and the reference system (12),(10),(13) involved in simulation, the fol-
lowing initial values are assigned: x0 = z0 = 0, m2(0) = 10, m1(0) = 1000, P11(0) = 15,
P12(0) = 3, P22(0) = 1. Gaussian disturbances dw1(t) and dw2(t) are realized using the built-
in MatLab white noise functions. The simulation interval is [0, 0.05].

Fig. 1. Above. Graph of the observation process y(t) in the interval [0, 0.05]. Below. Graphs
of the real state x(t) (solid line) and its optimal estimate m2(t) (dashed line) in the interval
[0, 0.05].

Figure 1 shows the graphs of the reference state variable x(t) (10) and its optimal estimate
m2(t) (15), as well as the observation process y(t) (11), in the entire simulation interval from
t0 = 0 to T = 0.05. It can be observed that the optimal estimate given by (14)–(18) converges to
the real state (10) very rapidly, in spite of a considerable error in the initial conditions, m2(0)−
x0 = 10, m1(0)− z0 = 1000, and very noisy observations which do not even reproduce the
shape of z(t) = x3(t) + x(t). Moreover, the estimated signal x(t) itself is a time-shifted Wiener
process, i.e., the integral of a white Gaussian noise, which makes the filtering problem even
more difficult. It should also be noted that the extended Kalman filter (EKF) approach fails for
the system (10),(11), since the linearized value ∂z/∂x = 3x2(t) + 1 at zero is the unit-valued
constant, therefore, the observation process would consist of pure noise.
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Thus, it can be concluded that the obtained optimal filter (14)–(18) solves the optimal third
degree sensor filtering problem for the system (10),(11) and yields a really good estimate of
the unmeasured state in presence of quite complicated observation conditions. Subsequent
discussion of the obtained results can be found in Conclusions.

5. Conclusions

This paper presents the optimal filter for linear system states over nonlinear polynomial obser-
vations. It is shown that the optimal filter can be obtained in a closed form for any polynomial
function in the observation equation. Based on the optimal filter for a bilinear state, the op-
timal solution is obtained for the optimal third degree sensor filtering problem, assuming a
conditionally Gaussian initial condition for the third degree state. This assumption is quite
admissible in the filtering framework, since the real distributions of the first and third degree
states are unknown. The resulting filter yields a reliable and rapidly converging estimate, in
spite of a significant difference in the initial conditions between the state and estimate and
very noisy observations, in the situation where the unmeasured state itself is a time-shifted
Wiener process and the extended Kalman filter (EKF) approach fails. Although this conclusion
follows from the developed theory, the numerical simulation serves as a convincing illustra-
tion.
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