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1. Introduction 

It is well known that the time-delays are frequently encountered in a variety of dynamic 
systems such as engineering, biological, and chemical systems, etc., which are very often the 
main sources of instability and poor performance of systems. Also, in practice, uncertainties 
are unavoidable since it is very difficult to obtain an exact mathematical model of an object 
or process due to environmental noise, or slowly varying parameters, etc. Consequently, the 
problems of robust stability for time-delay systems have been of great importance and have 
received considerable attention for decades. The developed stability criteria are often 
classified into two categories according to their dependence on the size of the delays, 
namely, delay-independent criteria (Park, 2001) and delay-dependent criteria (Wang et al, 
1992; Li et al, 1997; Kim, 2001; Moon et al, 2001; Jing et al, 2004; Kwon & Park, 2004; Wu et al, 
2004). In general, the latter are less conservative than the former when the size of the time-
delay is small. On the other hand, stochastic systems have received much attention since 
stochastic modelling has come to play an important role in many branches of science and 
industry. In the past decades, increasing attention has been devoted to the problems of 
stability of stochastic time-delay systems by a considerable number of researchers (Mao, 
1996; Xie & Xie, 2000; Blythe et al, 2001; Xu & Chen, 2002; Lu et al, 2003). Very recently, the 
problem of exponential stability for delayed stochastic systems with nonlinearities has been 
extensively investigated by many researchers (Mao, 2002; Yue & Won, 2001; Chen et al, 
2005). Motivated by the method for deterministic delayed systems introduced in (Wu et al, 
2004), we extend it to uncertain stochastic time-varying delay systems with nonlinearities. 
The filter design problem has long been one of the key problems in the areas of control and 
signal processing. Compared with the Kalman filter, the advantage of H∞ filtering is that the 
noise sources are arbitrary signals with bounded energy or average power instead of being 
Gaussian, and no exact statistics are required to be known (Nagpal & Khargonekar, 1991). 
When parameter uncertainty appears in a system model, the robustness of H∞ filters has to 
be taken into account. A great number of results on robust H∞ filtering problem have been 
reported in the literature (Li & Fu, 1997; De Souza et al, 1993), and much attention has been 

13

www.intechopen.com



Stochastic Control236

 

focused on the robust H∞ filtering problem for time-delay systems (Pila et al, 1999; Wang & 
Yang, 2002; Xu & Chen, 2004; Gao & Wang, 2003; Fridman et al, 2003; Xu & Van Dooren, 
2002; Xu et al, 2003; Zhang et al, 2005; Wang et al, 2006; Wang et al, 2004; Wang et al, 2008; 
Liu et al, 2008; Zhang & Han, 2008). Depending on whether the existence conditions of filter 
include the information of delay or not, the existing results on H∞ filtering for time-delay 
systems can be classified into two types: delay-independent ones (Pila et al, 1999; Wang & 
Yang, 2002; Xu & Chen, 2004) and delay-dependent ones (Gao & Wang, 2003; Fridman et al, 
2003; Xu & Van Dooren, 2002; Xu et al, 2003; Zhang et al, 2005; Wang et al, 2006; Wang et al, 
2004; Wang et al, 2008; Liu et al, 2008; Zhang & Han, 2008). On the other hand, since the 
stochastic systems have gained growing interests recently, H∞ filtering for the time-delay 
stochastic systems have drawn a lot of attentions from researchers working in related areas 
(Zhang et al, 2005; Wang et al, 2006; Wang et al, 2008; Liu et al, 2008). It is also known that 
Markovian jump systems (MJSs) are a set of systems with transitions among the models 
governed by a Markov chain taking values in a finite set. These systems have the 
advantages of modeling the dynamic systems subject to abrupt variation in their structures. 
Therefore, filtering and control for MJSs have drawn much attention recently, see (Xu et al, 
2003; Wang et al, 2004). Note that nonlinearities are often introduced in the form of 
nonlinear disturbances, and exogenous nonlinear disturbances may result from the 
linearization process of an originally highly nonlinear plant or may be an external nonlinear 
input, and thus exist in many real-world systems. Therefore, H∞ filtering for nonlinear 
systems has also been an attractive topic for many years both in the deterministic case (De 
Souza et al, 1993; Gao & Wang, 2003; Xu & Van Dooren, 2002)) and the stochastic case 
(Zhang et al, 2005; Wang et al, 2004; Wang et al, 2008; Liu et al, 2008).  
Exponential stability is highly desired for filtering processes so that fast convergence and 
acceptable accuracy in terms of reasonable error covariance can be ensured. A filter is said to 
be exponential if the dynamics of the estimation error is stochastically exponentially stable. 
The design of exponential fast filters for linear and nonlinear stochastic systems is also an 
active research topic; see, e.g. (Wang et al, 2006; Wang et al, 2004). To the best of the authors’ 
knowledge, however, up to now, the problem of delay-range-dependent robust exponential 
H∞ filtering problem for uncertain ˆIto -type stochastic systems in the simultaneous presence 
of parameter uncertainties, Markovian switching, nonlinearities, and mode-dependent time-
varying delays in a range has not been fully investigated, which still remains open and 
challenging. This motivates us to investigate the present study. 
This chapter is organized as follows. In section 2, the main results are given. Firstly, delay-
dependent exponentially mean-square stability for uncertain time-delay stochastic systems 
with nonlinearities is studied. Secondly, the robust H∞ exponential filtering problem for 
uncertain stochastic time-delay systems with Markovian switching and nonlinear 
disturbances is investigated. In section 3, numerical examples and simulations are presented 
to illustrate the benefits and effectiveness of our proposed theoretical results. Finally, the 
conclusions are given in section 4. 

 
2. Main results 

2.1 Exponential stability of uncertain time-delay nonlinear stochastic systems 
Consider the following uncertain stochastic system with time-varying delay and nonlinear 
stochastic perturbations:  

 

   ( ) ( ) ( ) ( ) ( ( )) ( , ( ), ( ( ))) ( , ( ), ( ( ))) ( ),

( ) ( ), [ ,0],

dx t A A t x t B B t x t t f t x t x t t dt g t x t x t t d t

x t t t

   

 

            
  

  (1) 

 
where ( ) nx t  is the state vector, , , ,A B C D are known real constant matrices with 
appropriate dimensions, ( )t is a scalar Brownian motion defined on a complete probability 

space  , ,F P with a nature filtration  0
.t t

F


( )t is any given initial data in   
0

2 ,0 ; n
FL   . 

( )t denotes the time-varying delay and is assumed to satisfy either (2a) or (2b): 
 

0 ( ) , ( ) 1,t t d                                                    (2a) 
0 ( )t   ,                                                           (2b) 

 
where  and d are constants and the upper bound of ( )t and ( )t , respectively. ( ),A t  

( )B t are all unknown time-varying matrices with appropriate dimensions which represent 
the system uncertainty and stochastic perturbation uncertainty, respectively. We assume 
that the uncertainties are norm-bounded and can be described as follows: 
 

1 2( ) ( ) ( ) ,A t B t EF t G G                                                (3) 
 

where 1 2, ,E G G are known real constant matrices with appropriate dimensions, ( )F t are 
unknown real matrices with Lebesgue measurable elements bounded by:   
 

( ) ( ) .F t F t I                                                         (4) 
 

( , , ) : n n nf R R R R      and ( , , ) : n n n mg R R R R 
      denote the nonlinear uncertainties which 

is locally Lipschitz continuous  and satisfies the following linear growth conditions 
 

1 2( , ( ), ( ( ))) ( ) ( ( )) ,f t x t x t t F x t F x t t                                     (5) 

and                    
 

2 2
1 2( , ( ), ( ( ))) ( , ( ), ( ( ))) ( ) ( ( )) ,T race g t x t x t t g t x t x t t H x t H x t t   

        (6) 

 
Throughout this paper, we shall use the following definition for the system (1). 
Definition 1 (Chen et al, 2005). The uncertain nonlinear stochastic time-delay system (1) is 
said to be exponentially stable in the mean square sense if there exists a positive scalar 

0  such that for all admissible uncertainties 
 

21lim su p lo g ( ) .
t

x t
t
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Lemma 1 (Wang et al, 1992). For any vectors , nx y , matrices , , ,n nfn nA P D     

,n nfE 
 and

n nf fF 
 with 0, ,P F F    and scalar 0  , the following inequalities hold: 

(i)   ,12 x y x P x y Py      

(ii)  ,1DFE E F D DD E E          

(iii)  If 0P DD  , then 1 1( )( ) ( ) .A DFE P A DFE A P DD A E E           
For convenience, we let 
 
    ( ) ( ) ( ) ( ) ( ( )) ( , ( ), ( ( ))),y t A A t x t B B t x t t f t x t x t t                           (8) 
 

and set 
 

 ( ) ( , ( ), ( ( ))), ( ) ( , ( ), ( ( )),f t f t x t x t t g t g t x t x t t                          (9) 
 

then system (1) becomes 
 

 ( ) ( ) ( ).( ) y t dt g t d tdx t                                     (10) 
 

Then, for any appropriately dimensioned matrices , , 1, 2, 3,i iN M i  the following 
equations hold: 
 

1 1 2 3 ( ) ( )=2 ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ) ( ) 0,t t
t t
t tx t N x t t N y t N x t x t t y s ds g s dw s    
 

               (11) 

 

and 
 

   2 1 2 3=2 ( ) ( ( )) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) 0,x t M x t t M y t M A A t x t B B t x t t f t y t                 (12) 

 
where the free weighting matrices , , 1, 2, 3i iN M i  can easily be determined by solving the 
corresponding LMIs. 

On the other hand, for any semi-positive-definite matrix 
11 12 13

22 23

33

0
X X X

X X X
X

 
    
   

, the following 

holds: 

3 0 ,
( )

= ( ) ( ) ( ) ( )
t

t t
t X t t X t d s


     


                          (13) 

 
where ( )( ) ( ) ( )( ) tx t x t y tt        

. 

Theorem 1. When (2a) holds, then for any scalars 0, 1d   , the system (1) is 
exponentially stable in mean square for all time-varying delays and for all admissible 
uncertainties, if there exist 0, 0, 0, 0,P Q R S     scalars 0, 0,   0, 0,1,...,7j j   , a 

 

symmetric semi-positive-definite matrix 0X  and any appropriately dimensioned matrices 
, , 1, 2, 3,iiM N i  such that the following LMIs hold 

 
11 12 13 1

22 23 2

33 3
0,

(1 )

X X X N
X X N

X N
d Q

 
 
 
 
 
 
 
  


  

 
   

                                    (14) 
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22 23 2 2 2 2 2

33 3 3 3 3 3

0

1

2

3

4

5

6
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0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
0

N M M M E M E
N M M M E M E
N M M M E M E
S

I
I

I
I

I
I

I












  
  
  
   
    
     

 
      
       
        
         
          
           7

0 ,

I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  





(15) 

 
,P I                                                              (16) 
,S I                                                              (17) 

where 

( )1 1 1 1 2 4 6 1 1 10 1 1 1

, ,1 2 1 2 3 1 3

( ) 2 22 2 2 2 3 5 7 2 2 2 21

3

11 11

12 12 13 13

22 22

23

( ) ,
1

(1 ) ( ) ,
1

R N N M A A M X G G F F H H
d

N N M B A M X P N M A M X

d R N N M B B M X G G F F H H
d

N

     

 
     

        

      

        

 



 



       


        

         


   , .2 3 3 323 33 33M B M X Q M M X        

Proof. Construct the Lyapunov-Krasovskii functional candidate for system (1) as follows: 
 

4

1
( ) ( )i

i
V t V t


  , 

where 
 

,( )

.

0
( )1 2 3

0
( )4

( ) ( ) ( ) , ( ) ( ) ( ) , ( ) ( ) ( )

1( ) ( ) ( )1

t
t t

t t t

t
t t

V t x t Px t V t y s Qy s dsd V t x s Rx s ds

V t trace g s Sg s dsdd
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Defining tx by ( ) ( ), 2 0,tx s x t s s     the weak infinitesimal operator L of the stochastic 

process  , 0tx t   along the evolution of 1( )V t is given by (Blythe et al, 2001): 
 

1( ) 2 ( ) ( ) ( ) ( ) .LV t x t Py t trace g t Pg t                                        (19) 

 
The weak infinitesimal operator L  for the evolution of 2 3 4( ), ( ), ( )V t V t V t can be computed 
directly as follows 

( )2 ( ) ( ) ( ) ( ) (1 ( )) ( ) ( ) ,t
t tLV t t y t Qy t t y s Qy s ds  
                               (20) 

 

3 ( ) ( ) ( ) (1 ( )) ( ( )) ( ( )),LV t x t Rx t t x t t Rx t t                                    (21) 
 

( )4
1 1( ) ( ) ( ) ( ) (1 ( )) ( ) ( ) .1 1

t
t tLV t t trace g t Sg t t trace g s Sg s dsd d   
          

       (22) 

 
Therefore, using (2a) and adding Eqs. (11)-(13) to Eqs. (19)-(22), then the weak infinitesimal 
operator of  ( )V t along the trajectory of system (1) yields 
 

1 2 3

( )

( ) ( )
( )

( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( ) ( )

(1 ) ( ) ( ) ( ) ( ) ( ) ( )1

t

t t
t

t t
t t

LV t x t Py t trace g t Pg t y t Qy t d y s Qy s ds x t Rx t

d x t Rx t trace g t Sg t trace g s Sg s dsd







 

   


 






       

              




 (23) 

 
It follows from (i) of Lemma 1 that 
 

   
1 2 3 ( )

1
( ) ( )

2 ( ) ( ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

t

t t

t t

t t t t

x t N x t t N y t N g s d s

t NS N t g s d s S g s d s



 

 

   







 

 

 

    

 



 
                     (24) 

 
where 1 2 3N N N N       . 

 
Moreover, from Lemma 1 and (5) 
 

1 2 3
1 1

0 1 0 1 1 21 2

2 ( ) ( ( )) ( ) ( )

( )( ) ( ) ( ) ( ) ( ( )) ( ( )),

x t M x t t M y t M f t

t MM t x t F F x t x t t F F x t t



       

  

       

    

     
   (25) 

 
where 1 2 3M M MM        . 

 
Taking note of (6) together with (16) and (17) imply 

 

1 21 2[ ( ) ( )] [ ( ) ( )] ( )[ ( ) ( ) ( ( )) ( ( ))].1 1
g t Pg t trace g t Sg t x t H H x t x t t H H x t td d

trace              
    (26) 

Noting that 
 

   ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) .

t t t

t t t t t t
g s d s S g s d s trace g s Sg s ds

  
 




  
         (27) 

 
For the positive scalars 0, 2,3, ,7k k    , it follows from (3), (4) and Lemma 1 that 
 

1
2 1 2 11 1 12 ( ) ( ) ( ) ( ) ( ) ( ) ( ),x t M A t x t x t M EE M x t x t G G x t                                (28) 

 
1

3 1 3 21 1 22 ( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ( )),x t M B t x t t x t M EE M x t x t t G G x t t                         (29) 
 

1
4 2 4 12 2 12 ( ( )) ( ) ( ) ( ( )) ( ( )) ( ) ( ),x t t M A t x t x t t M EE M x t t x t G G x t                         (30) 

 
1

5 52 22 2 22 ( ( )) ( ) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )),x t t M B t x t t x t t M EE M x t t x t t G G x t t                            (31) 
 

1
6 3 6 13 3 12 ( ) ( ) ( ) ( ) ( ) ( ) ( ),y t M A t x t y t M EE M y t x t G G x t                                (32) 

 
1

7 73 23 3 22 ( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ( )).y t M B t x t t y t M EE M y t x t t G G x t t                       (33) 
 

Then, taking the mathematical expectation of both sides of (23) and combining (24)-(27) with 
(28)-(33), it can be concluded that 
 

     ( )( ) ( ) ( ) ( , ) ( , ) ,t
t tE LV t E t t E t s t s ds   
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where 

11 12 13
( ) 22 23

33
1 1 1 1 1( ) ( ) ,11 1 1 0 1 1 1 2 3 1 1
1 1 1 1 1 1( ) , ( ) ,12 1312 1 2 0 1 1 2 13 1 3 0 1 1 3

22 2
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( ) ( ) ( ) ( ) , ,( , ) tx t x t y t y s

N S N M M M EE M

N S N M M N S N M M
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Defining tx by ( ) ( ), 2 0,tx s x t s s     the weak infinitesimal operator L of the stochastic 

process  , 0tx t   along the evolution of 1( )V t is given by (Blythe et al, 2001): 
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( )4
1 1( ) ( ) ( ) ( ) (1 ( )) ( ) ( ) .1 1

t
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It follows from (i) of Lemma 1 that 
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where 1 2 3N N N N       . 

 
Moreover, from Lemma 1 and (5) 
 

1 2 3
1 1

0 1 0 1 1 21 2

2 ( ) ( ( )) ( ) ( )

( )( ) ( ) ( ) ( ) ( ( )) ( ( )),

x t M x t t M y t M f t
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   (25) 

 
where 1 2 3M M MM        . 

 
Taking note of (6) together with (16) and (17) imply 

 

1 21 2[ ( ) ( )] [ ( ) ( )] ( )[ ( ) ( ) ( ( )) ( ( ))].1 1
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    (26) 
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( ) ( ) ( ) ( ) ( ) ( ) .
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t t t t t t
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For the positive scalars 0, 2,3, ,7k k    , it follows from (3), (4) and Lemma 1 that 
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By applying the Schur complement techniques, 0  is equivalent to LMI (15). Therefore, if 
LMIs (14) and (15) are satisfied, one can show that (34) implies  
 

   ( ) ( ) ( ) .E LV t E t t                                                   (35) 

 
Now we proceed to prove system (1) is exponential stable in mean square, using the similar 
method of (Chen et al, 2005). Set 0 1min min( ), ( )P      , by (35), 
 

     0 0( ) ( ) ( ) ( ) ( ) .E LV t E t t E x t x t                                      (36) 

 
From the definitions of ( )V t and ( ),y t there exist positive scalars 1 2,  such that 
 

2 2 2
21 1 2( ) ( ) ( ) ( ) .t

tx t V t x t x s ds                                       (37) 
 

Defining a new function as 0( ) ( ),tW t e V t  its weak infinitesimal operator is given by 
 

   0 0
0( ) ( ) ( ) ,t tL W t e V t e L V t                                          (38) 

 
Then, from (36)-(38), by using the generalized ˆto  formula, we can obtain that 
 

     0
00

2 2 2
20 1 2 0( ) ( ) ( ) ( ) ( ) .st s

t sE W t E W t E e x s x d x s ds
     

       
        (39) 

 
Since the following inequality holds (Chen et al, 2005) 
 

0 0 0
0 0

2 22
2 2( ) 2 ( ) .s st s t

t s te ds x d e x s e ds   
                              (40) 

 
Therefore, it follows that from (39) and (40), 
 

    0 0
00

22
0 1 2 0 0 0( ) ( ) ( 2 ) ( ) ( ),st

tE W t E W t E e e x s ds C t                     (41) 
 

where 0 0
0

22 0
20 0 0 2( ) 2 ( ) .

st
tC t e x s e ds 

     

 
Choose a positive scalar 0 0  such that (Chen et al, 2005) 
 

02
0 1 2 0( 2 ) .e                                                    (42) 

 
Then, by (41) and (42), it is easily obtain  

 

0
21lim sup log ( ) ,

t
x t

t



    

 
which implies that system (1) is exponentially stable in mean square by Definition 1. This 
completes the proof.  
In the case of the conditon (2b) for system (1), which is derivative-independent, or in the 
case of ( )t is not differentiable. According to the proof of Theorem 1, the following 
theorem is followed:  
Theorem 2. When (2b) holds, then for any scalars 0  , the stochastic system (1) is 
exponentially mean-square stable for all admissible uncertainties, if there exist 

0, 0, 0P Q S   , scalars 00, 0, , 0,1,...,7j j      , matrix 0X  and any appropriately 

dimensioned matrices , , 1, 2,3iiM N i  , such that (16),(17) and the following LMI holds 
 

11 12 13 1

22 23 2

33 3
0,

X X X N
X X N

X N
Q

 
 
 
 
 
 
 
  


  

 
  

                                        (43) 
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3
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0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0

0 0
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N M M M E M E

N M M M E M E
N M M M E M E
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I
I

I
I

I
I

I












  

  
  
   
    
      
      
       
        
         
          
       







7

0 ,

I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



   

 (44) 

 
Where 
 

 
( )1 1 1 1 2 4 6 1 1 10 1 1 1

( ) 2 22 2 2 2 3 5 7 2 2 2 21

11 11

22 22

( ) ,

( ) .

N N M A A M X G G F F H H

N N M B B M X G G F F H H

      

      

        

        





      

       




 

 
Remark 1. Theorem 1 and 2 provides delay-dependent exponentially stable criteria in mean 
square for stochastic system (1) in terms of the solvability of LMIs. By using them, one can 
obtain the MADB by solving the following optimization problems: 
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which implies that system (1) is exponentially stable in mean square by Definition 1. This 
completes the proof.  
In the case of the conditon (2b) for system (1), which is derivative-independent, or in the 
case of ( )t is not differentiable. According to the proof of Theorem 1, the following 
theorem is followed:  
Theorem 2. When (2b) holds, then for any scalars 0  , the stochastic system (1) is 
exponentially mean-square stable for all admissible uncertainties, if there exist 

0, 0, 0P Q S   , scalars 00, 0, , 0,1,...,7j j      , matrix 0X  and any appropriately 

dimensioned matrices , , 1, 2,3iiM N i  , such that (16),(17) and the following LMI holds 
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Remark 1. Theorem 1 and 2 provides delay-dependent exponentially stable criteria in mean 
square for stochastic system (1) in terms of the solvability of LMIs. By using them, one can 
obtain the MADB by solving the following optimization problems: 
 

www.intechopen.com



Stochastic Control244

 

0 , ,

max
. . 0, 0, 0, 0, 0, 0, 0, , (14) (17), 1,2,3; 0,1,..., 7,iijs t X P Q R Z M N i j


   


          

(45) 

 

or 
 

0, , ,

max
. . 0, 0, 0, 0, 0, 0, (16),(17),(43),(44), 1,2,3; 0,1,...,7.iijs t X P Q Z M N i j


   


        

(46) 

 
2.2 H∞ exponential filtering for uncertain Markovian switching  
time-delay stochastic systems with nonlinearities 
We consider the following uncertain nonlinear stochastic systems with Markovian jump 
parameters and mode-dependent time delays 
 

1 1( ) : ( ) [ ( , ) ( ) ( , ) ( ( )) ( ) ( ( ), ( ( )), ) ( , ) ( )]

[ ( , ) ( ) ( , ) ( ( )) ( , ) ( )] ( ),
t t

t

t d t r t r t t

t d t r t

dx t A t r x t A t r x t t D r f x t x t t r B t r v t dt

E t r x t E t r x t t G t r v t d t

 

 

      

   
  (47) 

 

2 2( ) ( , ) ( ) ( , ) ( ( )) ( ) ( ( ), ( ( )), ) ( , ) ( ),
t tt d t r t r t ty t C t r x t C t r x t t D r g x t x t t r B t r v t        (48) 

 
( ) ( ) ( ),tz t L r x t                                                         (49) 

 

 2( ) ( ), ( ) (0), ,0 ,x t t r t r t                                       (50) 
 

where ( ) nx t  is the state vector; ( ) pv t  is the exogenous disturbance input which 

belongs to  2 0,L  ; ( ) qy t  is the measurement; ( ) mz t  is the signal to be estimated; 

( )t is a zero-mean one-dimensional Wiener process (Brownian Motion) satisfying 

[ ( )] 0t  and 2[ ( )] ;t t   , 0tr t  is a continuous-time Markovian process with right 

continuous trajectories and taking values in a finite set  1, 2, ,S N  with transition 

probability matrix }{ ij  given by 

 ( ), ,
Pr{ | }

1 ( ), ,
ij

t t
ii

o if i j
r j r i

o if i j



   

  
    

                             (51) 

 

where
0
(0, lim ( ) / ) 0;o


     0ij  for ,i j is the transition rate from mode i at time t  

to mode j at time t   and 

1,
.

N

ii ij
j j i

 
 

                                                          (52) 

 

In system ( ) , ( )
tr
t denotes the time-varying delay when the mode is in tr and satisfies 

 

1 20 ( ) , ( ) 1, ,i i i i i tt t d r i i S                                       (53) 
 

where 1 2,i i  and id are known real constants scalars for any .i S In (50), 

2 2max{ , }i i S   ，and ( )t is a vector-valued initial continuous function defined on 

 2,0 . 1 1 2 2( , ), ( , ), ( ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( ), ( , )t d t t t t d t t t d t t tA t r A t r D r B t r E t r E t r G t r C t r C t r D r B t r  

and ( )tL r are matrix functions governed by Markov process tr , and  
 

1 1 1

2

( , ) ( ) ( , ), ( , ) ( ) ( , ), ( , ) ( ) ( , ),
( , ) ( ) ( , ), ( , ) ( ) ( , ), ( , ) ( ) ( , ),
( , ) ( ) ( , ), ( , ) ( ) ( , ), (

t t t d t d t d t t t t

t t t d t d t d t t t t

t t t d t d t d t

A t r A r A t r A t r A r A t r B t r B r B t r
E t r E r E t r E t r E r E t r G t r G r G t r
C t r C r C t r C t r C r C t r B t

     

     

    2 2, ) ( ) ( , ).t t tr B r B t r 

 

 
where 1 2( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )t d t t t d t t t d t tA r A r B r E r E r G r C r C r B r and ( )tL r are known real 

matrices representing the nominal system for all ,tr S and ( , ), ( , ),t d tA t r A t r   

( , ), ( , ), ( , ), ( , ), ( , )t d t t t d tE t r E t r G t r C t r C t r     and 2( , )tB t r are unknown matrices 
representing parameter uncertainties, which are assumed to be of the following form 
 

 
1 1

2 1 2 3

2 3

( , ) ( , ) ( , ) ( )
( , ) ( , ) ( , ) ( ) ( , ) ( ) ( ) ( ) , ,
( , ) ( , ) ( , ) ( )

t d t t t

t d t t t t t t t t

t d t t t

A t r A t r B t r M r
E t r E t r G t r M r F t r N r N r N r r S
C t r C t r B t r M r

     
           
        

 (54) 

 
where 1 2 1 2( ), ( ), ( ), ( )t t t tM r M r N r N r and 3( )tN r are known real constant matrices for all 

,tr S and ( , )tF t r is time-varying matrices with Lebesgue measurable elements satisfying 
 

,( , ) ( , ) .t t tF F It r t r r S                                               (55) 
 

Assumption 1: For a fixed system mode ,tr S there exist known real constant mode-

dependent matrices 1( ) ,n n
tF r   2 1( ) , ( )n n n n

t tF r H r    and 2 ( ) n n
tH r  such that 

the unknown nonlinear vector functions ( , , )f    and ( , , )g    satisfy the following 
boundedness conditions: 
 

1 2( ( ), ( ( )), ) ( ) ( ) ( ) ( ( )) ,
t tr t t t rf x t x t t r F r x t F r x t t                            (56) 

1 2( ( ), ( ( )), ) ( ) ( ) ( ) ( ( )) .
t tr t t t rg x t x t t r H r x t H r x t t                            (57) 
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tH r  such that 
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1 2( ( ), ( ( )), ) ( ) ( ) ( ) ( ( )) ,
t tr t t t rf x t x t t r F r x t F r x t t                            (56) 

1 2( ( ), ( ( )), ) ( ) ( ) ( ) ( ( )) .
t tr t t t rg x t x t t r H r x t H r x t t                            (57) 
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For the sake of notation simplification, in the sequel, for each possible , ,tr i i S  a matrix 

( , )tM t r will be denoted by ( )iM t ; for example, ( , )tA t r is denoted by ( )iA t , and ( , )tB t r  

by iB , and so on. 
For each ,i S  we are interested in designing an exponential mean-square stable, 
Markovian jump, full-order linear filter described by 
 

ˆ ˆ( ) : ( ) ( ) ( ) ,f fi fidx t A x t dt B y t dt                                     (58) 

ˆˆ( ) ( ),fiz t L x t                                                           (59) 

 
where ˆ( ) nx t  and ˆ( ) qz t  for ,i S and the constant matrices ,fi fiA B and fiL are filter 

parameters to be determined. 
Denote  

ˆ ˆ( ) ( ) ( ), ( ) ( ) ( ), ( ) [ ( ) ( )] ,x t x t x t z t z t z t t x t x t                               (60) 
 

Then, for each , ,tr i i S  the filtering error dynamics from the systems ( ) and ( )f can 

be described by 
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Observe the filtering error system (61)-(62) and let ( ; )t   denote the state trajectory from 

the initial data ( ) ( )    on 2 0     in   
0

2 2
2 , 0 ; .n

FL   Obviously, the system 

(61)-(62) admits a trivial solution ( ;0) 0t  corresponding to the initial data 0.   
Throughout this paper, we adopt the following definition. 
Definition 2 (Wang et al, 2004): For every   

0

2 2
2,0 ; ,n

FL    the filtering error system (61)-

(62) is said to be robustly exponentially mean-square stable if, when ( ) 0v t  , for every 
system mode, there exist constant scalars 0  and 0  , such that 
 

2

2 2

0
E (t; ) sup E ( ) .te 

 
    

  
                                      (63) 

 
We are now in a position to formulate the robust H∞ filter design problem to be addressed 
in this paper as follows: given the system ( )  and a prescribed 0  , determine an filter 

( )f such that, for all admissible uncertainties, nonlinearities as well as delays, the filtering 

error system ( ) is robustly exponentially mean-square stable and 
 

2 2
( ) ( )z t v t


                                                    (64) 

 

under zero-initial conditions for any nonzero  2( ) 0,v t L  , where  2

1
22

0
( ) ( ) .z t z t dt




     

The following lemmas will be employed in the proof of our main results. 
 

Lemma 2 (Xie, L., 1996). Let ,n nx y   and a scalar 0.   Then we have 
1 .x y y x x x y y         

Lemma 3 (Xie, L., 1996). Given matrices , ,Q Q H E  and 0R R  of appropriate 

dimensions, 0Q HFE E F H     for all F  satisfyingF F R  , if and only if there 

exists some 0  such that 1 0Q HH E RE      . 
To this end, we provide the following theorem to establish a delay-dependent criterion of 
robust exponential mean-square stability with H∞ performance of system ( ) , which will 
be fundamental in the design of the expected H∞ filter. 
Theorem 3. Given scalars 1 2, ,i i id  and 0,  for any delays ( )i t satisfying (7), the 

filtering error system ( )  is robustly exponentially mean-square stable and (64) is satisfied 

under zero-initial conditions for any nonzero  2( ) 0,v t L   and all admissible uncertainties 

if there exist matrices 0, 1,2, , , 0iP i N Q   and sclars 1 20, 0i i   such that the 

following LMI holds for each i S  
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( )f such that, for all admissible uncertainties, nonlinearities as well as delays, the filtering 
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under zero-initial conditions for any nonzero  2( ) 0,v t L  , where  2
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Lemma 3 (Xie, L., 1996). Given matrices , ,Q Q H E  and 0R R  of appropriate 

dimensions, 0Q HFE E F H     for all F  satisfyingF F R  , if and only if there 

exists some 0  such that 1 0Q HH E RE      . 
To this end, we provide the following theorem to establish a delay-dependent criterion of 
robust exponential mean-square stability with H∞ performance of system ( ) , which will 
be fundamental in the design of the expected H∞ filter. 
Theorem 3. Given scalars 1 2, ,i i id  and 0,  for any delays ( )i t satisfying (7), the 

filtering error system ( )  is robustly exponentially mean-square stable and (64) is satisfied 

under zero-initial conditions for any nonzero  2( ) 0,v t L   and all admissible uncertainties 
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                  (65) 

 
where  
 

     

11 1 1 1 2 1 1
1

22 1 2 2 2 2 2

2 1 1 1 2 2

( ) ( ) 2 2 ,

2 2 (1 ) ,

1 ( ), max , , min , , max , .

N

ij j i i i i i i i i i i i i
j

i i i i i i i

ii i i

P PA t A t P H QH H F F H H H H H L L

F F H H d Q

i S i S i S

   

 

         

      



 

       

    

        

    

 

Proof. Define ( ) ( ), ( ) ,
tt rx s x t s t t s t     then  ( , ), 0t tx r t  is a Markov process with 

initial state 0( ( ), ).r  Now, define a stochastic Lyapunov-Krasovskii functional as 
 

1

2( )
( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

rt

t t

t t t t t t
V r t P r t s H QH s ds s H QH s dsd



  
        

    

  
    

      (66) 
 

Let L be the weak infinitesimal operator of the stochastic process  ( , ), 0 .t tx r t   By ˆIto  

differential formula, the stochastic differential of ( , )t tV r along the trajectory of system 

( ) with ( ) 0=v t for ,tr i i S  is given by 
 

( ) ( ), [ , ] 2 ( ) [ ( ) ( ) ( ) ( ( ))],t t i i di iV Vd i L i t P E t H t E t H t t                  (67) 
 

where 

1

1 2

( )[ , ] ( )( ) ( ) 2 ( ) [ ( ) ( ) ( ) ( ( ))

( ( ), ( ( )), ) ( ( ), ( ( )), )]

[ ( ) ( ) ( ) ( ( ))] [ ( ) ( ) ( ) ( ( ))]

N

t ij j i i di i
j

i i i i

i di i i i di i
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j

VL i t P t t P A t t A t H t t

D f H t H t t i D g H t H t t i

E t H t E t H t t P E t H t E t H t t
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2

( )
1

2 1

( ) ( ) ( ) ( ) (1 ( )) ( ( )) ( ( ))

( ) ( ) ( ) ( ) ( )

j

N t

i i it t

t

t

s H QH s ds t H QH t t t t H QH t t

t H QH t s H QH s ds







        

       

     



   



    

  

 





  (68) 

 

Noting 0ij  for ,i j and 0ii  , we have 

 
1 1

2 2( )
1

( ) ( ) ( ) ( ) ( ) ( ) .
j

N t t t

ij iit t t t
j

s H QH s ds s H QH s ds s H QH s ds
 

  
        

      

  


       (69) 

 
Noting (56), (57) and using Lemma 2, we have 
 

1

1
1 1 1 1 1 1 2 2

2 ( ) ( ( ), ( ( )), )

( ) ( ) 2 ( ) ( ) ( ( )) ( ( ))),
i i i

i i i i i i i i i i i

t PD f H t H t t i

t PD D P t t H F F H t t t HF F H t t

   

         



       



    



  (
 (70) 

 
and 
 

2

1
2 2 2 2 1 1 2 2

2 ( ) ( ( ), ( ( )), )

( ) ( ) 2 ( ( ) ( ) ( ( )) ( ( ))),
i i i

i i i i i i i i i i i i

t PD g H t H t t i

t PD D P t t H H H H t t t HH H H t t

   

         



       

 

    


 

    (71) 

 
Substituting (69)-(71) into (68), then, it follows from (68) that for each ,tr i i S   
 

( )[ , ] ( ) ( ),t iVL i t t                                                  (72) 
 

where 

11 12

22

1 1
11 1 1 1 1 1 1 2 2 2

1

2 1 1
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22 1 2 2 2 2 2( ), 2 2 ( ) ( ) (1 ) ,di i i i i i i di i di iE t F F H H E t PE t d Q          

 

 
By the Schur complement, it is ease to see that LMI in (65) implies that 0.i  Therefore, 
from (72) we obtain 

( )[ , ] ( ) ( ),tVL i t t                                                       (73) 
 

where  minmin ( ) .i S i   By Dynkin’s formula, we can obtain  

 

       0 0 0 0
( ) ( ) ( ), , [ , ] ( ) ( ) .

t t

t sV V VE i E r E L i ds E s s ds                      (74) 

 
On the other hand, it is follows from (66) that 
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and, hence, the robust exponential mean-square stability of the filtering error system ( )  
with ( ) 0=v t is established. 

Now, we shall establish the H∞ performance for the system ( ) , we introduce 
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Now, applying Schur complement to (65), we have ( ) 0i t  . This together with (78) implies 

that ( ) 0J t  for any nonzero  2( ) 0, .v t L  Therefore, under zero conditions and for any 

nonzero  2( ) 0, ,v t L  letting ,t we have 
2 2

( ) ( )z t v t
 
  if (65) is satisfied. This 

completes the proof.   

 

Now, we are in a position to present a solution to the H∞ exponential filter design problem. 
Theorem 4. Consider the uncertain Markovian jump stochastic system ( ).  Given scalars 
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and, hence, the robust exponential mean-square stability of the filtering error system ( )  
with ( ) 0=v t is established. 

Now, we shall establish the H∞ performance for the system ( ) , we introduce 
 

2

0
( ) [ ( ) ( ) ( ) ( )] ,

t
J t z s z s v s v s ds                                              (77) 

 
where 0.t  Noting under the zero initial condition and ( , ) 0,V it  by the Lyapunov-

Krasovskii functional (66), it can be shown that for any nonzero  2( ) 0,v t L    

 

   2

0 0
( ) [ ( ) ( ) ( ) ( ) ( , )] ( , ) ( ) ( ) ,

t t

s t iJ t z s z s v s v s LV i ds V i s s ds                 (78) 

 
where  
 

11 12

22
2

( ) ( ) ( ),
( ) ( ) ( ) , ( ) ( ) ( ), ,

( ) ( )

i i i i i i i

i di i i

i i i

L L PB t H E t PG t
s s v s t E t PG t

G t PG t I
 



  

  



    
        
    

   


 
 

 
Now, applying Schur complement to (65), we have ( ) 0i t  . This together with (78) implies 
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completes the proof.   

 

Now, we are in a position to present a solution to the H∞ exponential filter design problem. 
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From (83) and by using Lemma 3, there exists positive scalars 3 40, 0i i   such that the 
following inequality holds 
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For each , ,tr i i S  we define the matrix 0iP  by 
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Then, substituting the matrix ,iP the matrices 1 2, , , , , , , , , , , ,i di i i di i i di i i i iA A B E E B E E G D D L            

H defined in (61)-(62) into (85) and by introducing some matrices given by 

2 2, ,i i fi i i fiW P A Z P B  then, we can obtain the results in Theorem 4. This completes the 
proof.  

 
3. Numerical Examples and Simulations 

Example 1:  Consider the uncertain stochastic time-delay system with nonlinearities 
 

   ( ) ( ) ( ) ( ) ( ( )) ( , ( ), ( ( ))) ( ),dx t A A t x t B B t x t t dt g t x t x t t d t   
               (86) 

 
where 
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For the time-invariant system, applying Theorem 1, it has been found that by using 
MATLAB LMI Toolbox that system (86) is exponentially stable in mean square for any delay 
0 1.0898  . It is note that the result of (Yue & Won, 2001) guarantees the exponential 
stability of (86) when 0 0.8635,  whereas by the method of (Mao, 1996) the delay is 
only allowed 0.1750. According to Theorem 1, the MADB for different d is shown in Table 
1. For a comparison with the results of other researchers, a summary is given in the 
following Table 1. It is obvious that the result in this paper is much less conservative and is 
an improvement of the results than that of (Mao, 1996) and (Yue & Won, 2001). 
The stochastic perturbation of the system is Brownian motion and it can be depicted in Fig.1. 
The simulation of the state response for system (86) with 1.0898   was depicted in Fig.2. 
 

Methods 0d   0.5d   0.9d   
(Mao, 1996) 0.1750 - - 

(Yue & Won, 2001) 0.8635 - - 
Theorem 1 1.0898 0.5335 0.1459 

 

Table1. Maximum allowable time delay to different d 

      
Fig. 1. The trajectory of Brownian motion              Fig. 2. The state response of system (47) 
 

 
 

 

Example 2. Consider the uncertain Markovian jump stochastic systems in the form of (47)-
(48) with two modes. For mode 1, the parameters as the following: 
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and the time-varying delay ( )t satisfies (53) with 11 21 10.2, 1.3, 0.2.d     
For mode 2, the dynamics of the system are describe as 
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Suppose the transition probability matrix to be 
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The objective is to design a Markovian jump H∞ filter in the form of (58)-(59), such that for 
all admissible uncertainties, the filtering error system is exponentially mean-square stable 
and (64) holds. In this example, we assume the disturbance attenuation level 1.2.   
By using Matlab LMI Control Toolbox to solve the LMI in (77), we can obtain the solutions 
as follows: 
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0.0051 -0.1857 0.7103 -0.0341 -0.0350 0.5624 -0.0355 -0.1800
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  31 41 12 22 32 421.0887, 1.0670, 1.2945, 1.2173, 1.2434, 1.2629.e e e e e     

 

 
Then, by Theorem 4, the parameters of desired robust Markovian jump H∞ filter can be 
obtained as follows 
 

 1 1 1

2

-1.4278 0.7459 0.4686 -0.4989
-0.6967 -2.7564 0.9989 , 0.6196 , 0.3042 0.0467 0.7872 ;
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f f f
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 2 2
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, -0.0635 , 0.0037 0.5730 0.3981 .
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f fB L

  
     
    

 

 
The simulation result of the state response of the real states ( )x t and their estimates ˆ( )x t are 
displayed in Fig. 3. Fig. 4 is the simulation result of the estimation error response of 

ˆ( ) ( ) ( )z t z t z t  . The simulation results demonstrate that the estimation error is robustly 
exponentially mean-square stable, and thus it can be seen that the designed filter satisfies 
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4. Conclusion 

Both delay-dependent exponential mean-square stability and robust H∞ filtering for time-
delay a class of ˆIto stochastic systems with time-varying delays and nonlinearities has 
addressed in this chapter. Novel stability criteria and H∞ exponential filter design methods 
are proposed in terms of LMIs. The new criteria are much less conservative than some 
existing results. The desired filter can be constructed through a convex optimization 
problem. Numerical examples and simulations have demonstrated the effectiveness and 
usefulness of the proposed methods.  
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The simulation result of the state response of the real states ( )x t and their estimates ˆ( )x t are 
displayed in Fig. 3. Fig. 4 is the simulation result of the estimation error response of 

ˆ( ) ( ) ( )z t z t z t  . The simulation results demonstrate that the estimation error is robustly 
exponentially mean-square stable, and thus it can be seen that the designed filter satisfies 
the specified performance requirements and all the expected objectives are well achieved. 
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addressed in this chapter. Novel stability criteria and H∞ exponential filter design methods 
are proposed in terms of LMIs. The new criteria are much less conservative than some 
existing results. The desired filter can be constructed through a convex optimization 
problem. Numerical examples and simulations have demonstrated the effectiveness and 
usefulness of the proposed methods.  
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