We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y



13

Delay-dependent exponential stability
and filtering for time-delay stochastic
systems with nonlinearities

Huaicheng Yan!, Hao Zhang?, Hongbo Shi! and Max Q.-H. Meng?
IEast China University of Science and Technology,?Tongji University, 3The Chinese
University of Hong Kong

PR China

1. Introduction

It is well known that the time-delays are frequently encountered in a variety of dynamic
systems such as engineering, biological, and chemical systems, etc., which are very often the
main sources of instability and poor performance of systems. Also, in practice, uncertainties
are unavoidable since it is very difficult to obtain an exact mathematical model of an object
or process due to environmental noise, or slowly varying parameters, etc. Consequently, the
problems of robust stability for time-delay systems have been of great importance and have
received considerable attention for decades. The developed stability criteria are often
classified into two categories according to their dependence on the size of the delays,
namely, delay-independent criteria (Park, 2001) and delay-dependent criteria (Wang et al,
1992; Li et al, 1997; Kim, 2001; Moon et al, 2001; Jing et al, 2004; Kwon & Park, 2004; Wu et al,
2004). In general, the latter are less conservative than the former when the size of the time-
delay is small. On the other hand, stochastic systems have received much attention since
stochastic modelling has come to play an important role in many branches of science and
industry. In the past decades, increasing attention has been devoted to the problems of
stability of stochastic time-delay systems by a considerable number of researchers (Mao,
1996; Xie & Xie, 2000; Blythe et al, 2001; Xu & Chen, 2002; Lu et al, 2003). Very recently, the
problem of exponential stability for delayed stochastic systems with nonlinearities has been
extensively investigated by many researchers (Mao, 2002; Yue & Won, 2001; Chen et al,
2005). Motivated by the method for deterministic delayed systems introduced in (Wu et al,
2004), we extend it to uncertain stochastic time-varying delay systems with nonlinearities.

The filter design problem has long been one of the key problems in the areas of control and
signal processing. Compared with the Kalman filter, the advantage of Heo filtering is that the
noise sources are arbitrary signals with bounded energy or average power instead of being
Gaussian, and no exact statistics are required to be known (Nagpal & Khargonekar, 1991).
When parameter uncertainty appears in a system model, the robustness of Hw filters has to
be taken into account. A great number of results on robust Heo filtering problem have been
reported in the literature (Li & Fu, 1997; De Souza et al, 1993), and much attention has been
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236 Stochastic Control

focused on the robust Heo filtering problem for time-delay systems (Pila et al, 1999; Wang &
Yang, 2002; Xu & Chen, 2004; Gao & Wang, 2003; Fridman et al, 2003; Xu & Van Dooren,
2002; Xu et al, 2003; Zhang et al, 2005; Wang et al, 2006; Wang et al, 2004; Wang et al, 2008;
Liu et al, 2008; Zhang & Han, 2008). Depending on whether the existence conditions of filter
include the information of delay or not, the existing results on Ho filtering for time-delay
systems can be classified into two types: delay-independent ones (Pila et al, 1999; Wang &
Yang, 2002; Xu & Chen, 2004) and delay-dependent ones (Gao & Wang, 2003; Fridman et al,
2003; Xu & Van Dooren, 2002; Xu et al, 2003; Zhang et al, 2005; Wang et al, 2006; Wang et al,
2004; Wang et al, 2008; Liu et al, 2008; Zhang & Han, 2008). On the other hand, since the
stochastic systems have gained growing interests recently, Hoo filtering for the time-delay
stochastic systems have drawn a lot of attentions from researchers working in related areas
(Zhang et al, 2005; Wang et al, 2006; Wang et al, 2008; Liu et al, 2008). It is also known that
Markovian jump systems (M]Ss) are a set of systems with transitions among the models
governed by a Markov chain taking values in a finite set. These systems have the
advantages of modeling the dynamic systems subject to abrupt variation in their structures.
Therefore, filtering and control for MJSs have drawn much attention recently, see (Xu et al,
2003; Wang et al, 2004). Note that nonlinearities are often introduced in the form of
nonlinear disturbances, and exogenous nonlinear disturbances may result from the
linearization process of an originally highly nonlinear plant or may be an external nonlinear
input, and thus exist in many real-world systems. Therefore, Hoo filtering for nonlinear
systems has also been an attractive topic for many years both in the deterministic case (De
Souza et al, 1993; Gao & Wang, 2003; Xu & Van Dooren, 2002)) and the stochastic case
(Zhang et al, 2005; Wang et al, 2004; Wang et al, 2008; Liu et al, 2008).

Exponential stability is highly desired for filtering processes so that fast convergence and
acceptable accuracy in terms of reasonable error covariance can be ensured. A filter is said to
be exponential if the dynamics of the estimation error is stochastically exponentially stable.
The design of exponential fast filters for linear and nonlinear stochastic systems is also an
active research topic; see, e.g. (Wang et al, 2006; Wang et al, 2004). To the best of the authors’
knowledge, however, up to now, the problem of delay-range-dependent robust exponential
Ho filtering problem for uncertain /70 -type stochastic systems in the simultaneous presence
of parameter uncertainties, Markovian switching, nonlinearities, and mode-dependent time-
varying delays in a range has not been fully investigated, which still remains open and
challenging. This motivates us to investigate the present study.

This chapter is organized as follows. In section 2, the main results are given. Firstly, delay-
dependent exponentially mean-square stability for uncertain time-delay stochastic systems
with nonlinearities is studied. Secondly, the robust Howo exponential filtering problem for
uncertain stochastic time-delay systems with Markovian switching and nonlinear
disturbances is investigated. In section 3, numerical examples and simulations are presented
to illustrate the benefits and effectiveness of our proposed theoretical results. Finally, the
conclusions are given in section 4.

2. Main results

2.1 Exponential stability of uncertain time-delay nonlinear stochastic systems
Consider the following uncertain stochastic system with time-varying delay and nonlinear
stochastic perturbations:
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dx(1)=] (A+AA(1))x(0)H B+AB())x(t—r(0)+ [ (8,x(0),x(t—(1)) Jdt+g(t,x(0),x(t=(1))dex(?), )
X(f):¢(t), tE[—T,O],

where x(¢) e R" is the state vector, 4,B,C,D are known real constant matrices with

appropriate dimensions, @(t) is a scalar Brownian motion defined on a complete probability
space (Q, F, P) with a nature filtration { F }tz 0 @(¢) is any given initial data in L%O ([—T,O] ;]R").

7(¢) denotes the time-varying delay and is assumed to satisfy either (2a) or (2b):

0<7(t)<7,7(t)<d <], (2a)
0<7r(®)<r, (2b)

where 7 and d are constants and the upper bound of 7(¢z) and 7(z), respectively. AA(t),

AB(t) are all unknown time-varying matrices with appropriate dimensions which represent

the system uncertainty and stochastic perturbation uncertainty, respectively. We assume
that the uncertainties are norm-bounded and can be described as follows:

[AA(r) AB(1)]= EF(O[G, G,], 3)

where E,G,,G, are known real constant matrices with appropriate dimensions, F(¢) are

unknown real matrices with Lebesgue measurable elements bounded by:
FY()F()< 1. (4)

S(5): R xR'xR' > R'and g(,,-,7) : R, xR' xR - R"" denote the nonlinear uncertainties which

is locally Lipschitz continuous and satisfies the following linear growth conditions

| £ @.x(0), x(t =) < | Fx )| + | B x (e = z(0))], ()

and

Trace[gT(t,x(t),x(t—z'(t)))g(t,x(t),x(t—r(t)))] < ||H1x(t)||2 + ||H2x(t—z'(t))||2 , (6)

Throughout this paper, we shall use the following definition for the system (1).

Definition 1 (Chen et al, 2005). The uncertain nonlinear stochastic time-delay system (1) is
said to be exponentially stable in the mean square sense if there exists a positive scalar
a > 0 such that for all admissible uncertainties

. 1
tlgrgo sup ?log E ||x(z‘)||2 < -a. (7)
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238 Stochastic Control

Lemma 1 (Wang et al, 1992). For any vectors x,y € R", matrices 4,PeR"™" .DeR"™7,

EeRY™ ,and F’ R with P> 0,F TF< I, and scalar £>0, the following inequalities hold:
(i) ZxTy <x'P'x+ yTPy,

(i) DFE+E'FTDT <& 'DDT + ¢ETE,

(iii) If P—eDDT >0, then (4+ DFE)" P~ (4+DFE)< A" (P—eDD "' 4+ ¢E"E.

For convenience, we let

V(1) = (A+AA(0)) x(t) +( B+ AB(t) ) x(t —7(1)) + (2, (1), x(t — (1)), )
and set
J@O =1t x(0),xt=7(0))), g()=gt,x(),x(t=7(1)), ©)
then system (1) becomes

dx(t) = y(t)dt + g(t)dw(t). (10)

Then, for any appropriately dimensioned matrices N;,M;,i=1,2,3, the following

equations hold:

£ =25 ON + 5 =20, + 7T ON; | 50~ xe=20) =] L v)ds=[ [, e)dns) | =0,(11)
and

s, =2[xT (OM, +x" (t—(t)M, + " (t)MJ <[ (A+AA(D)) x(t)+( B+AB@D)) x(t - (1) + £ (1) - y(1) | =0, (12)

where the free weighting matrices N, M ;,i = 1, 2,3 can easily be determined by solving the

corresponding LMIs.
( () ). . X Xp Xy ,
On the other hand, for any semi-positive-definite matrix y_ | , X, Xy, |20/ the following
* * X33
holds:
t
2= (OXEW-[ ] ETOXEMds 20, (13)

where £7(¢) = [xT(Z) xT(t -7 yT(t)} :

Theorem 1. When (2a) holds, then for any scalars 7 >0,d <1, the system (1) is
exponentially stable in mean square for all time-varying delays and for all admissible
uncertainties, if there exist P>0,0>0,R>0,5 >0, scalars p >0, 2 > 0, ;> 0,j=0,1,...,7,a
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symmetric semi-positive-definite matrix X>0 and any appropriately dimensioned matrices
M. ,N;,i=12,3, such that the following LMIs hold

X1 X2 X3 Ny

o - X2 Xos Ny >0, (14)

*

"
F

(®,, ©, ©3 N, M, M, ME ME 0 0 0 0
* ®5, O3 Ny M, M, 0 0 M>E M>E 0 0
* * ®33 Nj M, M5 0 0 0 0 MiE M3E
* * * -S 0 0 0 0 0 0 0 0
* * * *  —gol 0 0 0 0 0 0 0 (15)
* * * * * -l 0 0 0 0 0 0
O = & <0,
* * * * * #* —&r1 0 0 0 0 0
* * * * * * * —&31 0 0 0 0
* * * * * * * * —&ql 0 0 0
* * * * * * * * * —&s] 0 0
* * * * * * * * * * —&6l 0
| * * * * * * * * * * * —&71 |
P<pl, (16)
S <ul, (17)
where
T Ta,T T T T T
O =R+N + N/ + M A+ A M| +7X+(&, +&, +£,)G, G1+gOF1 Fl+(p+m)H1 Hl,
T TasT T TasT
®,=-N,+N} +MB+A"M] +7X,,. ®, =P+N; -M +A"M] +7X,,

T T,,T T T U T
@22 :—(l—a’)R—NZ—N2 +MZB+B M2 +TX22 +(E5 + &5 +<97)G2 G2 +81F2 F2+(p+—1_d)H2 H,,
T T,,T T
0,3 :—N3 7M2+B M3 +7X,3, O :erMfM3 +7X55.

Proof. Construct the Lyapunov-Krasovskii functional candidate for system (1) as follows:

V()= il V),

where

Vi =xT(OPx(t), Vy(0) =120 oy  ()0V(s)dsd0, V3(1) =1 x" (s)Rx(s)ds,

V()= ﬁf?rm I;+ﬂ trace[gT (s)Sg(s)] dsdf5.
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240 Stochastic Control

Defining x, by x, (s) = x(t +5),—27 < 5 < 0, the weak infinitesimal operator L of the stochastic

process {x[ iy O} along the evolution of V| (¢)is given by (Blythe et al, 2001):

LV,(£) = 2x" (6) Py(t) + zmce[ gT(t)Pg(t)]. (19)

The weak infinitesimal operator L for the evolution of V,(#),V5(),V,(¢) can be computed

directly as follows
LV, (1) =1(t)y" ()0 (1) (1= 2(t)];_y (1) ¥ (5)Ov(s)ds, (20)

LV,(0) = x" (t)Rx(t) = (1= £(0)x" (¢t — () Rx(t — (1)), (21)

LV,(0) = 1 eOtrace] g7 (0Sg(1) |~ g (1= D] trace] g (5)Se() |ds. (22)

Therefore, using (2a) and adding Egs. (11)-(13) to Egs. (19)-(22), then the weak infinitesimal
operator of V(t) along the trajectory of system (1) yields

o O +xT (ORx(?)
(¢t (23)

trace[ gT (S)Sg(s)] ds+2Z +2,+%,

LV () < 2x" ()Pw(2) +zmce[ g’ (t)Pg(f)] +oy (OO~ (1 —d)j;_
~ (=)t~ tw) Rt~ 700)) 41 race] g (0Sg() ] - L’_T(Z)

It follows from (i) of Lemma 1 that

[ ON 2 =N, T ON ][ e6)dols)

24
<Eons NTew (] soo) s([! ot “
where NT = [NlT N) NT ]
Moreover, from Lemma 1 and (5)
2 [xT (OM, +xT (1 =M, + yT ()M, } 170 o

<ET(t)ey ' +e7 IMMTEW) +xT (DeyFF x(t) + xT (t—(0)&, F, F, x(t — 7 (1)),
where M T =|:MT My MT]

1 2 3

Taking note of (6) together with (16) and (17) imply
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trace g (1)Pg(f)] +ﬁtmce[ 2T ()Se(1)] < (p+%)[xT () H H,'x(0) +x" (t = () H,H, x(t — 7(2))]-

(26)
Noting that

E(] e0dom) s([ swdo)=E[ | race[s"5)5)]ds. @)
For the positive scalars &, > 0,k = 2,3,...,7, it follows from (3), (4) and Lemma 1 that

2T (OMAAOX(O) < & 'x (OMEE" M x(t)+&,x" (6)G] Gx(@), (28)

2x (OMAB()x(t — (1) < & 'x" (OM,EE" M x(t) + &5x' (t—1(1)G, Gyx(t (), (29)

2x" (t = 7(O)M At < & X" (¢~ () MyEE" M, x(t —7(0)) + £,x ()G, Gx(¥), (30)

2" (t — (e )MAB()x(t () < &5 'x " (t—T(O)MyEE My x(t —7(t)) + £ (t—1(0) G, Gt —(t),  (31)

20T (OMAA(OX(1) < &5y  (WMLEE"M; (1) + 5" (G| Gx(2), (32)

29T (OMAB(Ox(t—7(t) < &5y  (OVMLEE™M3 y(t) + &,x" (t—7(1))G, Gyx(t —7(1)).  (33)

Then, taking the mathematical expectation of both sides of (23) and combining (24)-(27) with
(28)-(33), it can be concluded that

E{LV(®)} <E{E"OBE0| [ _ ST 6,9ME5)] ds, (34)

where

—

By Ep B
' ts)=[x"0 Te-r0) 'O Y], == * B, 2y,

—

R

2, =0, +NS'N e e MM )t vl HMEET M

B, =0, +NSIN] +&)' v IMMY . B3 =0, +N,SNI +(&) +& MMy,
2y, =0, +N,S'N] +(&, +& MM, +(&,' +e5 YM,EE'M,.

£y =0, +N2S_1N3T +(561 +gl_1)M2M3T,

By =0, + N,SN, +(&) +&7 MM+, +& Y"MLEE'M,.
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242 Stochastic Control

By applying the Schur complement techniques, =<0 is equivalent to LMI (15). Therefore, if
LMIs (14) and (15) are satisfied, one can show that (34) implies

E{LV(t)} < E{ET (2. (35)

Now we proceed to prove system (1) is exponential stable in mean square, using the similar
method of (Chen et al, 2005). Set 4, =A_. (-E),4, =4, (P), by (35),

E{LV ()} < -2 E{ET(O)E@®)] < —AE {xT ()x(0)]. (36)
From the definitions of V(¢) and y(¢), there exist positive scalars 3|, 3, such that
4O <V @) < B x| + Bylae|x(s)| ds. (37)
Defining a new function as W () = eV (¢), its weak infinitesimal operator is given by
L{W (@)} = B,V () +e™L{V (1)}, (38)
Then, from (36)-(38), by using the generalized 1£6 formula, we can obtain that
W@} -EW )} < B | A + AL ko d0)- 4 lxof . @9
Since the following inequality holds (Chen et al, 2005)
Jt Vsl O d6 < 20V [y [x(o)]] Vs, (0)
Therefore, it follows that from (39) and (40),
E{W(0)}-E{W(,)} <EJ P [ By (B, + 225,87 —/7,0}||x(s)||2 ds+Cy(ty),  (41)
where C, (19) = 22, B, 7% [0, E|x(s)| 0" ds.

Choose a positive scalar £, > 0 such that (Chen et al, 2005)

By (B, + 28,607 ) < 4. (42)

Then, by (41) and (42), it is easily obtain
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. 1
Jim sup-log E|x()]” < -4,

which implies that system (1) is exponentially stable in mean square by Definition 1. This
completes the proof. O
In the case of the conditon (2b) for system (1), which is derivative-independent, or in the

case of 7(¢)is not differentiable. According to the proof of Theorem 1, the following
theorem is followed:

Theorem 2. When (2b) holds, then for any scalars 7>0, the stochastic system (1) is
exponentially mean-square stable for all admissible uncertainties, if there exist
P>00>0S5>0 , scalars p>0>06;>0,j=01,..,7 , matrix X=0 and any appropriately

dimensioned matrices M HNLT=12,3, such that (16),(17) and the following LMI holds

X1 X1 X3 Ny

go| * X2 X M >0, (43)
* * X33 N3

_@11 ®, 013 N M, M, ME ME 0 0 0 0
* ®, O3 Ny, M, M, 0 0 MyE MyE 0 0
* * ®33 N3 M; M 0 0 0 0 MiE M3E
* * * -S 0 0 0 0 0 0 0 0
£« %« gl 0 0 0 0 0 0 0 (44)
6=| * * * * * —&l 0 0 0 0 0 0 <0,
* * * * * * —&r1 0 0 0 0 0
* * * * * * * —&31 0 0 0 0
* * * * * * * * —e4l 0 0 0
* * * * * * * * * —&51 0 0
* * * * * * * % * * —&gl 0
| * * * * * * * * % * % —&71 |
Where

o T

O =N+ N + M{A+ A M| +7X,) + (&, +£,+60)G, G +& K F +(p+q)H H ,

o T
©yy =—N,~Ny + MyB+B M, +7Xy, +(8;+85+8,)G, Gy +& Fy Fy +(p+mu)Hy Hy.

Remark 1. Theorem 1 and 2 provides delay-dependent exponentially stable criteria in mean
square for stochastic system (1) in terms of the solvability of LMIs. By using them, one can
obtain the MADB 7 by solving the following optimization problems:
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max 7 (45)
st. X20,P>0,0>0,R>0,Z>0,p>0,u>0,¢; >0,M, N, (14) = (17), i=1,2,3; j=0,1,...,7,

or
max 7 (46)
st. X20,P>0,0>0,2>0,p>0,u4>0,2; >0. M, N,.(16),(17),(43),(44), i=12.3;j=0,1,...7.

2.2 Ho exponential filtering for uncertain Markovian switching

time-delay stochastic systems with nonlinearities

We consider the following uncertain nonlinear stochastic systems with Markovian jump
parameters and mode-dependent time delays

(2):0) =LA X0+ Ay )X =7, O+ DS GO =T, D7)+ B Gk
HE(R)X(O)+ B, (t,7)x(t—, (0) + Gt MO)ld ),

47)

(@) =C(t,r,)x()+ C,(t,1,)x(t — 7, () + D, (r,)g(x(1), x(t — 7, (1)), 1;,) + B, (¢, 1, )¥(2), (48)
z(¢t) = L(r)x(2), (49)

x(t)=¢@t), r(®)=r(0), Vte[-1,,0], (50)

where x(t) e R" is the state vector; v(f) € R” is the exogenous disturbance input which
belongs to L, [0,20); y(¢) € R?is the measurement; z(¢) € R" is the signal to be estimated;
w(t) is a zero-mean one-dimensional Wiener process (Brownian Motion) satisfying
E[w(t)]=0and E[@’ ()] =¢; {rt,tZO} is a continuous-time Markovian process with right
continuous trajectories and taking values in a finite set S = {1,2,...,N } with transition
probability matrix [T = {7} given by

;A +0(A), ifi#],

51
l+7;,A+0(A), ifi=], G

Prir,,=Jln =i} =

where A >0, Alli)lrl0 (0(A)/A)=0; 7,; = 0 for i # j, is the transition rate from mode/ at time ¢

to mode j at time? + A and
N
T..=— >  I.. (52)

)
RN

In system (X), 7, (¢) denotes the time-varying delay when the mode is in 7; and satisfies
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0<7,<r,(t)<7t,, 7,(t)<d <1, Vr,=i,ieS (53)

where 7,,,7,, and dl. are known real constants scalars for any i€ S. In (50),
7, =max{r,,i €S}, and @(t) is a vector-valued initial continuous function defined on

[, 0]- A1), Ay ), D) B, E ), E (6,1, Gt ), CGt, 1), C 7). Dy ), By 0,7)

and L(l’t) are matrix functions governed by Markov process 7; , and

A(t,r) = A(n) + A, n), 4,(t.n)=A4,(n)+A4,(@.n), B/(t,r) =B (r)+AB (1),
E(t,n)=E(n)+AE®), E,(t,5)=E,(n)+AE,(t.1), G(t,1)=G(1)+AG(, 1),
C(t,r)=Cr)+ACEr), Ct.r)=Cy(n)+AC,(1,1), B)(t,1,)=B,(1,)+AB,(1,1,).

where A(r),A,(r),B(r),Er),E,(r),G(r),C(),C,(r),B,(r) and L(r,) are known real
matrices representing the nominal system for all 7, €S, and AA(t,1,),AA4,(t,1),
AE(,r),AE, (t,1),AG(t,1),AC(t,1),AC,(t,r;) and AB,(t,r;) are unknown matrices

representing parameter uncertainties, which are assumed to be of the following form

AA(t,r) Ad,(t,r) AB(tr)| | M(r)
AE(t,r) AE,(t,1) AG(tr) |=| M) [Ft,r)[N() N,(n) Ny(r)], vr, €S, G4
AC(t,r) AC,(t,1) AB,(t,r)| | M,(r)

where M (7,), M, (r,), N,(7,), N, (r,)and N,(7,) are known real constant matrices for all

r, €S, and F(t, I’;) is time-varying matrices with Lebesgue measurable elements satisfying
F'(t,r)F(t,r,) <1, VreS. (55)

Assumption 1: For a fixed system mode 7, € S, there exist known real constant mode-
dependent matrices F (r,) e R™", F,(r)eR™, H,(r)eR™and H,(r,) € R"" such that

the unknown nonlinear vector functions f(---) and g(.-,-) satisfy the following

boundedness conditions:

£ (@), x(t 7, (0).7;)
|2 (x(0), x(t 7, (1)), 7,)

<|F ()x(0)| + | Fyr)x( =, (1))
<|H, (r)x()|+ [H, (r)x( =7, (1). (57)

(56)

b
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For the sake of notation simplification, in the sequel, for each possible 7; = i, €S, amatrix
M (¢,r,) will be denoted by M (t); for example, A(Z,7;)is denoted by A (¢), and B(t,r,)
by B, and so on.

For each i€ S, we are interested in designing an exponential mean-square stable,
Markovian jump, full-order linear filter described by

(2,): dx(t)=A,x(t)dt+ B, y(t)dt, (58)
2(t) = L,x(2), (59)

where £(¢) e R"and Z(¢) € R fori € S, and the constant matrices 4 T B sand L are filter

parameters to be determined.
Denote

M) =xt)-3), 20)=20-20), SO=[x) O], (60)

Then, for each 7, =i, 1 € S, the filtering error dynamics from the systems (X) and (Z ) can
be described by

E):dE@t) =[4(OEW)+ A, (DHE—7,(0))+ D, f(HEW), HE(t —7,(t)), )

— D, g(HE(t), HE(t—7,(1)),0) + B, (t)v(t)]dt (61)
+EOHER) +E,(OHEE —7,(0)) + G (OW(D)]da(?),
2(t)= L&), (62)

where

A=A +A(1), A4,@1)
E(t)=E +AE(t), E, @)

~ A 0 - AA (1) 0] - 4, ]
4, = . A= A, =
A-4,-B,C, A4, A4,(t)~ B,AC,(t) 0 4,-B,C, |

A ~ AA4, (1) B - B, AB (1) = AB, (1)
‘O ag,00-8,80,0 %7 8,88, 07| a8,0)-8,08,0),

s {E " {AEZ. (t)} . [Edl} . {AEdl. (r)} ~ {Gl]
E="|, AE()= , E,= , AE, ()= , G=| |,
E, AE, (1) E, AE, (1) G,

1

AG.(t):_AGi(t), B =| P B, - 0 . L=[L-L, L,]. H=[1 0]
i _AGi (t) li Dli 2i BﬁDZi i i fi fi

= A+ Mdi (1), éi (1) = gi + Al}i (1),
=E,+AE,(t), G,(t)=G +AG,(1),

»

-
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Observe the filtering error system (61)-(62) and let £(¢;5) denote the state trajectory from
the initial data £(@)=¢(@)on -7, <O <0 in Lf,o ([—z‘z ,0];R2" ) Obviously, the system

(61)-(62) admits a trivial solution &£(#;0) =0 corresponding to the initial data ¢ =0.
Throughout this paper, we adopt the following definition.
Definition 2 (Wang et al, 2004): For every gel;, ([—72,0];R2”),the filtering error system (61)-

(62) is said to be robustly exponentially mean-square stable if, whenv(¢) =0, for every

system mode, there exist constant scalars & > 0 and £ > 0, such that
E ‘é‘(t;g)‘z <ae” sup E‘g(@)‘z. (63)
-7,<0<0

We are now in a position to formulate the robust Hoo filter design problem to be addressed
in this paper as follows: given the system (X) and a prescribed y>0, determine an filter

(Z f) such that, for all admissible uncertainties, nonlinearities as well as delays, the filtering

error system (i) is robustly exponentially mean-square stable and
2, <7[v@l, (64

under zero-initial conditions for any nonzero w(t) e L, [O, oo) , Where ” g(t)”E =E { I - | Z(t)|2 dt
2 0

}%
The following lemmas will be employed in the proof of our main results.

Lemma 2 (Xie, L., 1996). Let x€R",y€R" and a scalar £ >0. Then we have
xTy + yTx <ex'x+ 8_1yTy.

Lemma 3 (Xie, L., 1996). Given matrices Q=0 ,H,E and R=R" >0 of appropriate
dimensions, Q+ HFE + E'F"H" < Qfor all F satisfying F'' F' < R, if and only if there
exists some A > 0such thatQ+ AHH' +A'E'RE <0.

To this end, we provide the following theorem to establish a delay-dependent criterion of
robust exponential mean-square stability with Hoo performance of system (2), which will
be fundamental in the design of the expected Hoo filter.

Theorem 3. Given scalars 7,,7,,,d, and y >0, for any delays 7,(¢) satisfying (7), the
filtering error system (i) is robustly exponentially mean-square stable and (64) is satisfied
under zero-initial conditions for any nonzerow(t) € L, [O, oo) and all admissible uncertainties
if there exist matrices P >0,i=12,...,N,0>0and sclars &, >0,&,; >0 such that the
following LMI holds for each i € S
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®, PA,() PB() H'E'()P PD, PFD,
* D, 0 Emp 0 0
o, - ” " -1 GI()P 0 0 1 0. ©)
* * * -P, 0 0
% % * % —g”] 0
* * * * * —&,.1

where
N ~ ~ ~
@, => 7, +PA{t)+ A ()P +uH" 'OH +2¢,H"F, F,H +2¢, H H H H+LL,
Jj=1

q)zz = 2511'Fz{F2i + ZgzinTini —(1- di)Q’

,ieS}, 7, =min{z,,i€S}, 7,=max{r,,ieS}.

u=l+p(r,-7), p= max{‘;zﬁ

Proof. Define X,(s)=x(t+35), 1-7, (1) <s<t, then {(xt,rt),l‘ > 0} is a Markov process with

initial state (@(), 7 ). Now, define a stochastic Lyapunov-Krasovskii functional as

V(&) =E OPO)EWO ] E@HOQHE s+ p[ [ £ (5)H" QHE(s)dsd,
(66)
Let L be the weak infinitesimal operator of the stochastic process {(xz»’?)at 20}. By [to
differential formula, the stochastic differential of V(& ,7,) along the trajectory of system
(2) withv(t)=0for 7, =i, i € S is given by
dv (&, = LIV (&, 0]+ 28" (OPLE(OHE(0) + E,(OHE( — ()], (67)
where
Ur.0]=&' O 7P +26" OFAOE0) + A4, HE~5,0)
+ D f(HEO, HE~7,0), )~ Dy g(HEW), HE =70, 0)
HEWOHE)+E,(OHE 7 O) FIEOHE)+ E,(OHE 7 1)
237 EOH OHE Y+ OH O~ O)E €~ OV OHE—70)

(68)

+(e,~5)E (OH QHED) ~p] | & (VH QHE X
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Noting .~ 0 for i # j, and 7, <0, we have

N

Som,f & OHOHE s <, [ ' (9H QHE(s)Ms < p| & (s)H" QHE(s)ds. (69)

- -7
J=1

Noting (56), (57) and using Lemma 2, we have

26" ()PD, f(HE®), HE(t—7,(1)), 1)

.\, (70)
<&, &' (ORD,DPEO+26, (8" (OH K FHE®N) + &' (t—7,(0) HF, By, HE(t —7,(1)),
and
~2&" (0D, g(HE(), HE(t~7,(0).1) -
<&, 8" (ORD, DLRE(D) + 26, (& (VH H H HEO)+E (t—1,(0) HH, H,, HE(t—7,(1),
Substituting (69)-(71) into (68), then, it follows from (68) that for each ¥, =I,1 € S
LIr(.0]<n ()0n(), 72)
where
T T " 0, 06,
10=[¢'0 a-roH], e, { D }

N ~ ~ ~ ~ ~ ~
©, =Y 7,2 +PA()+ A ()R +&, RD,DIP+2¢,H'FF,H + &, PD, DL P
j=1

+26, H'"H 'H H+H"E'(t)PE(t)H + uH"QH,
0, = B‘;ldi O+ HTEiT (t)})iEdi (1), ©,, =2¢ szle + 2‘92inTini + E; (t)EEdi (H—-(1-d)0,

1

By the Schur complement, it is ease to see that LMI in (65) implies that ® ; < 0. Therefore,

from (72) we obtain

Lv(&,]<=6n" (tmn(), (73)

where § = min.

ies {/1 - (—@l.)} . By Dynkin’s formula, we can obtain

E{r &, b} —E{V(&,n)}= E{ jo L[V(;v,i)]ds} ) I;E{g“T(s)f(s)}ds. (74)

On the other hand, it is follows from (66) that
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E{r.n} 24, E{E 050 (75)

where 4 =min,_g {/Imin (P )} > (. Therefore, by (74) and (75),

E{& 00 <4, V&1 -1, [ E{E (9)e(9))ds @

Then, applying Gronwall-Bellman lemma to (76) yields
- -4,
E{E"DEM <A,V (&) ™.

Noting that there exists a scalar & > 0 such that ,1;11/ (&,1)<a sup ‘ g(g)‘z )

-7,<6<0

Defining £ = 52.; > (0, then we have E|§(t)|2 <ae” sup E|s(6)
0

—7,<0<

2
s

and, hence, the robust exponential mean-square stability of the filtering error system (i)
with v(#)=0is established.

Now, we shall establish the Ho performance for the system (i) , we introduce

J()=E jo [27(5)2(s) = 7>v" (s)v(s)Ids, (77)

where 7 > 0. Noting under the zero initial condition and EV(¢;,7) >0, by the Lyapunov-

Krasovskii functional (66), it can be shown that for any nonzero v(¢) € L, [O, oo)

JO=E| [[[21(6)206) =V (6) + LV (0| ~EV (&) <E| [ 6t 79)

where
©,+LL ©, PB(@)+H E ()PG(1),
T ~ ~
ns)=[&'6) V], v0=| = 0, E;(OFG(1), :
* * G (WRG,()-y’1

Now, applying Schur complement to (65), we have ‘¥, (#) <0. This together with (78) implies

that J(¢) < 0 for any nonzero v el, [(),oo)_Therefore, under zero conditions and for any
nonzero Wt) € LZ[O, oo), letting t — o0, we have H 2(1,‘)HEQ < 7/”\)({)”E2 if (65) is satisfied. This

completes the proof. O
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Now, we are in a position to present a solution to the Hoo exponential filter design problem.
Theorem 4. Consider the uncertain Markovian jump stochastic system (X). Given scalars

7,,T,,d,and y >0, for any delays 7,(¢) satisfying (7), the filtering error system (2)is
robustly exponentially mean-square stable and (64) is satisfied under zero-initial conditions

for any nonzero v(t) € L, [0,00) and all admissible uncertainties, if for each 7 € S there exist

matrices P.>0,B, >0,0>0,W,,Z and sclars &;>0,&,>0,&;>0,&, >0 such that the
following LMI holds

1 [1]
I

Ell Elz E13 E‘14 EiTPn EiTPZi PliDli 0 PliMli 0 LIT _Lji
* Hy By By 0 0 kD, Z.D, PM,-ZM, 0 Ljﬁ
x % =, =, E'P, E'B, 0 0 0 0 0
* = x 2. G'B. G'B, 0 0 0 0 0
£ % % & —P 0 0 0 0 PM, 0
* * * * * -P, 0 0 0 P,M,, 0 <0,(79)
* % * * * * -&,1 0 0 0 0
* * * * * * * —&,,1 0 0 0
* * * * * * * * &, 0 0
* * * * * * * * * &l 0
* * * * * * * * * * -/
Where

1>

N
B, =) 7,B, +BA+ AP, +2¢6,FF, +2e,H H + uQ+eNN

=

— _ T T — _ T = _ T

E,=4 P, -W, C Z By =hHA4,+&N;Ny, B, =hFB,+&N; Ny,
N

S = Zﬁy 2 +W, + VV; By =P,4,-2.C,, E, =b,B,-Z2B,,
j=1

— T _ T

Hy = ZgllF F,. +2521H H, —(1-d)0+¢N,N,, E,=&N,N,,

By =7 1+&NyNy, & = &3 T &y u=1+p(z, —17).

In this case, a desired robust Markovian jump exponential Heo filter is given in the form of
(58)-(59) with parameters as follows

4,=PB,'W,. B

§ = P.'Z., L, i€S. (80)
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Proof. Noting that for ¥, =1, i € S

(A4 A0 AB()|=MFEO[N, N, N,]. 1)
and
[AE@) AE,() AG(®H)|=ME®[N, N, N, 82)
where
M M, M My, N. =[N, 0], N,=N,, N, =N
1i_|:M1i—BfiM3[:|’ 2i—|:M2J: li_[ 1i ]a 2i 7 1V 3i — 4V3it

Then, it is readily to see that (65) can be written in the form as

®, =D, + A F (O, +THE (OA]+ A, F (O, +TLE (DAL <0, (8)

where
_(DIIO Pi;idl Plgl HTEITP Pléll PiéZi |
* CI)22 0 ;i i 0 0
* * —y I G'P 0 0
(Dio = 4 P >
* * * —R 0 0
* * * * —&.1 0
* * * * * _‘9211

N ~ ~ ~; ~
=D 7P +PA+AP+2e,HFF,H+2¢,H H H H+uH OH + L,
j=1
A,=[MIp 0 00 0 0], T,=[N, ¥, N, 00 o]
~T T
A,=[0 0 0 MjP 0 0|, T,=[NH N, N, 0 0 0],

From (83) and by using Lemma 3, there exists positive scalarsg,, > 0,&,, > Osuch that the
following inequality holds
-1 T T -1 T T
Dy +&5 ANy + 6,10 +e, A Ay, +6,T,1, <0, (84)

1 1

then, by applying the Schur complement to (84), we have
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(&, &, &, H'E'P PD, PD, PM, 0 |
* (f)zz &)23 ~;i i 0 0 0 0
« o« @D, G'P 0 0 0 0
& _|* * = -2 0 0 0 P,
Tl ok *  —gl 0 0 0 | (85)
* * * * * —&,,1 0 0
% % % * % * —&, I 0
* * * % * % % &y i
where ) .

N ~ ~
O, =D 7, P +PA+A P +2e,H FF,H+2e,H' H H H+ puH"OH

i

+ ZTEZ + 831']’\71{]([11' + 541'HTN1€N11'H’
(i)lz = E‘Zldi + 531‘]\713]\721' + g4iHTNlTiN2i’ q~)13 = Pzéz + g3iN]£N3i + ‘941'HTN1{N31"
ci)zz = 251[‘F2{F2i + 2gziH2Tini -(1- di)Q + 53iN2T;N21 + g4iNzTiN2w

= ST T 2 ST T
D,; =&,;,N,,N;; +&,N, N Dy, ==y I +&,Ny Ny, + 6Ny Ny,

3i°

Foreach7, =i, i €S, we define the matrix P, > 0 by

b_[B0
Lo B

Then, substituting the matrix £, the matrices zzll.,g[ di,Ei,E;,E di’Bi’E E . .G,D.D,., L

i> P> i i i By
H defined in (61)-(62) into (85) and by introducing some matrices given by
W,=P,A;,Z, = P,B,, then, we can obtain the results in Theorem 4. This completes the
proof. O

3. Numerical Examples and Simulations

Example 1: Consider the uncertain stochastic time-delay system with nonlinearities
dx(t) = | (A+AA() \x(D)+(B+AB(0))x(t—7 (1)) | dt + g (¢, x(0), x(t =t ())d (), (86)

where
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-2 0 -1 0
A = s B = )
[ 1 —1} [—0.5 —1}

trace| g (1, x(0), x(t = T (1)) g (6, x(0), x(t = (1)) | < 0.1 |x(0)[* + 0.1 |x(z = z ().

0.1 0 1 0 V0.1 0
E = .G, =G, = H, =H, = :
0 0.1 0 1 0 JO.1

For the time-invariant system, applying Theorem 1, it has been found that by using
MATLAB LMI Toolbox that system (86) is exponentially stable in mean square for any delay
0<7<1.0898. It is note that the result of (Yue & Won, 2001) guarantees the exponential
stability of (86) when 0 <7 <0.8635, whereas by the method of (Mao, 1996) the delay is

only allowed 0.1750. According to Theorem 1, the MADB for different d is shown in Table
1. For a comparison with the results of other researchers, a summary is given in the
following Table 1. It is obvious that the result in this paper is much less conservative and is
an improvement of the results than that of (Mao, 1996) and (Yue & Won, 2001).

The stochastic perturbation of the system is Brownian motion and it can be depicted in Fig.1.
The simulation of the state response for system (86) with 7=1.0898 was depicted in Fig.2.

a4 < 0.1, [|aB@)| <0.1,

Methods d=0 d=0.5 d=09
(Mao, 1996) 0.1750 - -
(Yue & Won, 2001) | 0.8635 - -

Theorem 1 1.0898 0.5335 0.1459

Tablel. Maximum allowable time delay to different d

1

The state response of x1and x2

m_
-
[ag]
o
o
o
2

P I T I
0

01 02 03 04 DIS D.IB D.‘T D.IB D.‘S 1 k SD 1I é I I
t(s) Time(s)
Fig. 1. The trajectory of Brownian motion Fig. 2. The state response of system (47)
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Example 2. Consider the uncertain Markovian jump stochastic systems in the form of (47)-
(48) with two modes. For mode 1, the parameters as the following;:

-3 1 0 -0.2 0.1 06 0 01 0 1
4=/03 45 1 |, 4,=/05 -1 -08|, D,=[01 01 0 |, B,=|0],
0.1 03 -38 0 1 =25 0.1 02 02 1

(0.1 —0.1 0.2 ] 0.1 -0.1 02 0.2
E =03 03 -04|,E,=[03 03 -04|, G=|0| C=[08 03 0],
0.1 01 -03 01 01 -03 0.1
C,=[02 -03 -06], D, =0.1, B,=02L=[05 -0.1 1],
(0.1 0 0 0.1 0.1
F =F,=H,=H,,={ 0 01 0|, M,=l0]|, M,=|0]| M,=02,
0 0 0.1 0.2 0.1

N,=[02 0 0.1], N, =[0.1 02 0], N, =02.

and the time-varying delay 7(¢) satisfies (53) withz,, = 0.2, 7,, =1.3,d, =0.2.

For mode 2, the dynamics of the system are describe as

(25 05 —0.1 0 -03 06 0.1 0 0.1 ~0.6
A=l 01 35 03|, 4,=/01 05 0 |, D,=/01 02 0] B,=|05]
01 1 32 06 1 -08 02 0.1 0.1 0

0.1 -1 02 0.1 —01 02] 0.1
E =03 03 —04[,E,=|03 03 -04|, G,=| 0|, C,=[-05 02 03],
1 01 03 0.1 01 03] 0.1
C,=[0 -06 02], D,=01, B,=05L=[0 1 0.6],
01 0 0 0.1 0.1
F,=F,=H,=H,=| 0 01 0| M,=|0.1|, M,=|0.1|, M,=0.1,
0 0 0l 0 0

N,=[0.1 0.1 0], Ny=[0 —0.1 02], N,=0.1.

and the time-varying delay 7 (¢) satisfies (53) with 7, =0.1,7,, =1.1,d, =0.3.

-0.5 0.5
Suppose the transition probability matrix to be I = { }

03 -0.3
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The objective is to design a Markovian jump Hoo filter in the form of (58)-(59), such that for
all admissible uncertainties, the filtering error system is exponentially mean-square stable
and (64) holds. In this example, we assume the disturbance attenuation level y =1.2.

By using Matlab LMI Control Toolbox to solve the LMI in (77), we can obtain the solutions
as follows:

07952 0.0846 0.0051 0.6847 00549 -0.0341 1.0836 0.1117 -0.0355
P, =|0.0846 06355 -0.1857| P, =|0.0549 04614 -0.0350|,P, =/ 0.1117 09508 -0.1800|,
00051 -0.1857 0.7103 -0.0341 -0.0350 0.5624 -0.0355 -0.1800 0.7222
[0.5974 00716 -0.0536 14336 -0.0838 -0.0495 09731 03955 04457
P,=| 00716 05827 00814 |,0=|-0.0838 21859 -1.1472| W =|-03560 -1.1939 0.5584 |,
00536 0.0814 0.3835 0.0495 -1.1472 1.9649 06309 0.5217 -1.2038
[-0.8741 -0.0117 0.1432 -0.3844 0.0072
W,=| 00276 -1.1101 -0.0437 |,Z =| 0.1797 |, Z, =| -0.0572 |,
[0.1726 0.1087 -0.8501 1.2608 -0.0995

6, =1.2704, e, =1.1626, e, =1.0887, e, =1.0670, ¢, =1.2945, e, =1.2173, e, =1.2434, ¢, =1.2629.

Then, by Theorem 4, the parameters of desired robust Markovian jump Hoo filter can be
obtained as follows

14278 07459  0.4686 -0.4989

A, =|-0.6967 27564 09989 |,B, =| 0.6196 |,L, =[0.3042 0.0467 0.7872];
12519 -1.0541 -2.0500 2.2503
15571 0.2940 0.0074 -0.0024

A,=| 02446 -2.0474 0.2408 |,B,, =|-0.0635 |,L,, =[0.0037 0.5730 0.3981].
0.7197 0.7592 -2.2669 -0.2463

The simulation result of the state response of the real states x(¢) and their estimates X(¢) are
displayed in Fig. 3. Fig. 4 is the simulation result of the estimation error response of
Z(¢t) = z(t) — z(t) . The simulation results demonstrate that the estimation error is robustly

exponentially mean-square stable, and thus it can be seen that the designed filter satisfies
the specified performance requirements and all the expected objectives are well achieved.
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Fig. 3. The state trajectories and estimates response
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Fig. 4. The estimation error response

4. Conclusion

Both delay-dependent exponential mean-square stability and robust Ho filtering for time-
delay a class of If0 stochastic systems with time-varying delays and nonlinearities has
addressed in this chapter. Novel stability criteria and Hoo exponential filter design methods
are proposed in terms of LMIs. The new criteria are much less conservative than some
existing results. The desired filter can be constructed through a convex optimization
problem. Numerical examples and simulations have demonstrated the effectiveness and
usefulness of the proposed methods.
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