
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Improved State Estimation of Stochastic Systems via a New Technique of Invariant Embedding 167

Improved State Estimation of Stochastic Systems via a New Technique 
of Invariant Embedding

Nicholas A. Nechval and Maris Purgailis

X 
 

Improved State Estimation of Stochastic 
Systems via a New Technique  

of Invariant Embedding 
 

Nicholas A. Nechval and Maris Purgailis 
University of Latvia 

Latvia 

 
1. Introduction        

The state estimation of discrete-time systems in the presence of random disturbances and 
measurement noise is an important field in modern control theory. A significant research 
effort has been devoted to the problem of state estimation for stochastic systems. Since 
Kalman’s noteworthy paper (Kalman, 1960), the problem of state estimation in linear and 
nonlinear systems has been treated extensively and various aspects of the problem have 
been analyzed (McGarty, 1974; Savkin & Petersen, 1998; Norgaard et al., 2000; Yan  & 
Bitmead, 2005; Alamo et al., 2005; Gillijns & De Moor, 2007; Ko & Bitmead, 2007). 
The problem of determining an optimal estimator of the state of stochastic system in the 
absence of complete information about the distributions of random disturbances and 
measurement noise is seen to be a standard problem of statistical estimation. Unfortunately, 
the classical theory of statistical estimation has little to offer in general type of situation of 
loss function. The bulk of the classical theory has been developed about the assumption of a 
quadratic, or at least symmetric and analytically simple loss structure. In some cases this 
assumption is made explicit, although in most it is implicit in the search for estimating 
procedures that have the “nice” statistical properties of unbiasedness and minimum 
variance. Such procedures are usually satisfactory if the estimators so generated are to be 
used solely for the purpose of reporting information to another party for an unknown 
purpose, when the loss structure is not easily discernible, or when the number of 
observations is large enough to support Normal approximations and asymptotic results. 
Unfortunately, we seldom are fortunate enough to be in asymptotic situations. Small sample 
sizes are generally the rule when estimation of system states and the small sample 
properties of estimators do not appear to have been thoroughly investigated. Therefore, the 
above procedures of the state estimation have long been recognized as deficient, however, 
when the purpose of estimation is the making of a specific decision (or sequence of 
decisions) on the basis of a limited amount of information in a situation where the losses are 
clearly asymmetric – as they are here. 
There exists a class of control systems where observations are not available at every time 
due to either physical impossibility and/or the costs involved in taking a measurement. For 
such  systems  it  is  realistic  to  derive  the  optimal  policy  of  state  estimation  with  some  
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constraints imposed on the observation scheme. 
It is assumed in this paper that there is a constant cost associated with each observation 
taken. The optimal estimation policy is obtained for a discrete-time deterministic plant 
observed through noise. It is shown that there is an optimal number of observations to be 
taken. 
The outline of the paper is as follows. A formulation of the problem is given in Section 2. 
Section 3 is devoted to characterization of estimators. A comparison of estimators is 
discussed in Section 4.  An invariant embedding technique is described in Section 5. A 
general problem analysis is presented in Section 6. An example is given in Section 7.  

 
2. Problem Statement 

To make the above introduction more precise, consider the discrete-time system, which in 
particular is described by vector difference equations of the following form: 
 

),k()k()k()k,1k()1k( uBxAx    (1) 
 

  ,... 1,2,3,k   ),k()k()k()k(  wxHz    (2) 
 

where x(k+1) is an n vector representing the state of the system at the (k+1)th time instant 
with initial condition x(1); z(k) is an m vector (the observed signal) which can be termed a 
measurement of the system at the kth instant; H(k) is an m  n matrix; A(k+1,k) is a 
transition matrix of dimension n  n, and B(k) is an n  p matrix, u(k) is a p vector, the 
control vector of the system; w(k) is a random vector of dimension m (the measurement 
noise). By repeated use of (1) we find 
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where the discrete-time system transition matrix satisfies the matrix difference equation, 
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From these properties, it immediately follows that 
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The problem to be considered is the estimation of the state of the above discrete-time 
system. This problem may be stated as follows. Given the observed sequence, z(1), …, z(k), 

 

it is required to obtain an estimator d of x(l) based on all available observed data  
Zk={z(1), …, z(k)} such that the expected losses (risk function) 
 

 ),(E),( dd   rR   (9) 
 
is minimized, where r(,d) is a specified loss function at decision point dd(Zk), =(x(l),),  
is an unknown parametric vector of the probability distribution of w(k), kl.  
If it is assumed that a constant cost c>0 is associated with each observation taken, the 
criterion function for the case of k observations is taken to be  
 

 .ck),(r),(rk  dd   (10) 
 
In this case, the optimization problem is to find 
 

 ),(rE min min kk
d

d
 ,    (11) 

 

where the inner minimization operation is with respect to dd(Zk), when the k observations 
have been taken, and where the outer minimization operation is with respect to k. 

 
3. Characterization of Estimators 

For any statistical decision problem, an estimator (a decision rule) d1 is said to be equivalent 
to an estimator (a decision rule) d2 if R(,d1)=R(,d2) for all , where R(.) is a risk 
function,  is a parameter space,. An estimator d1 is said to be uniformly better than an 
estimator d2 if R(,d1) < R(,d2) for all . An estimator d1 is said to be as good as an 
estimator d2 if R(,d1)  R(,d2) for all . However, it is also possible that we may have 
“d1 and d2 are incomparable”, that is, R(,d1) <R(,d2) for at least one , and R(,d1) > 
R(,d2) for at least one . Therefore, this ordering gives a partial ordering of the set of 
estimators. 
An estimator d is said to be uniformly non-dominated if there is no estimator uniformly 
better than d. The conditions that an estimator must satisfy in order that it might be 
uniformly non-dominated are given by the following theorem. 
Theorem 1 (Uniformly non-dominated estimator). Let (; =1,2, ... ) be a sequence of the prior 
distributions on the parameter space . Suppose that (d;=1,2, ...) and (Q(,d); =1,2, ... ) 
are the sequences of Bayes estimators and prior risks, respectively. If there exists an 
estimator d such that its risk function R(,d), , satisfies the relationship 
 

    0, = ),(Q  ),(Q lim τdd 





   (12) 

where 
 ,)d(),(R= ),(Q    



 dd  (13) 

 

then d is an uniformly non-dominated estimator. 
Proof.  Suppose d is uniformly dominated. Then there exists an estimator d such that 
R(,d) < R(,d) for all . Let 
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This contradiction proves that d is an uniformly non-dominated estimator.    

 
4. Comparison of Estimators 

In order to judge which estimator might be preferred for a given situation, a comparison 
based on some “closeness to the true value” criteria should be made. The following 
approach is commonly used (Nechval, 1982; Nechval, 1984). Consider two estimators, say, 
d1 and d2 having risk function R(,d1) and R(,d2), respectively. Then the relative efficiency 
of d1 relative to d2 is given by 
 

  .,(R,(R = ;,. 1221R ))rel.eff dddd   (20) 
 

When   1;,. 01R 2rel.eff dd  for some 0, we say that d2 is more efficient than d1 at 0. 
If   1;,. 21R dd rel.eff  for all  with a strict inequality for some 0, then d1 is inadmissible 
relative to d2. 

 
5. Invariant Embedding Technique 

This paper is concerned with the implications of group theoretic structure for invariant 
performance indexes. We present an invariant embedding technique based on the 
constructive use of the invariance principle in mathematical statistics. This technique allows 
one to solve many problems of the theory of statistical inferences in a simple way. The aim 
of the present paper is to show how the invariance principle may be employed in the 
particular case of finding the improved statistical decisions. The technique used here is a 
special case of more general considerations applicable whenever the statistical problem is 
invariant under a group of transformations, which acts transitively on the parameter space. 

 

5.1 Preliminaries 
Our underlying structure consists of a class of probability models (X, A, P ), a one-one 
mapping  taking P  onto an index set , a measurable space of actions (U, B), and a real-
valued function r defined on   U . We assume that a group G of one-one A - measurable 
transformations acts on X  and that it leaves the class of models (X, A, P ) invariant. We further 
assume that homomorphic images G  and G~  of G act on  and U, respectively. ( G may be 
induced on  through ; G~  may be induced on U  through r). We shall say that r is 
invariant if for every (,u)    U 
 

 ),,(r)g~,g(r uu   gG. (21) 
 
Given the structure described above there are aesthetic and sometimes admissibility 
grounds for restricting attention to decision rules  : X   U  which are (G, G~ ) equivariant in 
the sense that 

 .   ,   ),()( Ggg~g  Xxxx    (22) 
 

If G  is trivial and (21), (22) hold, we say  is G-invariant, or simply invariant (Nechval et al., 
2001; Nechval et al., 2003; Nechval & Vasermanis, 2004). 

 
5.2 Invariant Functions 
We begin by noting that r is invariant in the sense of (21) if and only if r is a G-invariant 
function, where G is defined on   U as follows: to each gG, with homomorphic images 

g~ ,g  in G~,G  respectively, let g(,u)= )g~ ,g( u , (,u)(  U ). It is assumed that G~  is a 

homomorphic image of G .  
Definition 1 (Transitivity). A transformation group G  acting on a set  is called (uniquely) 
transitive if for every ,  there exists a (unique) Gg  such that g =. When G  is 

transitive on  we may index G  by : fix an arbitrary point  and define 
1

g  to be the 

unique Gg  satisfying g =1. The identity of G  clearly corresponds to . An immediate 
consequence is Lemma 1. 
Lemma 1 (Transformation). Let G  be transitive on . Fix  and define 

1
g as above. Then 

1qg  = 
1

gq  for , .Gq  
Proof.  The  identity   11

gqqg 1q    shows that 
1qg   and 

1
gq  both take  into 1q , 

and the lemma follows by unique transitivity.    
Theorem 2 (Maximal invariant). Let G  be transitive on . Fix a reference point 0 and 
index G  by . A maximal invariant M with respect to G acting on   U  is defined by 
 
 

.U  ),(   ,g~),(M 1   uuu    (23) 
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Proof.  For each (,u)(  U ) and Gg  
 

uuu g~)g~g~(g~)g~()g~,g(M 11
g

   ),(Mg~g~g~g~ 111 uuu     (24) 
 

by Lemma 1 and the structure preserving properties of homomorphisms. Thus M is G-
invariant. To see that M is maximal, let M(1,u1) = M(2,u2). Then 2

1
1

1
21

g~g~ uu     or u1= g~ u2, 

where 1
21

g~g~g~   . Since 1 = 0g 1
 = 22

1 ggg
21

  ,  (1,u1) = g(2,u2) for some gG, and 
the proof is complete.    
Corollary 2.1 (Invariant embedding). An invariant function, r(,u), can be transformed as 
follows: 

  ),,(r)g~,g(r),(r 11 


vuu     (25) 
 

where v=v(, 


) is a function (it is called a pivotal quantity) such that the distribution of v 
does not depend on ; =(u, 


) is an ancillary factor; 


 is the maximum likelihood 

estimator of   (or the sufficient statistic for ). 
Corollary  2.2 (Best invariant decision rule). If r(,u) is an invariant loss function, the best 
invariant decision rule is given by 
 

),,()( 1     ux  (26) 
 

where 

 .),(rE inf arg  


 v  (27) 

 
Corollary 2.3 (Risk). A risk function (performance index) 
 

   ),(rE))(,(rE))(,(R 


  vxx     (28) 
 

is constant on orbits when an invariant decision rule (x) is used, where ),( xvv    is a 
function whose  distribution does not depend on ; ),( xu    is an ancillary factor. 
For instance, consider the problem of estimating the location-scale parameter of a 
distribution belonging to a family generated by a continuous cdf F: P ={P: F((x-)/), xR, 
}, ={(,): , R, >0} = U. The group G of location and scale changes leaves the class 
of models invariant. Since G  induced on  by P   is uniquely transitive, we may apply 
Theorem 1 and obtain invariant loss functions of the form 
 

],/)x( ,/))x([(r))x(,(r 21   (29) 

where 
 

=(,) and (x)=(1(x),2(x)). (30) 
 

Let ),( 


  and u=(u1,u2),  then 
 

),v ,vv(r),(r),(r 22211    vu  (31) 
 

 

where  
v=(v1,v2), v1=  /)( , v2= / ;  (32) 

 

 
 =(1,2), 1= 

 /)u( 1 , 2= 
/u2 . (33) 

 
5.3 Illustrative Example 1 
Consider an inventory manager faced with a one-period Christmas-tree stocking problem. 
Assume the decision maker has demand data on the sale of trees over the last n seasons. For 
the sake of simplicity, we shall consider the case where the demand data can be measured 
on a continuous scale. We restrict attention to the case where these demand values 
constitute independent observations from a distribution belonging to invariant family. In 
particular, we consider a distribution belonging to location-scale family generated by a 
continuous cdf F: P ={P: F((x-)/), xR, }, ={(,): ,R, >0}, which is indexed by 
the vector parameter =(,), where  and  (>0) are respectively parameters of location and 
scale. The group G of location and scale changes leaves the class of models invariant. The 
purpose in restricting attention to such families of distributions is that for such families the 
decision problem is invariant, and if the estimators of safety stock levels are equivariant (i.e. 
the group of location and scale changes leaves the decision problem invariant), then any 
comparison of estimation procedures is independent of the true values of any unknown 
parameters. The common distributions used in inventory problems are the normal, 
exponential, Weibull, and gamma distributions. 
Let us assume that, for one reason or another, a 100% service level is desired (i.e. the 
decision maker wants to ensure that at least 100% of his customers are satisfied). If the 
demand distribution is completely specified, the appropriate amount of inventory to stock 
for the season is u satisfying 

   











uFuXPr  (34) 

or 
   ,pu    (35) 

where 
)(Fp 1  

  (36) 
 
is the th percentile of the above distribution. Since the inventory manager does not know  
or , the estimator commonly used to estimate u is the maximum likelihood estimator 
 

,pu  
   (37) 

 
where   and   are the maximum likelihood estimators of the parameters  and , 
respectively. This estimator is one possible estimator of u and it may yield poor results.  
The correct procedure for estimating u requires establishing a tolerance limit for the 
percentile. It should be noted that tolerance limits are to percentiles what confidence limits 
are to parameters. With confidence limits, inferences may be drawn on parameters, whereas 
with tolerance limits, inferences may be drawn about proportions of a distribution. There 
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}, ={(,): , R, >0} = U. The group G of location and scale changes leaves the class 
of models invariant. Since G  induced on  by P   is uniquely transitive, we may apply 
Theorem 1 and obtain invariant loss functions of the form 
 

],/)x( ,/))x([(r))x(,(r 21   (29) 

where 
 

=(,) and (x)=(1(x),2(x)). (30) 
 

Let ),( 


  and u=(u1,u2),  then 
 

),v ,vv(r),(r),(r 22211    vu  (31) 
 

 

where  
v=(v1,v2), v1=  /)( , v2= / ;  (32) 

 

 
 =(1,2), 1= 

 /)u( 1 , 2= 
/u2 . (33) 

 
5.3 Illustrative Example 1 
Consider an inventory manager faced with a one-period Christmas-tree stocking problem. 
Assume the decision maker has demand data on the sale of trees over the last n seasons. For 
the sake of simplicity, we shall consider the case where the demand data can be measured 
on a continuous scale. We restrict attention to the case where these demand values 
constitute independent observations from a distribution belonging to invariant family. In 
particular, we consider a distribution belonging to location-scale family generated by a 
continuous cdf F: P ={P: F((x-)/), xR, }, ={(,): ,R, >0}, which is indexed by 
the vector parameter =(,), where  and  (>0) are respectively parameters of location and 
scale. The group G of location and scale changes leaves the class of models invariant. The 
purpose in restricting attention to such families of distributions is that for such families the 
decision problem is invariant, and if the estimators of safety stock levels are equivariant (i.e. 
the group of location and scale changes leaves the decision problem invariant), then any 
comparison of estimation procedures is independent of the true values of any unknown 
parameters. The common distributions used in inventory problems are the normal, 
exponential, Weibull, and gamma distributions. 
Let us assume that, for one reason or another, a 100% service level is desired (i.e. the 
decision maker wants to ensure that at least 100% of his customers are satisfied). If the 
demand distribution is completely specified, the appropriate amount of inventory to stock 
for the season is u satisfying 
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or 
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where 
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  (36) 
 
is the th percentile of the above distribution. Since the inventory manager does not know  
or , the estimator commonly used to estimate u is the maximum likelihood estimator 
 

,pu  
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where   and   are the maximum likelihood estimators of the parameters  and , 
respectively. This estimator is one possible estimator of u and it may yield poor results.  
The correct procedure for estimating u requires establishing a tolerance limit for the 
percentile. It should be noted that tolerance limits are to percentiles what confidence limits 
are to parameters. With confidence limits, inferences may be drawn on parameters, whereas 
with tolerance limits, inferences may be drawn about proportions of a distribution. There 
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are two criteria for establishing tolerance limits. The first criterion establishes an interval 
such that the expected percentage of observations falling into the interval just exceeds 100% 
(Hahn  & Nelson, 1973). This interval is called the 100% expectation interval. The second 
criterion establishes an interval, which ensures that 100% of the population is covered with 
confidence 1- (Barlow  & Proshan, 1966). Such an interval is called a 100% content 
tolerance interval at level 1-. The decision as to which interval to construct depends on the 
nature of the problem. A precision-instrument manufacturer wanting to construct an 
interval which, with high confidence, contains 90% of the distribution of diameters, for 
example, would use a 90% content tolerance interval, whereas an inventory manager 
wanting to stock sufficient items to ensure that in the long run an average of 95% of demand 
will be satisfied may find expectation intervals more appropriate. Expectation intervals are 
only appropriate in inventory problems where average service levels are to be controlled. 
Tolerance limits of the types mentioned above are considered in this subsection. That is, if 
f(x;) denotes the density function of the parent population under consideration and if S is 
any statistic obtained from a random sample of that population, then )S(uu  

  is a lower 
100(1-)% expectation limit if 
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This expression represents a risk of u , i.e. 
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A risk of this limit is 
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Since it is often desirable to have statistical tolerance limits available for the distributions 
used to describe demand data in inventory control, the problem is to find these limits. We 
give below a general procedure for obtaining tolerance limits. This procedure is based on 
the use of an invariant embedding technique given above. 
Lower 100(1-)% expectation limit.  Suppose X1, ..., Xn are  a  random  sample  from  the  
exponential distribution, with pdf 
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where >0 is unknown parameter. Let 
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It can be justified by using the factorization theorem that Sn is a sufficient statistic for . We 
wish, on the basis of the sufficient statistic Sn for , to construct the lower 100(1-)% 
expectation limit for a stock level. It follows from (38) that this limit is defined by 
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 . Using the technique of invariant embedding of Sn in a maximal invariant 
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we reduce (44) to 
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where 
 /V= Sn  (47) 

 

is the pivotal quantity whose distribution does not depend on unknown parameter , 
 

 .S/u n
 

  (48) 
 

is an ancillary factor. It is well known that the probability density function of V is given by 
 

.0v),   v(expv
Γ(n)

1h(v) = 1n   (49) 

 

Thus, for this example, u  can be found explicitly as 
 

 ,Su n
   (50) 

where (see (46)) 
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If the parameters  and  were known, it follows from  (44) that 
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where 
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The maximum likelihood estimator of u is given by 
 

,pu  
  (54) 

where 
n/Sn

  (55) 
 

is the maximum likelihood estimator of the parameter . 
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One can see that each of the above estimators is a member of the class 
 

  ,kSd :d n


C   (56) 
 

where k is a non-negative real number. A risk of an estimator, which belongs to the class C, 
is given by 
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Then the relative efficiency of d


 relative to u  is given by 
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If, say, 
 ,)1/(1lnnn/pk 1  

  (59) 
 

n=2 and =0.95, then the relative efficiency of the maximum likelihood estimator, u ,  
relative to u  is given by 

    n1
R

)1/(1lnn1)1(= ;u,u.  


rel.eff =0.312. (60) 
 

Lower 100(1-)% content tolerance limit at level 1-. Now we wish, on the basis of a sufficient 
statistic Sn for , to construct the lower 100(1-)% content tolerance limit at level 1- for the 
size of the stock in order to ensure an adequate service level. It follows from (40) that this 
tolerance limit is defined by 
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By using the technique of invariant embedding of Sn in a maximal invariant 
 

 ,/uM    (62) 
we reduce (61) to 
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is an ancillary factor. 
It follows from the above that, in this case, u  can be found explicitly as 
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)n2(2
  is the 100% point of the chi-square distribution with 2n degrees of freedom. Since 

the estimator u  belongs to the class C, then the relative efficiency of d

C  relative to u  is 

given by 

   ))rel.eff d,(Ru,(R = ;u,d.
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If, say, k is given by (59), n=2 and =0.05, then we have that the relative efficiency of the 
maximum likelihood estimator, ,u  relative to u  is given by 

      12
R

n2)n2( Pr1 = ;u,u .


 
rel.eff  =0.084. (68) 

 
5.4 Illustrative Example 2 
Let X(1)  X(2)    X(k) be the k smallest observations in a sample of size n from the two-
parameter exponential distribution, with density 
 

,xexp1);x(f 













    x  , (69) 

 

where >0 and  are unknown parameters, =(,).  
Let Y(r) be the rth smallest observation in a future sample of size m from the same 
distribution. We wish, on the basis of observed X(1), …, X(k) to construct prediction intervals 
for Y(r). Let  

Sr=(Y(r))/,   S1=(X(1))/ (70) 
and  
 

 T1=T/, (71) 
where 





k

1i
)1()k()1()i( ).XX)(kn()XX(T  (72) 

 

To construct prediction intervals for Y(r), consider the quantity (invariant statistic) 
  

V = n(SrS1)/T1= n(Y(r)X(1))/T.  (73) 
 
It is well known (Epstein & Sobel, 1954) that nS1 has a standard exponential distribution, 
that 2T1~ 2

2k2   and that S1 and T1 are independent. Also, Sr is the rth order statistic from a 
sample of size m from the standard exponential distribution and thus has probability 
density function (Kendall  & Stuart, 1969), 
 

,e)e1(
r
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  (74) 

 
if sr>0, and f(sr)=0 for sr0. Using the technique of invariant embedding, we find after some 
algebra that  
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where m(r)=m(m1)  (mr+1). 
The special case in which r=1 is worth mentioning, since in this case (75) simplifies 
somewhat. We find here that we can write 
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where =n/m. 
Consider the ordered data given by Grubbs (Grubbs, 1971) on the mileages at which 
nineteen military carriers failed. These were 162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 
884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880, and thus constitute a complete sample 
with k=n=19. We find 
 

 15869))XX(T
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and of course X(1)=162.  
Suppose we wish to set up the shortest-length (1=0.95) prediction interval for the smallest 
observation Y(1) in a future sample of size m=5. Consider the invariant statistic 
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where  

zL=X(1)+v1T/n  (80) 
 
and  

zU=X(1)+v2T/n.    (81) 
 
The length of the prediction interval is  
 

z = zUzL = (T/n)(v2v1). (82) 
 
We wish to minimize z subject to 
 

 

F(v2)F(v1)=1. (83) 
 
It can be shown that the minimum occurs when 
 

  f(v1)=f(v2), (84) 
 
where v1 and v2 satisfy (83). The shortest-length prediction interval is given by 
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where 
1v = 0.18105 and 

2v = 0.688. Thus, the length of this interval is z = 736.62  10.78 
=725.84. 
The equal tails prediction interval at the 1=0.95 confidence level is given by 
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where F(v)=, v/2= 0.125 and v1-/2= 0.805. The length of this interval is 

z = 834.34  57.6 
= 776.74. 
The relative efficiency of )T,X(C )1(Y )1(

  relative to ),T,X(C )1(Y )1(
 taking into account z is 

given by 
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One may also be interested in predicting the mean  
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or total lifetime in a future sample. Consider the quantity 
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Using the invariant embedding technique, we find after some algebra that 
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Probability statements about V lead to prediction intervals for Y or  
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5.5 Illustrative Example 3  
Suppose that X1, ..., Xn  and  Y1i, ..., Ymi  (i=1, ..., k) denote n+km independent and identically 
distributed random variables from a two-parameter exponential distribution with pdf (69), 
where  >0 and  are unknown parameters.  
Let X(1) be the smallest observation in the initial sample of size n and 
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It can be justified by using the factorization theorem that (X(1),Sn) is a sufficient statistic for 
(,). Let Y(1i) be the smallest observation in the ith future sample of size m, i=1(1)k. We 
wish, on the basis of a sufficient statistic (X(1),Sn) for (,), to construct simultaneous lower 
one-sided -content tolerance limits at level  for Y(1i), i=1, ..., k. It can be shown that this 
problem is reduced to the problem of constructing a lower one-sided -content tolerance 
limit at level , LL(X(1),Sn), for 
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This tolerance limit is defined by 
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By using the technique of invariant embedding of (X(1),Sn) into a maximal invariant 
M=(L)/, we reduce (94) to 
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is the ancillary factor. It follows from (95) that 
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Therefore, in this case, L can be found explicitly as 
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For instance, let us suppose that shipments of a lot of electronic systems of a specified type 
are made to each of 3 customers. Further suppose each customer selects a random sample of 
5 systems and accepts his shipment only if no failures occur before a specified time has 
elapsed. The manufacturer wishes to take a random sample and to calculate the 
simultaneous lower one-sided -content tolerance limits so that all shipments will be 
accepted with a probability of  at least for 100% of the future cases of such k shipments, 
where =0.95, =0.95, and k=3. The resulting failure times (rounded off to the nearest hour) 
of an initial sample of size 20 from a population of such electronic systems are: 3149, 3407, 
3215, 3296, 3095, 3563, 3178, 3112, 3086, 3160, 3155, 3742, 3143, 3240, 3184, 3621, 3125, 3109, 
3118, 3127. It is assumed that the failure times follow a two-parameter exponential 
distribution with unknown parameters  and . Thus, for this example, n=20, k=3, m=5, 
=0.95, =0.95, X(1)=3086, and Sn=3105.  
The manufacturer finds from (99) that 
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and he has 95% assurance that no failures will occur in each shipment (i.e. each shipment 
will be accepted) before L=3060 hours at least for 95% of the future cases of such shipments 
of a lot of electronic systems which will be made to each of three firms. 

 
5.6 Illustrative Example 4  
Consider the problem of finding shortest-length confidence interval for system availability. 
Availability is very important to users of repairable products and systems, such as computer 
networks, manufacturing systems, power plants, transportation vehicles, and fire-protection 
systems. Mathematically, the availability of an item is a measure of the fraction of time that 
the item is in operating condition in relation to total or calendar time, i.e., availability 
indicates the percent of the time that products are expected to operate satisfactory. There are 
several measures of availability, namely, inherent availability, achieved availability, and 
operational availability. For further definition of these availability measures, see (Ireson & 
Coombs, 1988). Here, we consider inherent availability, which is the most common 
definition used in the literature. This availability, A, is the designed-in capability of a 
product and is defined by (Ben-Daya et al., 2000) 
 

  ,MTTR)MTBF/(MTBFA    (101) 
 

where MTTR is the Mean Time To Repair (more generally, the mean time that the process is 
inoperable when it is down for maintenance or because of a breakdown) and MTBF is the 
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5.5 Illustrative Example 3  
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are made to each of 3 customers. Further suppose each customer selects a random sample of 
5 systems and accepts his shipment only if no failures occur before a specified time has 
elapsed. The manufacturer wishes to take a random sample and to calculate the 
simultaneous lower one-sided -content tolerance limits so that all shipments will be 
accepted with a probability of  at least for 100% of the future cases of such k shipments, 
where =0.95, =0.95, and k=3. The resulting failure times (rounded off to the nearest hour) 
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and he has 95% assurance that no failures will occur in each shipment (i.e. each shipment 
will be accepted) before L=3060 hours at least for 95% of the future cases of such shipments 
of a lot of electronic systems which will be made to each of three firms. 

 
5.6 Illustrative Example 4  
Consider the problem of finding shortest-length confidence interval for system availability. 
Availability is very important to users of repairable products and systems, such as computer 
networks, manufacturing systems, power plants, transportation vehicles, and fire-protection 
systems. Mathematically, the availability of an item is a measure of the fraction of time that 
the item is in operating condition in relation to total or calendar time, i.e., availability 
indicates the percent of the time that products are expected to operate satisfactory. There are 
several measures of availability, namely, inherent availability, achieved availability, and 
operational availability. For further definition of these availability measures, see (Ireson & 
Coombs, 1988). Here, we consider inherent availability, which is the most common 
definition used in the literature. This availability, A, is the designed-in capability of a 
product and is defined by (Ben-Daya et al., 2000) 
 

  ,MTTR)MTBF/(MTBFA    (101) 
 

where MTTR is the Mean Time To Repair (more generally, the mean time that the process is 
inoperable when it is down for maintenance or because of a breakdown) and MTBF is the 
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Mean Time Between Failures (more generally, the mean operating time between one 
downtime and the next, where each downtime can be due to maintenance or a breakdown). 
Actually the true inherent availability is rarely known. Usually, it is estimated from the few 
collected data on the operating (up) times and repair/replace (down) times. The point 
estimate of the availability is then given by 
 

,TTR)MTBFMTBF/(MA


   (102) 
 

where A


 is an estimate of the inherent availability, TBFM


 is an estimate of MTBF from 
sample data, TTRM


is an estimate of MTTR from sample data. Obviously, this point 

estimate is a function of the sample data and the sample size. Different samples will result in 
different estimates. The sample error affects the quantification of the calculated availability. 
If the estimates were based on one failure and one repair only, it would be quite risky 
(Coppola, 1997). We would feel more confident if we had more data (more failures and 
repairs). The question is how good the estimated inherent availability is. The answer is to 
attach a confidence level to the calculated availability, or give the confidence limits on the 
availability at a chosen confidence level. The most interesting confidence limits would be the 
shortest-length confidence limits on the true availability at a given confidence level. 
In a wide variety of inference problems one is not interested in estimating the parameter or 
testing some hypothesis concerning it. Rather, one wishes to establish a lower or an upper 
bound, or both, for the real-valued parameter. For example, if X is the time to failure of a 
piece of equipment, one is interested in a lower bound for the mean of X. If the rv X 
measures the toxicity of a drug, the concern is to find an upper bound for the mean. 
Similarly, if the rv X measures the nicotine content of a certain brand of cigarettes, one is 
interested in determining an upper and a lower bound for the average nicotine content of 
these cigarettes. 
The following result provides a general method of finding shortest-length confidence 
intervals and covers most cases in practice. 
Let S=s(X) be a statistic, based on a random sample X. Let F be the distribution function of 
the pivotal quantity V(S,A)  A and let vL, vU be such that 
 

F(vU)  F(vL) = Pr{vL < V < vU} = 1.  (103) 
 
It will be noted that the distribution of V does not depend on any unknown parameter. A 
100(1)% confidence interval of A is (AL(S,vL,vU),AU(S,vL,vU)) and the length of this 
interval is (S,vL,vU)=AUAL. We want to choose v1, v2, minimizing AUAL and satisfying 
(103). Thus, we consider the problem: 
 

 Minimize 
 (S, vL, vU) = AU  AL, (104) 

 

 Subject to 
 F(vU)  F(vL) = 1. (105) 

 
The search for the shortest-length confidence interval  =AUAL is greatly facilitated by the 
use of the following theorem. 

 

Theorem 3 (Shortest-length confidence interval). Under appropriate derivative conditions, 
there will be a pair (vL, vU) giving rise to the shortest-length confidence interval (S, vL, vU) 
= AU  AL for A as a solution to the simultaneous equations: 
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F(vU)  F(vL) = 1.    (107) 

 
Proof. Note that (107) forces vU to be a function of vL (or visa-versa). Take (S,vL,vU) as a 
function of vL, say (S,vL,vU(vL)). Then, by using the method of Lagrange multipliers, the 
proof follows immediately.      
For instance, consider the problem of constructing the shortest-length confidence interval 
for system availability from time-to-failure and time-to-repair test data. It is assumed that X1 
(time-to-failure) and X2 (time-to-repair) are stochastically independent random variables 
with probability density functions 
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Availability is usually defined as the probability that a system is operating satisfactorily at 
any point in time. This probability can be expressed mathematically as 
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where 1 is a system mean-time-to-failure, 2 is a system mean-time-to-repair. 
Consider a random sample X1= )X ,... ,X(

1n111 of n1 times-to-failure and a random sample 
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2n221 of n2 times-to-repair drawn from the populations described by (108) and 
(109) with sample means 
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It is well known that 2n1 11 /X   and 2n2 22 /X   are chi-square distributed variables with 2n1 
and 2n2  degrees of freedom, respectively. They are independent due to the independence of 
the variables X1 and X2. 
It follows from (110) that 

A / ( A) / .   1 21  (112) 
 

Using the invariant embedding technique, we obtain from (112) a pivotal quantity 
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Mean Time Between Failures (more generally, the mean operating time between one 
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which is F-distributed with (2n2,2n1) degrees of freedom, and  
 

.X/XS 12   (114) 
 

Thus, (113) allows one to find a 100(1)% confidence interval for A from 
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It follows from Theorem 3 that the shortest-length confidence interval for A is given by 
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(f is the pdf of an F-distributed rv with (2n2,2n1) d.f.) and 
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In practice, the simpler equal tails confidence interval for A, 
 

 )Sv/(v),Sv/(v)A,A(C UULLULA    (121) 
with 

(S, vL, vU) = AU  AL, (122) 
is employed, where 
 

),n2,n2(Fv 122/L     ),n2,n2(Fv 122/1U    (123) 
and 

Pr{F(2n2,2n1) > F/2(2n2,2n1)} 1/2.  (124) 
 
Consider, for instance, the following case. A total of 400 hours of operating time with 2 
failures, which required an average of 20 hours of repair time, were observed for aircraft air-
conditioning equipment. What is the confidence interval for the inherent availability of this 
equipment at the 90% confidence level? 
The point estimate of the inherent availability is  
 

 )20200/(200A


0.909,  (125) 
 

and the confidence interval for the inherent availability, at the 90% confidence level, is 
found as follows. 
From (121), the simpler equal tails confidence interval is 
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i.e., 
(S, vL, vU) = AU  AL= 0.375. (127) 

 

From (117), the shortest-length confidence interval is 
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where vL and vU are a solution of (119) and (120). Thus,  
 

*(S, vL, vU) = AU  AL = 0.291. (129) 
 
The relative efficiency of CA relative to 

AC  is given by 
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6. General Problem Analysis 

6.1 Inner Minimization 
First consider the inner minimization, i.e., k (Section 2) is held fixed for the time being. Then 
the term ck does not affect the result of this minimization. Consider a situation of state 
estimation described by one of a family of density functions, indexed by the vector 
parameter =(,), where x(k) and (>0) are respectively parameters of location and 
scale. For this family, invariant under the group of positive linear transformations: zaz+b 
with a>0, we shall assume that there is obtainable from some informative experiment (a 
random sample of observations zk={z(0), …, z(k)}) a sufficient statistic (mk,sk) for (,) with 
density function pk(mk,sk;,) of the form 
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We are thus assuming that for the family of density functions an induced invariance holds 
under the group G of transformations: mkamk+b, skask (a> 0). The family of density 
functions satisfying the above conditions is, of course, the limited one of normal, negative 
exponential, Weibull and gamma (with known index) density functions. 
The loss incurred by making decision d when x(l) is the true parameter is given by the 
piecewise-linear loss function 
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The decision problem specified by the informative experiment density function (131) and 
the loss function (132) is invariant under the group G of transformations. Thus, the problem 
is to find the best invariant estimator of , 
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where D is a set of invariant estimators of , R(,d) = E{r(,d)} is a risk function.  

 
6.2 Best Invariant Estimator 
It can be shown by using the invariant embedding technique that an invariant loss function, 
r(,d), can be transformed as follows: 
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v=(v1,v2), v1=  /)m( k , v2= /sk , =(dmk)/sk.  
It follows from (134) that the risk associated with d and  can be expressed as 
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which is constant on orbits when an invariant estimator (decision rule) d is used, where 
fk(v1,v2) is defined by (131). The fact that the risk (136) is independent of  means that a 
decision rule d, which minimizes (136), is uniformly best invariant. The following theorem 
gives the central result in this section. 
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Then the minimum of Ek{ r (v,)} occurs for  being determined by setting Ek{ r (v,)}/ = 
0 and this reduces to 
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with  as given by (139). 
Proof. These results are immediate from (134) when use is made of Ek{ r (v,)}/ = 0.      
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is to be minimized with respect to k. It can be shown that this function (which is the constant 
risk corresponding to taking a sample of fixed sample size k and then estimating x(l) by the 
expression (108) with k for k) has at most two minima (if there are two, they are for 
successive values of k; moreover, there is only one minimum for all but a denumerable set of 
values of c). If there are two minima, at k and k+1, one may randomize in any way 
between the decisions to take k or k+1 observations. 

 
7. Example 

Consider the one-dimensional discrete-time system, which is described by scalar difference 
equations of the form (1)-(2), and the case when the measurement noises w(k),  k = 1, 2,  …  
(see  (2))  are  independently  and identically distributed random variables drawn from the 
exponential distribution with the density 
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where the parameter >0 is unknown. It is required to find the best invariant estimator of 
x(l) on the basis of the data sample zk=(z(1), …, z(k)) relative to the piecewise linear loss 
function 
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where =(,), x(l), c1>0, c2=1. 
The likelihood function of zk is 
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if l < k (estimation of the past state of the system), and 
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if either l = k (estimation of the current state of the system) or l > k (prediction of the future 
state of the system). 
It can be justified by using the factorization theorem that (mk,sk) is a sufficient statistic for 
=(,), where 
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The probability density function of (mk,sk) is given by 
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Since the loss function (145) is invariant under the group G of location and scale changes, it 
follows that 
 

 











otherwise,   ,)vv(

,v   v,)vv(c
),(r)d,(r

21

21211
vθ   (155) 

where v=(v1,v2), 

.
s

md   ,sv   ,mv
k

kk
2

k
1










  (156) 

 
Thus, using (138) and (139), we find that the best invariant estimator (BIE) of  is given by 
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The risk of this estimator is 
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Here the following theorem holds. 
Theorem 5 (Characterization of the estimator dBIE). For the loss function (145), the best invariant 
estimator of , dBIE, given by (157) is uniformly non-dominated. 
Proof. The proof follows immediately from Theorem 1 if we use the prior distribution on the 
parameter space , 
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This ends the proof.    
Consider, for comparison, the following estimators of  (state of the system): 
The maximum likelihood estimator (MLE): 
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Each of the above estimators is readily seen to be of a member of the class 
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where  is a real number. A risk of an estimator, which belongs to the class C, is given by 
(159). If, say, k=3 and c1=26, then we have that 
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Now (171) is to be minimized with respect to k. It is easy to see that 
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By plotting (k) versus k the optimal number of observations k can be determined. 
For each value of c, we can find an equilibrium point of k, i.e., c=(k). The following two 
cases must be considered: 
1) k is not an integer. We have k(1)<k<k(1)+1=k(2), where k(1) and k(2) are neighboring 
integers. Since (k) is monotonically decreasing, we know that (k(1))>c and (k(2))<c. Then, 
by using these properties, (172) becomes 
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Therefore, k(1) is the optimal number of observations. We conclude that the optimal number 
k is equal to the largest integer below the equilibrium point. 
2) k is an integer. By the same sort of argument, we know that k is as good as k-1. 
Consequently, both k and k-1 are the optimal number of observations. Notice that in this 
case, Jk* can be computed directly and precisely from (172). 

 
8. Conclusions and Directions for Future Research 

In this paper we construct the minimum risk estimators of state of stochastic systems. The 
method used is that of the invariant embedding of sample statistics in a loss function in 
order to form pivotal quantities, which make it possible to eliminate unknown parameters 
from the problem. This method is a special case of more general considerations applicable 
whenever the statistical problem is invariant under a group of transformations, which acts 
transitively on the parameter space. 
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For a class of state estimation problems where observations on system state vectors are 
constrained, i.e., when it is not feasible to make observations at every moment, the question 
of how many observations to take must be answered. This paper models such a class of 
problems by assigning a fixed cost to each observation taken. The total number of 
observations is determined as a function of the observation cost. 
Extension to the case where the observation cost is an explicit function of the number of 
observations taken is straightforward. A different way to model the observation constraints 
should be investigated. 
More work is needed, however, to obtain improved decision rules for the problems of 
unconstrained and constrained optimization under parameter uncertainty when: (i) the 
observations are from general continuous exponential families of distributions, (ii) the 
observations are from discrete exponential families of distributions, (iii) some of the 
observations are from continuous exponential families of distributions and some from 
discrete exponential families of distributions, (iv) the observations are from multiparameter 
or multidimensional distributions, (v) the observations are from truncated distributions, (vi) 
the observations are censored, (vii) the censored observations are from truncated 
distributions. 
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or multidimensional distributions, (v) the observations are from truncated distributions, (vi) 
the observations are censored, (vii) the censored observations are from truncated 
distributions. 
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