
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



A learning algorithm based on PSO and L-M for parity problem 151

A learning algorithm based on PSO and L-M for parity problem

Guangyou Yang, Daode Zhang, and Xinyu Hu

X 
 

A learning algorithm based on PSO  
and L-M for parity problem 

 
Guangyou Yang, Daode Zhang, and Xinyu Hu 

School of Mechanical Engineering 
Hubei University of Technology 

Wuhan,430068 
P. R. China 

 
1. Introduction  

The Back-propagation network(BP network) is the most representative model and has wide 
application in artificial neural network(J. L. McClelland, D. E. Rumelhart & the PDP 
Research Group). Owing to the hidden layer and learning rules in the BP network and the 
Error Back-propagation algorithm, the BP network can be used to recognize and classify 
nonlinear pattern(Zhou zhihua, Cao Cungen, 2004). Currently, the applications include 
handwritings recognition, speech recognition, text - language conversion, image recognition 
and intelligent control. As the BP algorithm is based on gradient descent learning algorithm, 
it has some drawbacks such as slow convergence speed and easily falling into local 
minimum, as well as poor robustness. In the last decade, a series of intelligent algorithms, 
which is developed from nature simulation, are got wide attention, especially the global 
stochastic optimization algorithm based on the individual organisms and groups makes a 
rapid development and gets remarkable achievements in the field of engineering design and 
intelligent control. The most famous are genetic algorithm, the PSO algorithm (Particle 
Swarm Optimization, PSO), etc. In this chapter, the research focuses on the integration of the 
improved PSO algorithm and the Levenberg-Marquardt (L-M) algorithm of neural network, 
and its application in solving the parity problem, which enhances the optimization property 
of the algorithm, and solves the problems such as slow convergence speed and easily falling 
into local minimum. 

 
2. Particle Swarm Optimization (PSO) 

2.1 Standard Particle Swarm Optimization 
Dr. Kennedy and Dr. Eberhart proposed the PSO algorithm in 1995(Kennedy, & Eberhart, 
1995), which derived from the behavior research of flock foraging, and the research found 
out that the PSO theory can be applied to the function optimization, then it was developed 
into a universal optimization algorithm gradually. As the concept of PSO is simple and easy 
to implement, at the same time, it has profound intelligence background, the PSO algorithm 
attracted extensive attention when it was first proposed and has become a hot topic of 

9

www.intechopen.com



Stochastic Control152

 

research. The search of PSO spreads all over the solution space, so the global optimal 
solution can be easily got, what is more, the PSO requires neither continuity nor 
differentiability for the target function, even doesn’t require the format of explicit function, 
the only requirement is that the problem should be computable. In order to realize the PSO 
algorithm, a swarm of random particles should be initialized at first, and then get the 
optimal solution through iteration calculation. For each iteration calculation, the particles 
found out their individual optimal value of pbest through tracking themselves and the global 
optimal value of gbest through tracking the whole swarm. The following formula is used to 
update the velocity and position. 
 

1
1 2( ) ( )k k k k

id id id id gd idv wv c rand p x c rand p x            (1) 

1 1k k k
id id idx x v    (2) 

 
In the formula (1) and (2), i=1, 2, …, m, m refers to the total number of the particles in the 

swarm; d=1, 2,…, n, d refers to the dimension of the particle; k
idv is the No. d dimension 

component of the flight velocity vector of iteration particle i of the No. k times. k
idx is the No. 

d dimension component of the position vector of iteration particle i of the No. k times; idp is 

the No. d dimension component of the optimization position (pbest) of particle i ; gdp is the 

No. d dimension component of the optimization position (gbest) of the swarm; w is the 
inertia weight; c1,c2 refer to the acceleration constants; rand() refers to the random function, 
which generates random number between [0, 1]. Moreover, in order to prevent excessive 
particle velocity, set the speed limit for Vmax, when accelerating the particle velocity into the 
level: vid > Vmax , set vid = Vmax; In contrast, on the condition of vid < -Vmax, set vid = -Vmax. 
The specific steps of the PSO algorithm are as follows: 

(1) Setting the number of particles m, the acceleration constant c1,c2，inertia weight 
coefficient w and the maximum evolution generation Tmax，in the n-dimensional 
space, generating the initial position X(t) and velocity V (t)of m-particles at random. 

(2) Evaluation of Swarm X(t) 
i. Calculating the fitness value fitness of each particle. 

ii. Comparing the fitness value of the current particle with its optimal value fpbest. If 
fitness < fpbest, update pbest for the current location, and set the location of pbest for 
the current location of the particle in the n-dimensional space. 

iii. Comparing the fitness value of the current particle with the optimal value fGbest 
of the swarm. If fitness < fGbest, update gbest for the current location, and set the 
fGbest for the optimal fitness value of the swarm, then the current location gbest of 
the particle is referred to as the optimal location of the swarm in the n-
dimensional space. 

(3) In accordance with the formula (1) and (2), updating the location and velocity of the 
particles and generating a new swarm X(t＋1). 

 

(4) Checking the end condition, if meet the end condition, then stop optimizing; 
Otherwise, t=t＋1 and turn to step (2). 

In addition, the end condition is referred to as the following two situations: when the 
optimizing reaches the maximum evolution generation Tmax or the fitness value of gbest 
meets the requirement of the given precision. 

 
2.2 Improved Particle Swarm Optimization Algorithm 
The PSO algorithm is simple, but research shows that, when the particle swarm is over 
concentrated, the global search capability of particle swarm will decline and the algorithm is 
easy to fall into local minimum. If the aggregation degree of the particle swarm can be 
controlled effectively, the capability of the particle swarm optimizing to the global 
minimum will be improved. According to the formula (1), the velocity v of the particle will 
become smaller gradually as the particles move together in the direction of the global 
optimal location gbest. Supposed that both the social and cognitive parts of the velocity 
become smaller, the velocity of the particles will not become larger, when both of them are 
close to zero, as w<1, the velocity will be rapidly reduced to 0, which leads to the loss of the 
space exploration ability. When the initial velocity of the particle is not equal to zero, the 
particles will move away from the global optimal location of gbest by inertial movement. 
When the velocity is close to zero, all the particles will move closer to the location of gbest 
and stop movement. Actually, the PSO algorithm does not guarantee convergence to the 
global optimal location, but to the optimal location gbest of the swarm(LU Zhensu & HOU 
Zhirong, 2004). Furthermore, as shown in the formula (2), the value of the particle velocity 
also represents the distance of particle relative to the optimal location gbest. When the 
particles become farther from the gbest, the particle velocity will be greater, on the contrary, 
when the particles become closer to the gbest, the velocity will be smaller gradually. 
Therefore, as shown in the formula (1), by means of the extreme variation of the swarm 
individual, the velocity of the particles can be controlled in order to prevent the particles 
from gathering at the location gbest quickly, which can control the swarm diversity 
effectively. Known from the formula (1), when the variability measures are taken, both the 
social and cognitive parts of each particle velocity are improved, which enhances the 
particle activity and increases the global search capability of particle swarm to a large extent. 
The improved PSO(MPSO) is carried out on the basis of standard PSO, which increases the 
variation operation of optimal location for the swarm individual. The method includes the 
following steps: 

(1) Initializing the position and velocity of particle swarm at random;   
(2) The value pbest of the particle is set as the current value, and the gbest for the optimal 

particle location of the initial swarm；  
(3) Determining whether to meet the convergence criteria or not, if satisfied, turn to step 

6; Otherwise, turn to step 4; 
(4) In accordance with the formula (1) and (2), updating the location and velocity of the 

particles, and determining the current location of pbest and gbest； 
(5) Determining whether to meet the convergence criteria or not, if satisfied, turn to 

step 6; Otherwise, carrying out the optimal location variation operation of swarm 
individuals according to the formula (3), then turn to step 4; 

www.intechopen.com



A learning algorithm based on PSO and L-M for parity problem 153
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(2) Evaluation of Swarm X(t) 
i. Calculating the fitness value fitness of each particle. 

ii. Comparing the fitness value of the current particle with its optimal value fpbest. If 
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the current location of the particle in the n-dimensional space. 
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of the swarm. If fitness < fGbest, update gbest for the current location, and set the 
fGbest for the optimal fitness value of the swarm, then the current location gbest of 
the particle is referred to as the optimal location of the swarm in the n-
dimensional space. 

(3) In accordance with the formula (1) and (2), updating the location and velocity of the 
particles and generating a new swarm X(t＋1). 

 

(4) Checking the end condition, if meet the end condition, then stop optimizing; 
Otherwise, t=t＋1 and turn to step (2). 

In addition, the end condition is referred to as the following two situations: when the 
optimizing reaches the maximum evolution generation Tmax or the fitness value of gbest 
meets the requirement of the given precision. 

 
2.2 Improved Particle Swarm Optimization Algorithm 
The PSO algorithm is simple, but research shows that, when the particle swarm is over 
concentrated, the global search capability of particle swarm will decline and the algorithm is 
easy to fall into local minimum. If the aggregation degree of the particle swarm can be 
controlled effectively, the capability of the particle swarm optimizing to the global 
minimum will be improved. According to the formula (1), the velocity v of the particle will 
become smaller gradually as the particles move together in the direction of the global 
optimal location gbest. Supposed that both the social and cognitive parts of the velocity 
become smaller, the velocity of the particles will not become larger, when both of them are 
close to zero, as w<1, the velocity will be rapidly reduced to 0, which leads to the loss of the 
space exploration ability. When the initial velocity of the particle is not equal to zero, the 
particles will move away from the global optimal location of gbest by inertial movement. 
When the velocity is close to zero, all the particles will move closer to the location of gbest 
and stop movement. Actually, the PSO algorithm does not guarantee convergence to the 
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Zhirong, 2004). Furthermore, as shown in the formula (2), the value of the particle velocity 
also represents the distance of particle relative to the optimal location gbest. When the 
particles become farther from the gbest, the particle velocity will be greater, on the contrary, 
when the particles become closer to the gbest, the velocity will be smaller gradually. 
Therefore, as shown in the formula (1), by means of the extreme variation of the swarm 
individual, the velocity of the particles can be controlled in order to prevent the particles 
from gathering at the location gbest quickly, which can control the swarm diversity 
effectively. Known from the formula (1), when the variability measures are taken, both the 
social and cognitive parts of each particle velocity are improved, which enhances the 
particle activity and increases the global search capability of particle swarm to a large extent. 
The improved PSO(MPSO) is carried out on the basis of standard PSO, which increases the 
variation operation of optimal location for the swarm individual. The method includes the 
following steps: 

(1) Initializing the position and velocity of particle swarm at random;   
(2) The value pbest of the particle is set as the current value, and the gbest for the optimal 

particle location of the initial swarm；  
(3) Determining whether to meet the convergence criteria or not, if satisfied, turn to step 

6; Otherwise, turn to step 4; 
(4) In accordance with the formula (1) and (2), updating the location and velocity of the 

particles, and determining the current location of pbest and gbest； 
(5) Determining whether to meet the convergence criteria or not, if satisfied, turn to 

step 6; Otherwise, carrying out the optimal location variation operation of swarm 
individuals according to the formula (3), then turn to step 4; 
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_ (1 )d dnew pbest pbest    (3) 
 

(6) Outputting the optimization result, and end the algorithm.  
In the formula (3), the parameter  refers to random number which meets the standard 
Gaussian distribution, the initial value of the parameter  is 1.0, and set = every 50 
generations, where the  refers to the random number between [0.01, 0.9]. From above 
known, the method not only produces a small range of disturbance to achieve the local 
search with high probability, but also produces a significant disturbance to step out of the 
local minimum area with large step migration in time. 

 
2.3 Simulation and Result Analysis of the Improved Algorithm 
 

2.3.1 Test Functions 
The six frequently used Benchmark functions of the PSO and GA(genetic algorithm) (Wang 
Xiaoping & Cao Liming, 2002)are selected as the test functions, where the Sphere and 
Rosenbrock functions are unimodal functions, and the other four functions are multimodal 
functions. The Table 1 indicates the definition, the value range and the maximum speed 
limit Vmax of these Benchmark functions, where: x refers to real type vector and its 
dimension is n, xi refers to the No. i element. 
 

name Function Initialization 
Range Vmax 

Sphere 
2

1
1

( )
n

i
i

f x x


 
 

(-1000,1000)n 1000 

Rastrigrin 2
2

1

( ) ( 1 0 c o s ( 2 ) 1 0 )
n

i i
i

f x x x


  
 

(-5.12,5.12)n 10 

Griewank 2
3

1 1

1( ) cos( ) 1
4000

n n
i

i
i i

xf x x
i 
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(-600,600)n 600 

Rosenbrock 2 2 2
4 1

1

( ) (100 ) ( 1) )
n

i i i
i

f x x x x

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(-30,30)n 100 

Ackley 

2
5

1

1

1( ) 20 exp( 0 .2 )

1exp( cos(2 )) 20

n

i
i

n

i
i

f x x
n

x e
n







  
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


 

(-30,30)n 30 

Schaffer 
2 2 2

6 2 2

(sin ) 0 .5( ) 0 .5
(1 .0 0 .001( ))

x yf x
x y

 
 

   
(-5.12,5.12)n 1 

Table 1. Benchmark functions 

 

 

2.3.2 Simulation and Analysis of the Algorithm 
In order to study the property of the improved algorithm, the different performances are 
compared between the standard PSO and the improved PSO (mPSO) for Benchmark 
functions, which adopt linear decreased inertia weight coefficient. The optimal contrast test 
is performed on the common functions as shown in Table 1. For each algorithm, the 
maximum evolution generation is 3000, the number of the particles is 30 and the dimension 
is 10, 20 and 30 respectively, where the dimension of Schaffer function is 2. As for the inertia 
weight coefficient w, the initial value is 0.9 and the end value is 0.4 in the PSO algorithm, 
while in the mPSO algorithm, the value of w is fixed and taken to 0.375.The optimum point 
of the Rosenbrock function is in the position X=1 in theory, while for the other functions, the 
optimum points are in the position X=0 and the optimum value are f(x)= 0. The 50 different 
optimization search tests are performed on different dimensions of each function. The 
results are shown in Table 2, where the parameter Avg/Std refers to the average and 
variance of the optimal fitness value respectively during the 50 tests, iterAvg is the average 
number of evolution, Ras is the ratio of the number up to target value to the total test 
number. The desired value of function optimization is set as 1.0e-10, as the fitness value is 
less than 10e-10, set as 0. 
 

 PSO mPSO 
Fun. Dim Avg/Std iterAvg Ras Avg/Std iterAvg Ras 

f1 
10 0/0 1938.52 50/50 0/0 340.18 50/50 
20 0/0 2597.24 50/50 0/0 397.64 50/50 
30 0/0 3000 1/50 0/0 415.02 50/50 

f2 
10 2.706/1.407 3000 0/50 0/0 315.24 50/50 
20 15.365/4.491 3000 0/50 0/0 354.10 50/50 
30 41.514/11.200 3000 0/50 0/0 395.22 50/50 

f3 
10 0.071/0.033 3000 0/50 0/0 294.32 50/50 
20 0.031/0.027 2926.94 8/50 0/0 343.42 50/50 
30 0.013/0.015 2990.52 13/50 0/0 370.06 50/50 

f4 
10 13.337/25.439 3000 0/50 8.253/0.210 3000 0/50 
20 71.796/175.027 3000 0/50 18.429/0.301 3000 0/50 
30 122.777/260.749 3000 0/50 28.586/0.2730 3000 0/50 

f5 
10 0/0 2197.40 50/50 0/0 468.08 50/50 
20 0/0 2925.00 47/50 0/0 532.78 50/50 
30 0.027/0.190 3000 0/50 0/0 562.60 50/50 

f6 2 0.0001/0.002 857.58 47/50 0/0 67.98 50/50 
Table 2. Performance comparison between mPSO and PSO for Benchmark problem 
 
As shown in Table 2, except for the Rosenbrock function, the optimization results of the 
other functions reach the given target value and the average evolutionary generation is also 
very little. For the Schaffer function, the optimization test is performed on 2-dimension, 
while for the other functions, the tests are performed on from 10 dimensions to 30 
dimensions. Compared with the standard PSO algorithm, whether the convergence 
accuracy or the convergence speed of the mPSO algorithm has been significantly improved, 
and the mPSO algorithm has excellent stability and robustness. 
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variance of the optimal fitness value respectively during the 50 tests, iterAvg is the average 
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As shown in Table 2, except for the Rosenbrock function, the optimization results of the 
other functions reach the given target value and the average evolutionary generation is also 
very little. For the Schaffer function, the optimization test is performed on 2-dimension, 
while for the other functions, the tests are performed on from 10 dimensions to 30 
dimensions. Compared with the standard PSO algorithm, whether the convergence 
accuracy or the convergence speed of the mPSO algorithm has been significantly improved, 
and the mPSO algorithm has excellent stability and robustness. 
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In order to illustrate the relationship between the particle activity and the algorithm 
performance in different algorithms, the diversity of particle swarm indicates the particle 
activity. The higher the diversity of particle swarm is, the greater the particle activity is, and 
the stronger the global search capability of particles is. The diversity of particle swarm is 
represented as the average distance of the particles, which is defined by Euclidean distance, 
and the distance L refers to the maximum diagonal length in the search space; The 
parameters of S and N represent the population size and the solution space dimension, 
respectively; pid refers to the No.d dimension coordinate of the No.i particle; dp is the 
average of the No.d dimension coordinate of all particles, so the average distance of the 
particles is defined as followed:  
 

2

1 1

1 ( )
s N

i j d
i j

d t p p
sL  

  （）＝  (4) 

 
For the 30-D functions (Schaffer function is 2-D), the optimal fitness value and particles’ 
average distance are shown in Fig.1-6, which indicates the optimization result contrast of the 
mPSO and PSO algorithm performed on different functions. 
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Fig. 1. Minima value and particles’ average distance for 30-D Sphere 
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In order to illustrate the relationship between the particle activity and the algorithm 
performance in different algorithms, the diversity of particle swarm indicates the particle 
activity. The higher the diversity of particle swarm is, the greater the particle activity is, and 
the stronger the global search capability of particles is. The diversity of particle swarm is 
represented as the average distance of the particles, which is defined by Euclidean distance, 
and the distance L refers to the maximum diagonal length in the search space; The 
parameters of S and N represent the population size and the solution space dimension, 
respectively; pid refers to the No.d dimension coordinate of the No.i particle; dp is the 
average of the No.d dimension coordinate of all particles, so the average distance of the 
particles is defined as followed:  
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For the 30-D functions (Schaffer function is 2-D), the optimal fitness value and particles’ 
average distance are shown in Fig.1-6, which indicates the optimization result contrast of the 
mPSO and PSO algorithm performed on different functions. 
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Fig. 6. Minima value and particles’ average distance for 2-D Schaffer 
 
As can be seen from the Figure 1-6, except for the Rosenbrock function, the average distance 
of particle swarm varies considerably, which indicates the particle’s high activity as well as 
the good dynamic flight characteristic, which can also be in favor of the global search due to 
the avoidance of local minimum. When the particle approaches the global extreme point, the 
amplitude of its fluctuation reduces gradually, and then the particle converges quickly to 
the global extreme point. The mPSO algorithm has demonstrated the high accuracy and fast 
speed of the convergence. Compared with the corresponding graph of PSO algorithm in the 
chart, the the particles’ average distance of the PSO algorithm decreases gradually with the 
increase of evolution generation, and the fluctuation of the particles is weak, and the activity 
of the particles disappears little by little, which is the reflection of the algorithm 
performance, i.e., it means slow convergence speed and the possibility of falling into local 
minimum. As weak fluctuation means very little diversity of particle swarm, once the 
particles fall into local minimum, it is quite difficult for them to get out. The above 
experiments, performed on the test functions, show that: the higher the diversity of particle 
swarm is, the greater the particle activity is, and the better the dynamic property of particle 
is, which result in stronger optimization property. Therefore, it is a key step for the PSO to 
control the activity of the particle swarm effectively. Besides, from the optimization results 
of mPSO algorithm shown in Table 2, it can be seen that, except for the Rosenbrock function, 
not only the mean of the other functions has reached the given target value, but also the 
variance is within the given target value, which shows that the mPSO algorithm has high 
stability and has better performance than the PSO algorithm. In addition, the chart has also 
indicated that, for the optimization of Rosenbrock function, whether the mPSO or the PSO 
algorithm is applied, the particles have high activity at the beginning, then gather around 
the adaptive value quickly, after which the particle swarm fall into the local minimum with 
the loss of its activity. Though the optimization result of mPSO for Rosenbrock function is 
better than the standard PSO algorithm, it has not yet got out of the local minimum. Hence, 
further study is needed on the optimization of PSO for Rosenbrock function. 

 
3. BP Network Algorithm Based on PSO 

3.1 BP Neural Network 
Artificial Neural Network (ANN) is an engineering system that can simulate the structure 
and intelligent activity of human brain, which is based on a good knowledge of the structure 

 

and operation mechanism of the human brain. According to the manner of neuron 
interconnection, neural network is divided into feedforward neural network and feedback 
neural network. According to the hierarchical structure, it is separated into single layer and 
multi-layer neural network. In terms of the manner of information processing, it is separated 
into continuous and discrete neural network, or definitive and random neural network, or 
global and local approximation neural network. According to the learning manner, it is 
separated into supervision and unsupervised learning or weight and structure learning. 
There are several dozens of neural network structures such as MLP, Adaline, BP, RBF and 
Hopfield etc. From a learning viewpoint, the feedforward neural network (FNN) is a 
powerful learning system, which has simple structure and is easy to program. From a 
systemic viewpoint, the feedforward neural network is a static nonlinear mapping, which 
has the capability of complex nonlinear processing through the composite mapping of 
simple nonlinear processing unit. 
As the core of feedforward neural network, the BP network is the most essential part of the 
artificial neural network. Owing to its clear mathematical meaning and steps, Back-
Propagation network and its variation form are widely used in more than 80% of artificial 
neural network model in practice. 

 
3.2 BP Network Algorithm Based on PSO  
The BP algorithm is highly dependent on the initial connection weight of the network, 
therefore, it has the tendency of falling into local minimum with improper initial weight. 
However, the optimization search of the BP algorithm is under the guidance (in the 
direction of negative gradient), which is superior to the PSO algorithm and other stochastic 
search algorithm. There is no doubt that it provides a method for the BP optimization with 
derivative information. The only problem is how to overcome the BP algorithm for the 
dependence of the initial weight. The PSO algorithm has strong robustness for the initial 
weight of neural network (Wang Ling, 2001). By the combination of the PSO and BP 
algorithm, it could improve the precision, speed and convergence rate of BP algorithm, 
which makes full use of the advantage of the PSO and BP algorithm, i.e., the PSO has great 
skill in global search and BP excels in local optimization. 
Compared with the traditional optimization algorithm, the feedforward neural network has 
great differences such as multiple variables, large search space and complex optimized 
surface. In order to facilitate the PSO algorithm for BP algorithm in certain network 
structure, the weight vector of NN is used to represent FNN, and each dimension of the 
particles represents a connection weights or threshold value of FNN, which consists of the 
individuals of the particle swarm. To take one input layer, a hidden layer and an output 
layer of FNN as an example, when the number of input nodes was set as R, the number of 
output nodes was set as S2 and the number of hidden nodes was set as S1, the dimension N 
of particles can be obtained from the formula (5): 
 

N=S1 *(R+1)+ S2 *(S1+1)+ S3 *(S2+1) (5) 
 
The dimension of the particles and the weight of FNN can be obtained by the following code 
conversion:  
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As can be seen from the Figure 1-6, except for the Rosenbrock function, the average distance 
of particle swarm varies considerably, which indicates the particle’s high activity as well as 
the good dynamic flight characteristic, which can also be in favor of the global search due to 
the avoidance of local minimum. When the particle approaches the global extreme point, the 
amplitude of its fluctuation reduces gradually, and then the particle converges quickly to 
the global extreme point. The mPSO algorithm has demonstrated the high accuracy and fast 
speed of the convergence. Compared with the corresponding graph of PSO algorithm in the 
chart, the the particles’ average distance of the PSO algorithm decreases gradually with the 
increase of evolution generation, and the fluctuation of the particles is weak, and the activity 
of the particles disappears little by little, which is the reflection of the algorithm 
performance, i.e., it means slow convergence speed and the possibility of falling into local 
minimum. As weak fluctuation means very little diversity of particle swarm, once the 
particles fall into local minimum, it is quite difficult for them to get out. The above 
experiments, performed on the test functions, show that: the higher the diversity of particle 
swarm is, the greater the particle activity is, and the better the dynamic property of particle 
is, which result in stronger optimization property. Therefore, it is a key step for the PSO to 
control the activity of the particle swarm effectively. Besides, from the optimization results 
of mPSO algorithm shown in Table 2, it can be seen that, except for the Rosenbrock function, 
not only the mean of the other functions has reached the given target value, but also the 
variance is within the given target value, which shows that the mPSO algorithm has high 
stability and has better performance than the PSO algorithm. In addition, the chart has also 
indicated that, for the optimization of Rosenbrock function, whether the mPSO or the PSO 
algorithm is applied, the particles have high activity at the beginning, then gather around 
the adaptive value quickly, after which the particle swarm fall into the local minimum with 
the loss of its activity. Though the optimization result of mPSO for Rosenbrock function is 
better than the standard PSO algorithm, it has not yet got out of the local minimum. Hence, 
further study is needed on the optimization of PSO for Rosenbrock function. 

 
3. BP Network Algorithm Based on PSO 

3.1 BP Neural Network 
Artificial Neural Network (ANN) is an engineering system that can simulate the structure 
and intelligent activity of human brain, which is based on a good knowledge of the structure 

 

and operation mechanism of the human brain. According to the manner of neuron 
interconnection, neural network is divided into feedforward neural network and feedback 
neural network. According to the hierarchical structure, it is separated into single layer and 
multi-layer neural network. In terms of the manner of information processing, it is separated 
into continuous and discrete neural network, or definitive and random neural network, or 
global and local approximation neural network. According to the learning manner, it is 
separated into supervision and unsupervised learning or weight and structure learning. 
There are several dozens of neural network structures such as MLP, Adaline, BP, RBF and 
Hopfield etc. From a learning viewpoint, the feedforward neural network (FNN) is a 
powerful learning system, which has simple structure and is easy to program. From a 
systemic viewpoint, the feedforward neural network is a static nonlinear mapping, which 
has the capability of complex nonlinear processing through the composite mapping of 
simple nonlinear processing unit. 
As the core of feedforward neural network, the BP network is the most essential part of the 
artificial neural network. Owing to its clear mathematical meaning and steps, Back-
Propagation network and its variation form are widely used in more than 80% of artificial 
neural network model in practice. 

 
3.2 BP Network Algorithm Based on PSO  
The BP algorithm is highly dependent on the initial connection weight of the network, 
therefore, it has the tendency of falling into local minimum with improper initial weight. 
However, the optimization search of the BP algorithm is under the guidance (in the 
direction of negative gradient), which is superior to the PSO algorithm and other stochastic 
search algorithm. There is no doubt that it provides a method for the BP optimization with 
derivative information. The only problem is how to overcome the BP algorithm for the 
dependence of the initial weight. The PSO algorithm has strong robustness for the initial 
weight of neural network (Wang Ling, 2001). By the combination of the PSO and BP 
algorithm, it could improve the precision, speed and convergence rate of BP algorithm, 
which makes full use of the advantage of the PSO and BP algorithm, i.e., the PSO has great 
skill in global search and BP excels in local optimization. 
Compared with the traditional optimization algorithm, the feedforward neural network has 
great differences such as multiple variables, large search space and complex optimized 
surface. In order to facilitate the PSO algorithm for BP algorithm in certain network 
structure, the weight vector of NN is used to represent FNN, and each dimension of the 
particles represents a connection weights or threshold value of FNN, which consists of the 
individuals of the particle swarm. To take one input layer, a hidden layer and an output 
layer of FNN as an example, when the number of input nodes was set as R, the number of 
output nodes was set as S2 and the number of hidden nodes was set as S1, the dimension N 
of particles can be obtained from the formula (5): 
 

N=S1 *(R+1)+ S2 *(S1+1)+ S3 *(S2+1) (5) 
 
The dimension of the particles and the weight of FNN can be obtained by the following code 
conversion:  
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When training the BP network through PSO algorithm, the position vector X of particle 
swarm is defined as the whole connection weights and threshold value of BP network.. On 
the basis of the vector X, the individual of the optimization process is formed, and the 
particle swarm is composed of the individuals. So the method is as follows: at first, 
initializing the position vector, then minimize the sum of squared errors (adaptive value) 
between the actual output and ideal output of network, and the optimal position can be 
searched by PSO algorithm, as shown in the following formula (6): 
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Where: N is the sample number of training set; Tik is the ideal output of the No. k output 
node in the No. i sample; Yik is the actual output of the No. k output node in the No. i 
sample; C is the number of output neuron in the network.  
The PSO algorithm is used to optimize the BP network weight (PSOBP), the method 
includes the following main steps: 

(1) The position parameter of particle can be determined by the connection weights and 
the threshold value between the nodes of neural network. 

(2) Set the values range [Xmin, Xmax] of the connection weights in neural network, and 
generate corresponding uniform random numbers of particle swarm, then generate 
the initial swarm.  

(3) Evaluate the individuals in the swarm. Decode the individual and assign to the 
appropriate connection weights (including the threshold value). Introduce the 
learning samples to calculate the corresponding network output, then get the 
learning error E, use it as the individual’s adaptive value.    

(4) Execute the PSO operation on the individuals of the swarm 
(5) Judge the PSO operation whether terminate or not? No, turn to step (3), Otherwise, 

to step (6).  

for i=1:S1 
          w1(i,:)=Swarm(iPopindex,R*(i-1)+1:R*(i-1)+R); 
          c1(i)=Swarm(iPopindex,S1*R+i); 
    end 
    b1=c1'; 
    for i=1:S2               

w2(i,:)=Swarm(iPopindex,S1*(R+1)+S1*(i-1)+1:S1*(R+1)+S1*(i-1)+S1); 
          c2(i)=Swarm(iPopindex,S1*(R+1)+S2*S1+i); 
    end 
    b2=c2'; 

Where, iPopindex refers to the serial number of the particles. 

 

(6) Decode the optimum individual searched by PSO and assign to the weights of neural 
network (include the threshold value of nodes). 

 
3.3 FNN Algorithm Based on Improved PSO 
The improved PSO (mPSO) is an algorithm based on the optimal location variation for the 
individual of the particle swarm. Compared with the standard PSO, the mPSO prevents the 
particles from gathering at the optimal location gbest quickly by means of individual 
extreme variation of the swarm, which enhances the diversity of particle swarm. 
The algorithm flow of FNN is as follows: 

(1) Setting the number of hidden layers and neurons of neural network. Determining the 
number m of particles, adaptive threshold e, the maximum number Tmax of iterative 
generation; acceleration constants c1 and c2; inertia weight w; Initializing the P and V, 
which are random number between [-1, 1]. 

(2) Setting the iteration step t=0; Calculating the network error and fitness value of each 
particle according to the given initial value; Setting the optimal fitness value of 
individual particles, the individual optimal location, the optimal fitness value and 
location of the particle swarm. 

(3) while(Jg> e  &  t < Tmax) 
for  i = 1 : m 

Obtaining the weight and threshold value of the neural network from the 
decoding of xi and calculating the output of the neural network, compute the 
value of Ji according to the formula (6): 
if  Ji < Jp(i)  Jp(i)= Ji ; pi = xi;  end if 
if  Ji < Jg       Jg= Ji ;  pg = xi;  end if 

end for 
(4) for i=1:m 

                   Calculating the vi and xi of particle swarm according to the PSO; 
              end for 

(5) Execute the variation operation on the individual optimal location of the swarm 
according to the formula (3). 

(6) t=t+1; 
(7) end while 
(8) Result output. 

 
3.4 BP NN Algorithm Based on PSO and L-M 
Because the traditional BP algorithm has the following problems: slow convergence speed, 
uncertainty of system training and proneness to local minimum, the improved BP algorithm 
is most often used in practice. The Levenberg-Marquardt (L-M for short) optimization 
algorithm is one of the most successful algorithm among the BP algorithms based on 
derivative optimization. The L-M algorithm is developed from classical Newton algorithm 
by calculating the derivative in terms of the nonlinear least squares. The iterative formula of 
LM algorithm is as follows(Zhang ZX, Sun CZ & Mizutani E, 2000):  
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(6) Decode the optimum individual searched by PSO and assign to the weights of neural 
network (include the threshold value of nodes). 

 
3.3 FNN Algorithm Based on Improved PSO 
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The algorithm flow of FNN is as follows: 

(1) Setting the number of hidden layers and neurons of neural network. Determining the 
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Where, I is the unit matrix, λ is a non-negative value. Making use of the changes in the 
amplitude of λ, the method varies smoothly between two extremes, i.e., the Newton method 
(when λ 0) and standard gradient method (when λ). So the L-M algorithm is actually 
the combination of standard Newton method and the gradient descent method, which has 
the advantages of both the latter two methods. 
The main idea of the combination algorithm of PSO and L-M (PSOLM algorithm) is to take 
the PSO algorithm as the main framework. Firstly, optimize the PSO algorithm, after the 
evolution of several generations, the optimum individual can be chosen from the particle 
swarm to carry out the optimization search of L-M algorithm for several steps, which 
operates the local depth search. The specific steps of the algorithm is as follows: 

(1) Generate the initial particle swarm X at random, and k = 0. 
(2) Operate the optimization search on X with the PSO algorithm. 
(3) If the evolution generation k of PSO is greater than the given constant dl, 

chose the optimal individual of particle swarm to carry out the optimization 
search of L-M algorithm for several steps.  

(4) Based on the returned individual, reassess the new optimal individual and 
global optimal individual by calculating according to PSO algorithm. 

(5) If the target function value meets the requirements of precision ε, then 
terminate the algorithm and output the result; otherwise, k = k + 1, turn to 
step (2). 

The above PSO algorithm is actually the particle swarm optimization algorithm (MPSO) by 
means of the optimal location variation of individual, and the particle number of particle 
swarm is 30, c1=c2=1.45, w=0.728. 

 
4. Research on Neural Network Algorithm for Parity Problem 

4.1 XOR Problem 
Firstly, taking the XOR problem (2 bit parity problem) as an example to discuss it. The XOR 
problem is one of the classical questions on the NN learning algorithm research, which 
includes the irregular optimal curved surface as well as many local minimums. The learning 
sample of XOR problem is shown in Table 3. 
 

Sample Input Output 

1 00 0 

2 01 1 

3 10 1 

4 11 0 
Table 3. Learning sample of XOR 
 
Different network structures result in different learning generations of given precision10-n 
(where: n is the accuracy index). In this part, there is a comparison between the learning 
generations and the actual learning error. The initial weight ranges among [-1, 1] in BP 
network and conducted 50 random experiments. 

 

As shown in Table4, it displays the experimental results of 2-2-1 NN structure. The 
activation functions are S-shaped hyperbolic tangent function (Tansig), S-shaped 
logarithmic function (Logsig) and linear function (Purelin) respectively, and the learning 
algorithms include the BP, improved BP (BP algorithm with momentum, BPM) and BP 
based on the Levenberg-Marquardt (BPLM). Judging from the results for XOR problem, as 
the number of the neurons in the hidden layer is 2, the BP and improved BP (BPM, BPLM) 
can’t converge completely in 50 experiments.  
It can also be seen that the performance of the improved BP is better than that of the basic 
BP, as for the improved BP, the BPLM performs better than BPM. In addition, the initial 
value of the algorithm has great influence on the convergence property of BP algorithm, so 
is the function form of the neurons in the output layer. 
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NN structure： 
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Table 4. Convergence statistics of BP, BPM and BPLM (Accuracy index n=3) 
 
The Table 5 shows the training results under different accuracy indices. The activation 
functions are Tansig-purelin and tansig-logsig respectively, and the NN algorithms include 
the BPLM and the PSO with limited factor (cPSO, Clerc, M., 1999). It can be indicated that 
the basic PSO, which is applied to the BP network for XOR problem, can’t converge 
completely, either. In such circumstance, the number of the neurons in the hidden layer is 2. 
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Average  
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Average 
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Average  
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Network 
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2-2-1 

3 16.36 36 71.00 35 24.71 26 

6 20.84 40 145.94 36 64.88 25 

10 13.76 38 233.36 36 43.52 25 

20 25.99 8 461.13 38 68.21 26 
Table 5. BP training results of BPLM, cPSO, and mPSO 
 
Besides, for the BP and the improved BP algorithm, it has never converged in the given 
number of experiments when the activation function of output layer in NN is Logsig, while 
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Where, I is the unit matrix, λ is a non-negative value. Making use of the changes in the 
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the form of activation function has relatively minor influence on the PSO algorithm. It can 
be seen from the table that the form of activation function has certain influence on the 
learning speed of NN algorithm based on PSO, and the learning algorithm, which adopts 
Tangsig-Logsig function converges faster than that adopts Tangsig-Purelin function. 
The Table 6 shows the optimization results of the PSOBP and PSOBPLM algorithm, which 
are the combination of MPSO and standard BP (PSOBP) as well as the combination of MPSO 
and BP algorithm based on L-M (PSOBPLM) respectively. As seen in Table 6, for the given 
number of experiments, the optimization results of the algorithms have all achieved the 
specified target value within the given iteration number. 
 

XOR PSOBP PSOBPLM 

Accuracy 
index 

Average  
iteration 
number 

Mean 
time 

(s/time) 

Average  
iteration 
number 

Mean 
time 

(s/time) PSO BP PSO BP 

3 11.06 379.15 3.74 21 2.67 0.72 

6 11.12 517.35 5.35 21 3.8 0.75 

10 11.46 910.5 8.31 21 4.73 0.73 

20 12.3 1578.55 13.37 23.07 20.13 1.97 
Table 6. BP optimization results of PSOBP and PSOBPLM algorithm 
 
In addition，the Table 6 has also displayed the average iteration number and the mean time 
of PSO and BP algorithm under different accuracy indices in 50 experiments. As shown in 
Table 3, the algorithm of PSO combined with BP or LM has good convergence property, 
which is hard to realize for single BP (including BPLM) or PSO algorithm. It's especially 
necessary to notice that the combination of the PSO and LM algorithm brings about very 
high convergence speed, and the algorithm of PSOBPLM converges much faster than 
PSOBP algorithm under the condition of high accuracy index. For example, when the 
network structure is 2-2-1 and the accuracy index is 10 and 20 respectively, the relevant 
mean time of PSOBP algorithm is 8.31 and 13.37, while for the PSOBPLM algorithm, the 
mean time is reduced to 0.73 and 1.97. Obviously, the PSOBPLM algorithm has excellent 
speed performance. 

 
4.2 Parity Problem 
The parity problem is one of the famous problems in neural network learning and much 
more complex than the 2bit XOR problem. The learning sample of parity problem consists of 
4-8 bit binary string. When the number of 1 in binary string is odd, the output value is 1; 
otherwise, the value is 0. When the PSO (including the improved PSO) and PSOBP 
algorithm are applied to solve the parity problem, the learning speed is quite low and it is 
impossible to converge to the target value in the given iteration number. The PSOBPLM 
algorithm, proposed in this article, is applied to test the 4-8bit parity problem. The network 
structure of 4bit parity problem is 4-4-1, and the activation function of both hidden layer 
and output layer are Tansig-logsig, the same is with the activation function of NN for 5-8bit 

 

parity problem, and the parameter of NN for 5-8bit parity problem can be got from that of 
NN for 4bit parity problem by analogy. For each parity problem, 50 random experiments are 
carried out. The Table 7 shows the experimental result of the PSOBPLM algorithm for 4-8bit 
parity problem under various accuracy indices. In the Table 7, the Mean, Max and Min 
represent the average iteration number, the maximum and minimum iteration number, 
respectively. The number below the PSO and BP column represents the iteration number 
needed by the corresponding algorithm. 
 

net:4-4-1; 
Accuracy 

index 
Mean Max Min Mean time 

(s/time) PSO LM PSO LM PSO LM 
3 21.07 67.60  22 489 21 12 1.15 
6 21.10  80.77 22 424 21 11 1.19 

10 21.17 114.5 22 699 21 14 1.31 
20 25.23 405.73 35 1414 21 18 4.62 

net:5-5-1; 
3 50.10  99.27 51 532 50 16 1.49 

6 50.07 103.17 52 1019 50 19 1.58 

10 50.13 143.57 51 557 50 12 1.84 

20 53.77 371.07 65 1960 50 27 5.21 
net:6-6-1; 

3 50.23 208.93 52 1103 50 23 2.97 

6 50.13 204.47 51 591 50 34 2.58 

10 50.50  334.57 53 1281 50 42 3.81 

20 53.77 944.73 65 3069 50 49 10.72 
net:7-7-1; 

3 50.27 267.5 51 708 50 29 4.66 

6 50.27 279.7 51 686 50 35 4.64 

10 50.33 278.67 52 1067 50 32 4.53 
20 52.77 748.57 59 2206 50 57 11.69 

net:8-8-1; 
3 50.23 273.53 52 1066 50 56 7.98 

6 50.43 391.63 51 803 50 78 8.29 

10 51.63 387.27 54 1388 51 71 10.71 

20 54.83 1225.47 63 3560 51 65 30.43 
Table 7. Result of PSOBPLM algorithm for 4-8 bit parity problem  
 

www.intechopen.com



A learning algorithm based on PSO and L-M for parity problem 165

 

the form of activation function has relatively minor influence on the PSO algorithm. It can 
be seen from the table that the form of activation function has certain influence on the 
learning speed of NN algorithm based on PSO, and the learning algorithm, which adopts 
Tangsig-Logsig function converges faster than that adopts Tangsig-Purelin function. 
The Table 6 shows the optimization results of the PSOBP and PSOBPLM algorithm, which 
are the combination of MPSO and standard BP (PSOBP) as well as the combination of MPSO 
and BP algorithm based on L-M (PSOBPLM) respectively. As seen in Table 6, for the given 
number of experiments, the optimization results of the algorithms have all achieved the 
specified target value within the given iteration number. 
 

XOR PSOBP PSOBPLM 

Accuracy 
index 

Average  
iteration 
number 

Mean 
time 

(s/time) 

Average  
iteration 
number 

Mean 
time 

(s/time) PSO BP PSO BP 

3 11.06 379.15 3.74 21 2.67 0.72 

6 11.12 517.35 5.35 21 3.8 0.75 

10 11.46 910.5 8.31 21 4.73 0.73 

20 12.3 1578.55 13.37 23.07 20.13 1.97 
Table 6. BP optimization results of PSOBP and PSOBPLM algorithm 
 
In addition，the Table 6 has also displayed the average iteration number and the mean time 
of PSO and BP algorithm under different accuracy indices in 50 experiments. As shown in 
Table 3, the algorithm of PSO combined with BP or LM has good convergence property, 
which is hard to realize for single BP (including BPLM) or PSO algorithm. It's especially 
necessary to notice that the combination of the PSO and LM algorithm brings about very 
high convergence speed, and the algorithm of PSOBPLM converges much faster than 
PSOBP algorithm under the condition of high accuracy index. For example, when the 
network structure is 2-2-1 and the accuracy index is 10 and 20 respectively, the relevant 
mean time of PSOBP algorithm is 8.31 and 13.37, while for the PSOBPLM algorithm, the 
mean time is reduced to 0.73 and 1.97. Obviously, the PSOBPLM algorithm has excellent 
speed performance. 

 
4.2 Parity Problem 
The parity problem is one of the famous problems in neural network learning and much 
more complex than the 2bit XOR problem. The learning sample of parity problem consists of 
4-8 bit binary string. When the number of 1 in binary string is odd, the output value is 1; 
otherwise, the value is 0. When the PSO (including the improved PSO) and PSOBP 
algorithm are applied to solve the parity problem, the learning speed is quite low and it is 
impossible to converge to the target value in the given iteration number. The PSOBPLM 
algorithm, proposed in this article, is applied to test the 4-8bit parity problem. The network 
structure of 4bit parity problem is 4-4-1, and the activation function of both hidden layer 
and output layer are Tansig-logsig, the same is with the activation function of NN for 5-8bit 

 

parity problem, and the parameter of NN for 5-8bit parity problem can be got from that of 
NN for 4bit parity problem by analogy. For each parity problem, 50 random experiments are 
carried out. The Table 7 shows the experimental result of the PSOBPLM algorithm for 4-8bit 
parity problem under various accuracy indices. In the Table 7, the Mean, Max and Min 
represent the average iteration number, the maximum and minimum iteration number, 
respectively. The number below the PSO and BP column represents the iteration number 
needed by the corresponding algorithm. 
 

net:4-4-1; 
Accuracy 

index 
Mean Max Min Mean time 

(s/time) PSO LM PSO LM PSO LM 
3 21.07 67.60  22 489 21 12 1.15 
6 21.10  80.77 22 424 21 11 1.19 

10 21.17 114.5 22 699 21 14 1.31 
20 25.23 405.73 35 1414 21 18 4.62 

net:5-5-1; 
3 50.10  99.27 51 532 50 16 1.49 

6 50.07 103.17 52 1019 50 19 1.58 

10 50.13 143.57 51 557 50 12 1.84 

20 53.77 371.07 65 1960 50 27 5.21 
net:6-6-1; 

3 50.23 208.93 52 1103 50 23 2.97 

6 50.13 204.47 51 591 50 34 2.58 

10 50.50  334.57 53 1281 50 42 3.81 

20 53.77 944.73 65 3069 50 49 10.72 
net:7-7-1; 

3 50.27 267.5 51 708 50 29 4.66 

6 50.27 279.7 51 686 50 35 4.64 

10 50.33 278.67 52 1067 50 32 4.53 
20 52.77 748.57 59 2206 50 57 11.69 

net:8-8-1; 
3 50.23 273.53 52 1066 50 56 7.98 

6 50.43 391.63 51 803 50 78 8.29 

10 51.63 387.27 54 1388 51 71 10.71 

20 54.83 1225.47 63 3560 51 65 30.43 
Table 7. Result of PSOBPLM algorithm for 4-8 bit parity problem  
 

www.intechopen.com



Stochastic Control166

 

As seen in Table 7, the integration of the PSO and L-M algorithm can solve the parity 
problem. The PSOBPLM algorithm makes full use of the advantage of the PSO and L-M 
algorithm, i.e., the PSO has great skill in global search and the L-M excels in local 
optimization, which compensate their own drawback and have complementary advantages. 
So the PSOLM algorithm has not only a good convergence, but also fast optimization 
property. 

 
5. Conclusion 

As a global evolutionary algorithm, the PSO has simple model and is easy to achieve. The 
integration of the PSO and L-M algorithm makes full use of their own advantage, i.e., the 
PSO has great skill in global search and the L-M excels in local fast optimization, which 
could avoid falling into local minimum and find the global optimal solution for the parity 
problem effectively. Meanwhile, the PSOBPLM algorithm has better efficiency and 
robustness. The only shortage of the algorithm is that it needs the derivative information, 
which increases the algorithm complexity to some extent. 
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