
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 103

Design and experimentation of a large scale distributed stochastic control
algorithm applied to energy management problems

XavierWarin and Stephane Vialle

0

Design and experimentation of a large scale

distributed stochastic control algorithm applied
to energy management problems

Xavier Warin
EDF

France

Stephane Vialle
SUPELEC & AlGorille INRIA Project Team

France

Abstract

The Stochastic Dynamic Programming method often used to solve some stochastic optimiza-
tion problems is only usable in low dimension, being plagued by the curse of dimensionality.
In this article, we explain how to postpone this limit by using High Performance Computing:
parallel and distributed algorithms design, optimized implementations and usage of large
scale distributed architectures (PC clusters and Blue Gene/P).

1. Introduction and objectives

Stochastic optimization is used in many industries to take decisions facing some uncertainties
in the future. The asset to optimize can be a network (railway, telecommunication [Charalam-
bous et al. (2005)]), some exotic financial options of american type [Hull (2008)]. In the energy
industry, a gaz company may want to optimize the use of a gaz storage [Chen & Forsyth
(2009)], [Ludkovski & Carmona (2010, to appear)]. An electricity company may want to op-
timize the value of a powerplant [Porchet et al. (2009)] facing a price signal and dealing with
operational contraints: ramp contraints, minimum on-off times, maximum number of start up
during a period.
An integrated energy company may want to maximize an expected revenue coming from
many decisions take:

• which thermal assets to use ?

• how should be managed the hydraulic reservoirs ?

• which customers options to exercice ?

• how should the physical portfolio be hedged with future contracts ?

In the previous example, due to the structure of the energy market with limited liquidity, the
management of a future position on the market can be seen as the management of a stock
of energy available at a given price. So the problem can be seen as an optimization problem

7

www.intechopen.com

Stochastic Control104

with many stocks to deal with. This example will be taken as a test case for our performance
studies.
In order to solve stochastic optimization problems, some methods have be developed in the
case of convex continuous optimization: The Stochastic Dual Dynamic Programming method
[Rotting & Gjelsvik (1992)] is widely used for compagnies having large stocks of water to
manage. When the company portfolio is composed of many stocks of water and many power
plants a decomposition method can be used [Culioli & Cohen (1990)] and the bundle method
may be used for coordination [Bacaud et al. (2001)]. The uncertainty is usually modeled with
trees [Heitsch & Romisch (2003)].
In realistic modelization of the previous problem, the convexity is not assured. The constraints
may be non linear as for gaz storage for example where injection and withdrawal capacities
depend on the position in the stock (and for thermodynamic reason depends on the past con-
trols in accurate model). Most of the time, the problem is not continuous and is in fact a mixed
integer stochastic problem: the commands associated to a stock of water can only take some
discrete values due to the fact that a turbine has only on-off positions, financial positions are
taken for discrete number of stocks... If the constraints and the objectif function are linearized,
the stochastic problem can be discretized on the tree and a mixed integer programming solver
can be used. In order to be able to use this kind of modelization a non recombining tree has
to be build. The explosion of the number of leaves of the tree leads to a huge mixed integer
problem to solve.
Therefore when the constraints are non linear or when the problem is non convex, the dy-
namic programming method developed in 1957 [Bellman (1957)] may be the most attractive.
This simple approach faces one flaw: it is an enumerative method and the computational
cost goes up exponentially with the number of state variable to manage. This approach is
currently used for a number of state variable below 5 or 6. This article introduces the paral-
lelization scheme developed to implement the dynamic programming method, details some
improvements required to run large benchmarks on large scale architectures, and presents
the serial optimizations achieved to efficiently run on each node of a PC cluster and an IBM
Blue Gene/P supercomputer. This approach allows us to tackle a simplified problem with 3
random factors to face and 7 stocks to manage.

2. Stochastic control optimization and simulation

We give a simplified view of a stochastic control optimization problem. Supposing that the
problem we propose to solve can be set as:

minimize E

(

N

∑
t=1

φ(t, ξt, nct)

)

(1)

where φ is a cost function depending on time, the state variable ξt (stock and uncertainty,)
and depending on the command nct realized at date t. For simplicity, we suppose that the
control only acts on the deterministic stocks and that the uncertainties are uncontrolled. Some
additional constraints are added defining at date t the possible commands nct depending on
ξt.
The software used to manage the energy assets are usually separated into two parts. A first
software, an optimization solver is used to calculate the so-called Bellman value until maturity
T. The second one will test the Bellman values calculated during the first software run on
some scenarios.

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 105

2.1 Optimization part

In our implementation of the Bellman method, we store the Bellman values J at a given time
step t, for a given uncertainty factor occurring at time t and for some stocks levels. These
Bellman values represent the expected gains remaining for the optimal asset management
from the date t until the date T starting optimization with a given state. Instead of using
usual non recombining trees, we have chosen to use Monte Carlo scenarios to achieve our
optimization following [Longstaff & Schwartz (2001)] methodology. The uncertainties are here
simplified so that the model is Markovian. The number of scenarios used during this part is
rather small (less than a thousand). This part is by far the most time consuming. The algorithm
1 gives the Bellman values J for each time step t calculated by backward recursion. In the
algorithm 1, due to the Markovian property of the uncertainty, s∗ = f (s, w) is a realization at
date t + ∆t of an uncertainty whose value is equal to s at date t, where w is a random factor
independent on s.

For t := (nbstep − 1)∆t to 0
For c ∈ admissible stock levels (nbstate levels)

For s ∈ all uncertainty (nbtrajectory)
J̃∗(s, c) = ∞

For nc ∈ all possible commands for stocks (nbcommand)
J̃∗(s, c) = min(J̃∗(s, c), φ(nc) + E (J(t + ∆t, s∗, c + nc)|s))

J∗(t, :, :) := J̃∗

Fig. 1. Bellman algorithm, with a backward computation loop.

In our modelization, uncertainties are driven by brownian processus and conditional expec-
tation in the algorithm 1 are calculated by regression methods as explained in [Longstaff &
Schwartz (2001)]. Using Monte Carlo, it could have been possible to use Malliavin methods
[Bouchard et al. (2004)], or it could have been possible to use a recombining quantization tree
[Bally et al. (2005)].

2.2 Simulation part

A second software called a simulator is then used to accurately compute some financial indi-
cators (VaR, EEaR, expected gains on some given periods). The optimization part only gives
the Bellman values in each possible state of the system. In the simulation part, the uncertain-
ties are accurately described with using many scenarios (many tens of thousand) to accurately
test the previously calculated Bellman values. Besides, the modelization in the optimizer is
often a simplified one so that calculation are made possible by a reduction in the number of
state variable. In the simulator it is often much more easier to deal with far more complicated
constraints so that the modelization is more realistic. In the simulator, all the simulations can
be achieved in parallel, so we could think that this part is embarrassingly parallel as shown
by algorithm 2. However, we will see in the sequel that the parallelization scheme used dur-
ing the optimization will bring some difficulties during simulations that will lead to some
parallelization task to achieve.

3. Distributed algorithm

Our goal was to develop a distributed application efficiently running both on large PC cluster
(using Linux and classic NFS) and on IBM Blue Gene supercomputers. To achieve this goal,
we have designed some main mechanisms and sub-algorithms to manage data distribution
and load balancing, data routage planning and data routage execution, and file accesses. Next

www.intechopen.com

Stochastic Control106

stock(1:nbtrajectory) = initialStock
For t := 0 to (nbstep − 1)∆t

For s ∈ all uncertainty (nbtrajectory)
Gain = - ∞

For nc ∈ all possible commands for stocks (nbcommand)
GainA = phi(nc) + E (J∗(t + ∆t, s∗, stock(s) + nc)|s)
if GainA > Gain

com = nc
Gain = GainA

stock(s) += com

Fig. 2. Simulation on some scenarios.

sections introduce our parallelization strategy, detail the most important issues and describe
our global distributed algorithm.

3.1 Parallelization overview of the optimization part

As explained in section 2 we use a backward loop to achieve the optimization part of our
stochastic control application. This backward loop is applied to calculate the Bellman values
at discrete points belonging to a set of N stocks, which form some N-dimensional cube of data,
or data N-cubes.
Considering one stock X, its stock levels at tn and tn+1 are linked by the equation:

Xn+1 = Xn + Commandn + Supplyn (2)

Where:

• Xn and Xn+1 are possible levels of the X stock, and belong to intervals of possible values
([Xmin

n ; Xmax
n] and [Xmin

n+1; Xmax
n+1]), function of scenarios and physical constraints.

• The Command is the change of stock level due to the execution of a command on the
stock X between tn and tn+1. It belongs to an interval of values: [Cmin

n ; Cmax
n], function

of scenarios and physical constraints.

• The Supplyn is the change of stock level due to an external supply (in our test case
with hydraulic energy stocks, snow melting and rain represent this supply). Again, it
belongs to an interval of values: [Smin

n ; Smax
n], function of scenarios and physical con-

straints.

Considering the equation 2, the backward loop algorithm introduced in section 2, a set of
scenarios and physical constraints, and N stocks, the following 6 sub-steps algorithm is run
on each computing node at each time step:

1. When finishing the tn+1 computing step and entering tn one (backward loop), minimal
and maximal stock levels of all stocks are computed on each computing node, according
to scenarios and physical constraints on each stock. So, each node easily computes N
minimal and maximal stock levels that defines the minimal and maximal vertexes of
the N-cube of points where the Bellman values have to be calculated at date tn.

2. Each node runs its splitting algorithm of the tn N-cube to distribute the tn Bellman values

that will be to computed at step tn on P = 2dp computing nodes. Each node computes
the entire map of this distribution: the tn data map. See section 3.4 for details about the
splitting algorithm.

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 107

3. Using scenarios and physical constraints set for the application, each node computes
the Commands and Supplies to apply to each stock of each tn N-subcube of the tn data
map. Using equation 2 each node computes the tn+1 N-subcube of points where the
tn+1 Bellman values are required by each node to process the calculation of the Bellman
values at the stocks points belonging to its tn N-subcube. So, each node easily computes
the coordinates of the P′ tn+1 data influence areas or tn shadow regions, and builds the
entire tn shadow region map without any communication with others nodes. This solution
has appeared faster than to compute only local data partition and local shadow region
on each node and to exchange messages on the communication network to gather the
complete maps on each node.

4. Now each node has the entire tn shadow region map computed at the previous sub-step,
and the entire tn+1 data map computed at the previous time step of the backward loop.
Some basic computations of N-cube intersections allow each node to compute the P N-
subcubes of points associated to the Bellman values to receive from others nodes and
from itself, and the P N-subcubes of points associated to the Bellman values to send
to other nodes. Some of these N-subcubes can be empty and have a null size, when
some nodes have no N-subcubes of data at time step tn or tn+1. So, each node builds its
tn routing plan, still without any communications with other nodes. See section 3.5 for
details about the computation of this routing plan.

5. Using MPI communication routines, each node executes its tn routing plan and brings
back the Bellman values associated to points belonging to its tn+1 shadow region in its
local memory. Function of the underlying interconnection network and the machine
size, it can be interesting to overlap all communications, or it can be necessary to spread
the numerous communications and to achieve several communication sub-steps. See
section 3.6 for details about the routing plan execution.

6. Using the tn+1 Bellman brought back in its memory, each node can achieve the compu-
tation of the optimal commands for all stock points (according to the stochastic control
algorithm) and calculate its tn Bellman value.

7. Then, each node save on disk the tn Bellman values and some others step results that
will be used in the simulation part of the application. They are temporary results stored
on local disks when exist, or in global storage area, depending of the underlying parallel
architecture. Finally, each node cancels its tn+1 data map, tn shadow region map and tn

routing plan. Only its tn data map and tn data N-subcube have to remain to process the
following time step.

This time step algorithm is repeated in the backward loop up to time step 0. Then some global
results are saved, and the simulation part of the application is run.

3.2 Parallelization overview of the simulation part

In usual sequential software, simulations is achieved scenario by scenario: the stock levels
and the commands are calculated from date 0 to date T for each scenario sequentially. This
approach is obviously easy to parallelize when the Bellman values are shared by each node. In
our case, doing so will mean a lot of time spent in IO. In the algorithm 2, it has been chosen to
advance time step by time step and to do the calculation at each time step for all simulations.
So Bellman temporary files stored in the optimization part are opened and closed only once
by time step to read Bellman values of the next time step.

www.intechopen.com

Stochastic Control108

Similarly to the optimization part, at each time step tn the following algorithm is achieved by
each computing node:

1. Each computing node reads some temporary files of optimization results: the tn+1 data
map and the tn+1 data (Bellman values). All these reading operations are achieved in
parallel from the P computing nodes.

2. For each trajectory (up to the number of trajectories managed by each node):

(a) Each node simulates the hazard trajectory from time step tn to time step tn+1.

(b) From the current N dimensional stock point SPn, using equation 2, each node com-
putes the tn+1 N-subcube of points where the tn+1 Bellman values are required to
process the calculation of the optimal command at SPn: the tn shadow region coor-
dinates of the current trajectory.

(c) All nodes exchange their tn shadow region coordinates using MPI communication
routines and achieving a all_gather communication scheme. So, each node can
build a complete tn+1 shadow region map in its local memory. In the optimization
part each node could compute the entire tn+1 shadow region map, but in the simula-
tion part inter-node communications are mandatory.

(d) Each node computes its routing plan, computing N-subcubes intersections of tn+1

data map and tn+1 shadow region map. We apply again the 2-step algorithm de-
scribed on figure 6 and used in the optimization part.

(e) Each node executes its routing plan using MPI communication routines, and and
brings back the Bellman values associated to points belonging to its tn+1 shadow
region in its local memory. Like in the optimization part, depending on the underly-
ing interconnection network and the machine size, it can be interesting to overlap
all communications, or it can be necessary to spread the numerous communica-
tions and to achieve several communication sub-steps (see section 3.6).

(f) Using the tn+1 Bellman value brought back in its memory, each node can compute
the optimal command according to algorithm introduced on figure 2.

3. If required by user, data of the current time step are gathered on computing node 0, and
written on disk (see section 3.7).

Finally, some complete results are computed and saved by node 0, like the global gain com-
puted by the entire application.

3.3 Global distributed algorithm

Figure 3 summarizes the main three parts of our complete algorithm to compute optimal
commands of a N dimensional optimization problem and to test them in simulation. The
first part is the reading of input data files according to the IO strategy introduced in section
3.7. The second part is the optimization solver execution, computing some Bellman values in a
backward loop (see sections 1 and 3.1). At each step, a N-cube of Bellman values to compute is
split on an hypercube of computing nodes to load balance the computations, a shadow region
is identified and gathered on each node, some multithreaded local computations of optimal
commands are achieved for each point of the N-cube (see section 4.3), and some temporary
results are stored on disk. Then, the third part tests the previously computed commands.
This simulation part runs a forward time step loop (see sections 1 and 3.2) and a Monte-Carlo
trajectory sub-loop (see section 4.3), and uses the same previous mechanisms than the second

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 109

I - Sequential reading and parallel broadcast
 of initialization data

II - Backward time step loop optimization:

 - data and computations distribution
 - shadow regions rapatriement with communications
 - (multithreaded) optimal command research for all stock points
 - temporary data writing on disk

III - Forward time step loop simulation:

 - temporary data reading from disk
 - Monte-Carlo trajectory sub-loop
 - shadow regions rapatriement with communications
 - trajectory computation
 - optimal control result saving

temporary
result
disks

final
result

bcast
input
data

Send

Recv

Send

Recv

Fig. 3. Main steps of the complete application algorithm.

part. At each time step, each node reads some temporary results it has stored during the
optimization part, gather some shadow regions, achieves some local computations, and stores
the final results on disk.

3.4 Data N-cube splitting and data map setting

During the backward computation loop of the Bellman algorithm (see figure 1) of the opti-
mization part of our application, we need to compute a N-dimensional cube of Bellman values
at each time step. This computation is long and requires a large amount of memory to store
the N-cube data. So we have to split this N-cube data on a set of computing nodes both to
speedup (using more processors) and to size up (using more memory). Moreover, each di-
mension of this N-cube represents the stock levels of one stock that can change from time step
tn+1 to tn. Each stock level range can be translated, and/or enlarged or shrunk. So, we have
to redistribute our problem at each time step: we have to split a new N-cube of stock point
when entering a new time step. Our N-cube splitting algorithm is a critical component of our
distributed application that must run quickly. During the forward loop of the simulation part
we reread on disk the maps stored during optimization.
The computation of one Bellman value at one point of the tn N-cube requires the influence
area of this value given by equation 2: the tn+1 Bellman values at stocks points belonging to a
small sub-cube of the tn+1 N-cube. Computation of the entire tn N-sub-cube attached to one
computing node requires an influence area that can be a large shadow region, leading to MPI
communication of Bellman values stored on many other computing nodes (see figure 4). To
minimize the size of this N-dimensional shadow region we favor cubic N-sub-cubes in place of
flat ones. So, we aim to achieve cubic split of the N-cube data at each time step.
We decided to split our N-cube data on Pmax = 2dmax computing nodes. We successively split
in two equal parts some dimensions of the N-cube, up to obtain 2dmax sub-cubes, or to have
reach the limits of the division of the N-cube. Our algorithm includes 3 sub-steps:

www.intechopen.com

Stochastic Control110

n0

n2 n3

n4 n5

n7

Influence area of node 1

Influence area of node 0

n1

Fig. 4. Example of cubic split of the N-Cube of data and computations

sub-cubes of results to receive from each node on node 1

sub-cubes of results to send to each node from node 1

n0 n1 n2 n3 n4 n5 n6 n7

n0 n1 n2 n3 n4 n5 n6 n7

Fig. 5. Example of routing plan established on node 1

1. We split the dimensions of the N-cube in order to obtain sub-cubes with close dimension
sizes. We start to sort the N′ divisible dimensions in decreasing order, and attempt to
split the first one in 2 equal parts with sizes close to size of the second dimension. Then
we attempt to split again the size of the 2 first dimensions to reduce their sizes close to
the size of the third one. This splitting operation fails if it leads to a sub-cube dimension
size smaller than a minimal size, set to avoid to process too small data sub-cubes. The
splitting operation is repeated up to achieve dmax splits, or up to reduce the sizes of
the N′ − 1 first dimensions close to the size of the smallest one. Then, if we have not
obtained 2dmax sub-cubes we run the second sub-step.

2. Previously we have obtained sub-cubes with N′ close dimension sizes. Now we sort
these N′ divisible dimensions in decreasing order, considering their split dimension
sizes. We attempt to split again in 2 equal parts each divisible dimension in a round
robin way, up to achieve dmax splits, or up to reach the limit of the minimal size for each
divisible dimension. Then, if we have not obtained 2dmax sub-cubes we run the third
sub-step.

3. If it is specified to exceed the minimal size limit, then we split again in 2 equal parts
each divisible dimension in a round robin way, up to achieve dmax splits, or up to reach
dimension sizes equal to 1. In our application, the minimal size value is set before to
split a N-cube, and a command line option allows the user to respect or to exceed this
limit. So, when processing small problems on large numbers of computing nodes, some
experiments are required and can be rapidly conducted to point out the right tuning of
our splitting algorithm.

Finally, after running our splitting algorithm at time step tn we obtain 2d sub-cubes, and we
can give data and work up to P = 2d computing nodes. When processing small problems on

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 111

sub-cubes of results to receive from each node on node 1

sub-cubes of results to send to each node from node 1

n0 n1 n2 n3 n4 n5 n6 n7

n0 n1 n2 n3 n4 n5 n6 n7

// Input variable datatypes and declarations on node Me
N-cube-coord_t DataMaptn+1

[P]
N-cube-coord_t ShadowRegiontn [P]
// Output variable datatypes and declarations on node Me
N-cube-coord_t LocalRoutingPlanRecv

tn
[P]

N-cube-coord_t LocalRoutingPlanSend
tn

[P]

// Coordinates computation of the N-subcubes to receive on node Me from all nodes
For i := 0 to (P − 1)

LocalRoutingPlanRecv
tn

[i] := DataMaptn+1
[i] ∩ ShadowRegionMaptn [Me]

// Coordinates computation of the N-subcubes to send to all nodes from node Me
For i := 0 to (P − 1)

LocalRoutingPlanSend
tn

[i] := DataMaptn+1
[Me] ∩ ShadowRegionMaptn [i]

Fig. 6. Computation of tn routing plan on computing node Me (0 ≤ Me < P)

large parallel machines, it is possible not all computing nodes will have some computations to
achieve at time step tn (P < Pmax) (a too fine grained data distribution would lead to inefficient
parallelization). This splitting algorithm is run on each computing node at the beginning of
time step tn. They all compute the same N-cube splitting and deduce the same number of
provisioned nodes P and the same data map.

3.5 Shadow region map and routing plan computations

Different data N-subcubes located on different nodes, or existing at different time steps, can
have shadow regions with different sizes. Moreover, depending on the time step, the problem
size and the number of used computing nodes, the shadow region N-subcube of one computing
node can reach only its direct neighbors or can encompass these nodes. So, the exact routing
plan of each node has to be dynamically established at each time step before to retrieve data
from other nodes.
As explained in section 3.1, each node computes the entire shadow region map: a table of P
coordinates of N-subcubes. In our application these entire maps can be deduced from tn and
tn+1 data maps, and from scenarios and physical constraints on commands and supplies of
each stock. For example, node 1 on figure 4 knows its shadow region (light gray cube) in this
3-cube, the shadow region of node 0 (dotted line) and of nodes 2 to 7 (not drawn on figure 4).
Then, using both its tn shadow region map and its tn+1 data maps, each computing node can
easily compute its local tn routing plan in two sub-steps:

1. Each node computes the coordinates of the N-subcubes of Bellman values it has to re-
ceive from other nodes: the receive part of its local routing plan. The intersection of the
tn shadow region N-subcube of node Me with the tn+1 N-subcube of another node gives
the tn+1 N-subcube of Bellman values the node Me has to receive from this node. So,
each node achieve the first loop of the algorithm described on figure 6, and computes
P intersections of N-subcubes coordinates, to get the coordinates of the P N-subcube
of Bellman values it has to receive. When the shadow regions are not too large, many of
these P N-subcubes are empty.

2. Each node computes the coordinates of the N-subcubes of Bellman values it has to send
to other nodes: the send part of its local routing plan. The intersection of the tn+1 N-
subcube of node Me with the tn shadow region N-subcube of another node gives the

www.intechopen.com

Stochastic Control112

tn+1 N-subcube of Bellman values the node Me has to send to this node. So, each node
achieve the second loop of the algorithm described on figure 6, and computes P intersec-
tions of N-subcubes coordinates, to get the coordinates of the P N-subcube of Bellman
values it has to send. Again, many of these N-subcubes are empty when the shadow
regions are not too large.

Figure 5 shows an example of local routing plan computed on node 1, considering the data
distribution partially illustrated on figure 4. This entire routing plan computation consists in
2.P intersections of N-subcube coordinates. Finally, this is a very fast integer computation,
run at each time step.

3.6 Routing plan execution

Node communications are implemented with non-blocking communications and are over-
lapped, in order to use the maximal abilities of the interconnection network. However, for
large number of nodes we can get small sub-cubes of data on each node, and the influence
areas can reach many nodes (not only direct neighbor nodes). Then, the routing plan exe-
cution achieves a huge number of communications, and some node interconnexion network
could saturate and slow down. So, we have parameterized the routing plan execution with
the number of nodes that a node can attempt to contact simultaneously. This mechanism
spreads the execution of the communication plan, and the spreading out is controlled by two
application options (specified on the command line): one for the optimization part, and one for
the simulation part.
When running our benchmark (see section 5) on our 256 dual-core PC cluster it has been faster
not to spread these communications, but on our 8192 quad-core Blue Gene/P it has been really
faster to spread the communications of the simulation part. Each Blue Gene node has to contact
only 128 or 256 other nodes at the same time, to prevent the simulation time to double. When
running larger benchmarks (closer to future real case experiments), the size of the data and
of the shadow regions could increase. Moreover, each shadow region could spread on a little bit
more nodes. So, the total size and number of communications could increase, and it seems
necessary to be able to temporally spread both communications of optimization and simulation
parts, on both our PC-cluster and our Blue Gene/P supercomputer.
So, we have maintained our communication spreading strategy. When running the applica-
tion, an option on the command line allows to limit the number of simultaneous asynchronous
communications a computing node can start. If a saturation of the communication system ap-
pears, it is possible to use it sparingly, spreading the communications.

3.7 File IO constraints and adopted solutions

Our application deals with input data files, temporary output and input files, and final result
files. These files can be large, and our main target systems have very different file access
mechanisms. Computing nodes of IBM Blue Gene supercomputers do not have local disks,
but an efficient parallel file system and hardware allows all nodes to concurrently access a
global remote disk storage. At the opposite, nodes of our Linux PC cluster have local disks
but use basic Linux NFS mechanisms to access global remote disks. All nodes of our cluster
can not make their disk accesses at the same time. When increasing the number of used nodes,
IO execution times become longer, and finally they freeze.
Temporary files are written and read at each time step. However, each temporary result file is
written during the optimization part by only one node, and is read during the simulation part by
only the same node. These files do not require concurrent accesses and their management is

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 113

easy. Depending on their path specified on the command line when running the application,
they are stored on local disks (fastest solution on PC cluster), or on a remote global disk (IBM
Blue Gene solution). When using a unique global disk it is possible to store some temporary
index files only once, to reduce the total amount of data stored.
Input data files are read only once at the beginning, but have to be read by each computing
node. Final result files are written at each time step of the simulation part and have to store
data from each computing node. In both cases, we have favored the genericity of the file access
mechanism: node 0 opens, accesses and closes files, and sends data to or receives data from
other nodes across the interconnection network (using MPI communication routines). This IO
strategy is an old one and is not always the most efficient, but is highly portable. It has been
implemented in the first version of our distributed application. A new strategy, relying on a
Parallel File System and an efficient hardware, will be designed in future versions.

4. Parallel and distributed implementation issues

4.1 N-cube implementation

Our implementation includes 3 main kinds of arrays: MPI communication buffers, N-cube
data maps and N-cube data. We have used classic dynamic C arrays to implement the first kind,
and the blitz++ generic C++ library [Veldhuizen (2001)] to implement the second and third
kinds. However, in order to compile the same source code independently of the number of
energy stocks to process, we have flattened the N-cubes required by our algorithms. Any
N-dimensional array of stock point values becomes a one dimensional array of values.
Our implementation includes the following kind of variables:

• A stock level range is a one dimensional array of 2 values, implemented with a
blitz::TinyVector of 2 integer values.

• The coordinates of a N-cube of stock points is an array of N stock level ranges, implemented
with a one dimensional blitz::Array of N blitz::TinyVector of 2 integer values.

• A map of N-cube data is implemented with a two dimensional array of P × N
stock level ranges. It is implemented with a two dimensional blitz::Array of
blitz::TinyVector).

• A Bellman value is depending on the stock point considered and on the alea considered.
Our N-cube data are arrays of Bellman values function of different aleas in a N-cube of
stock points. A N-cube data is implemented with a two dimensional blitz::Array of
double: the first dimension index is the flattened N dimensional coordinate of the stock
point, and the second dimension index is the alea index.

• Some one dimensional arrays of double are used to store data to send to or to receive
from another node, and some two dimensional arrays of double are used to store data
to send to or to receive from all computing nodes. Communications are implemented
with the MPI library and its C API, that was available on all our testbed architectures.
This API requires addresses of contiguous memory areas, to read data to send or to
store received data. So, classic C dynamic arrays appeared a nice solution to implement
communication buffers with sizes updated at each time step.

Finally, blitz access mechanism to blitz array elements appeared slow. So, inside the com-
puting loop we prefer to get the address of the first element to access using a blitz function,
and to access the next elements incrementing a pointer like it is possible for a classic C array.

www.intechopen.com

Stochastic Control114

4.2 MPI communications

Our distributed application consists in loops of local computations and internode communi-
cations, and communications have to be achieved before to run the next local computations.
So, we do not attempt to overlap computations and communications. However, in a com-
munication step each node can exchange messages with many others, so it is important to
attempt to overlap all message exchanges and to avoid to serialize these exchanges.
When routing the Bellman values of the shadow region the communication schemes can be
different on each node and at each time step (see sub-steps 5 of section 3.1 and 2.e of sec-
tion 3.2), and data to send is not contiguous in memory. So, we have not used collective
communications (easier to use with regular communication schemes), but asynchronous MPI
point-to-point communication routines. Our communication sub-algorithm is the following:

• compute the size of each message to send or to receive,

• allocate message buffers, for messages to send and to receive,

• make local copy of data to send in the corresponding send buffers,

• start all asynchronous MPI point-to-point receive and send operations,

• wait until all receive operations have completed (synchronization operation),

• store received data in the corresponding application variables (blitz++ arrays),

• wait until all send operations have completed (synchronization operation),

• delete all communication buffers.

As we have chosen to fill explicit communication buffers to store data to exchange, we have
used in place asynchronous communication routines to exchange these buffers (avoiding to
re-copy data in other buffers with buffered communications). We have used MPI_Irecv,
and MPI_Isend or MPI_Issend, depending on the architecture and MPI library used. The
MPI_Isend routines is usually faster but has a non standard behavior, function of the MPI
library and architecture used. The MPI_Issend is a little bit longer but has a standardized be-
havior. On Linux PC clusters where different MPI libraries are installed, we use MPI_Issend

/ MPI_Irecv routines. On IBM Blue Gene supercomputer, with an IBM MPI library, we suc-
cessfully experimented MPI_Isend / MPI_Irecv routines.
Internode communications required in IO operations to send initial data to each node, or to
save final results on disk in each time step of simulation part (see sub-step 7 of section 3.1), are
implemented with some collective MPI communications: MPI_Bcast, MPI_Gather.
Exchange of local shadow region coordinates in each time step of the simulation part (see sub-step
2.c of section 3.2) is implemented with a collective MPI_Allgather operation. All these com-
munication have very regular schemes and can be efficiently implemented with MPI collective
communication routines.

4.3 Nested loops multithreading

In order to take advantage of multi-core processors we have multithreaded, in order to create
only one MPI process per node and one thread per core in place of one MPI process per core.
Depending on the application and the computations achieved, this strategy can be more or less
efficient. We will see in section 5.4 it leads to serious performance increase of our application.
To achieve multithreading we have split some nested loops using OpenMP standard tool or
the Intel Thread Building Block library (TBB). We maintain these two multithreaded imple-
mentations to improve the portability of our code. For example, in the past we encountered

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 115

some problems at execution time using OpenMP with ICC compiler, and TBB was not avail-
able on Blue Gene supercomputers. Using OpenMP or Intel TBB, we have adopted an in-
cremental and pragmatic approach to identify the nested loops to parallelize. First, we have
multithreaded the optimization part of our application (the most time consuming), and second
we attempted to multithread the simulation part.
In the optimization part of our application we have easily multithreaded two nested loops: the
first prepares data and the second computes the Bellman values (see section 2). However, only
the second has a significant execution time and leads to an efficient multithreaded paralleliza-
tion. A computing loop in the routing plan execution, packing some data to prepare messages,
could be parallelized too. But, it would lead to seriously more complex code while this loop is
only 0.15− 0.20% of the execution time on a 256 dual-core PC cluster and on several thousand
nodes of a Blue Gene/P. So, we have not multithreaded this loop.
In the simulation part each node processes some independent Monte-Carlo trajectories, and
parallelization with multithreading has to be achieved while testing the commands in the
algorithm 2. But this application part is not bounded by the amount of computations, but by
the amount of data to get back from other nodes and to store in the node memory, because
each MC trajectory follows an unpredictable path and requires a specific shadow region. So, the
impact of multithreading will be limited on the simulation part until we improve this part (see
section 6).

4.4 Serial optimizations

Beyond the parallel aspects the serial optimization is a critical point to tackle the current and
coming processor complexity as well as to exploit the entirely capabilities of the compilers.
Three types of serial optimization were carried out to match the processor architecture and to
simplify the language complexity, in order to help the compiler to generate the best binary:

1. Substitution or coupling of the main computing parts including blitz++ classes by stan-
dard C operations or basic C functions.

2. Loops unrolling with backward technique to ease SIMD or SSE (Streaming SIMD Ex-
tension for x86 processor architecture) instructions generation and optimization by the
compiler while reducing the number of branches.

3. Moving local data allocations outside the parallel multithreaded sections, to minimize
memory fragmentation, to reduce C++ constructor/destructor classes overhead and to
control data alignment (to optimize memory bandwidth depending on the memory
architecture).

Most of the data are stored and computed within blitz++ classes. The blitz++ streamlines
the overall implementation by providing arrays operations whatever the data type. Overload-
ing operator is one of the main inhibitor for the compilers to generate an optimal binary. To
get round this inhibitor the operations including blitz classes were replaced by standard C
pointers and C operations for the most time consuming routines. C pointers and operators of
code C are very simple to couple with blitz++ arrays, and whatever the processor architec-
ture we have got a significant speedup greater than a factor 3 with this technique. See [Vezolle
et al. (2009)] for more details about these optimizations.
With the current and future processors it is compulsory to generate vector instructions to reach
a good ratio of the serial peak performance. 30− 40% of the total elapsed time of our software
is spent in while loops including a break test. For a medium case the minimum number of
iterations is around 100. A simple look at the assembler code shows that, whatever the level of

www.intechopen.com

Stochastic Control116

the compiler optimization, the structure of the loop and the break test do not allow to unroll
techniques and therefore to generate vector instructions. So, we have explicitly loop unrolled
these while-and-break loops, with extra post-computing iterations then unrolling back to
get the break point. This method enables vector instructions while reducing the number of
branches.
In the shared memory parallel implementation (with Intel TBB library or OpenMP directives)
each thread independently allocates local blitz++ classes (arrays or vectors). The memory
allocations are requested concurrently in the heap zone and can generate memory fragmen-
tation as well as potential bank conflicts. In order to reduce the overhead due to memory
management between the threads the main local arrays were moved outside the parallel ses-
sion and indexed per the thread numbers. This optimization decreases the number of memory
allocations while allowing a better control of the array alignment between the threads. More-
over, a singleton C++ class was added to blitz++ library to synchronize the thread memory
constructors/destructors and therefore minimize memory fragmentation (this feature can be
deactivated depending on the operating system).

5. Experimental performances

5.1 User case introduction

We consider the situation of a power utility that has to satisfy customer load, using the power
plants and one reservoir to manage. The utility equally disposes of a trading entity being able
to take positions on both the spot market and futures market. We do neither consider the
market complete, nor that market-depth is infinite.

5.1.1 Load and price model

The price model will be a two factor model [Clewlow & Strickland (2000)] driven by two
brownian motions, and we will use a one factor model for load. In this modelization, the
price future F̃(t, T) corresponding to the price of one MWh seen at date t for delivery at date
T evolves around an initial forward curve F̃(T0, T) and the load D(t) corresponding to the
demand at date t randomly evolves around an average load D0(t) depending on time. The
following SDE describes our uncertainty model for the forward curve F̃(t, T):

dF̃(t, T)

F̃(t, T)
= σS(t)e

−aS(T−t)
dz

S
t + σL(t)dz

L
t , (3)

with zS
t

and zL
t

two brownian motions, σi some volatility parameters.

With the following notations:

V(t1, t2, t3) =
∫

t2

t1

σS(u)
2
e
−2aS(t3−u) + σL(u)

2 + 2ρσS(u)e
−aS(t3−u)

σL(u)du,

WS(t0, t) =
∫

t

t0

σS(u)e
−aS(t−u)

dz
S
u,

WL(t0, t) =
∫

t

t0

σL(u)dz
L
u ,

(4)

the integration of the previous equation gives:

F̃(t, T) = F̃(t0, T)e
−

1

2
V(t0, t, T) + e

aS(T−t)
WS(t0, t) + WL(t0, t)

. (5)

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 117

Noting zD
t a third brownian motion correlated to zS

t and zL
t , σD the volatility, and noting

VD(t1, t2) =
∫ t2

t1

σD(u)
2e−2aD(t2−u)du,

WD(t0, t) =
∫ t

t0

σD(u)e
−aD(t−u)dzD

u ,
(6)

the load curve follows the following equation:

D(t) = D0(t)e
−

1

2
VD(t0, t) + WD(t0, t)

. (7)

With this modelization, the spot price is defined as the limit of the future price:

S(t) = lim
T↓t

F̃(t, T) (8)

The dynamic of a financial product p for a delivery period of one month [tb(p), te(p)] can be
approximated by:

dF(t, p)

F(t, p)
= σ̃S(t, p)e−aS(tb(p)−t)dzS

t + σL(t)dzL
t , (9)

where:

σ̃S(t, p) = σS(t)

∑
ti∈[tb(p),te(p)]

e−aS(ti−tb(p))

∑
ti∈[tb(p),te(p)]

1
(10)

5.1.2 Test case

We first introduce some notation for our market products:
P(t) = {p : t < tb(p)} all futures with delivery after t,
L(t, p) = {τ : τ < t, p ∈ P(τ)} all time steps τ before t for which the futures product p

is available on the market,
P t = {p : t ∈ [tb(p), te(p)]} all products in delivery at t,
P = ∪t∈[0,T]P(t) all futures products considered.

Now we can write the problem to be solved:

min E




T

∑
t=0

[
npal

∑
i=1

ci,tui,t − vtSt + ∑
p∈P(t)

(te(p)− tb(p))(q(t, p)F(t, p) + |q(t, p)| Bt)]




s.t. Dt =
npal

∑
i=1

ui,t − vt + wt + ∑
p∈P t

∑
s∈L(t,p)

q(s, p)

Rt+1 = Rt + ∆t(−wt + At) (11)

Rmin ≤ Rt ≤ Rmax

qp,min ≤ q(s, p) ≤ qp,max ∀s ∈ [0, T] ∀p ∈ P

yp,min ≤
τ

∑
s=0

q(s, p) ≤ yp,max ∀τ < tb(p) ∀p ∈ P

vt,min ≤ vt ≤ vt,max

0 ≤ ui,t ≤ ui,t,max, (12)

www.intechopen.com

Stochastic Control118

where

• Dt is the customer Load at time t in MW

• ui,t is the production of unit i at time t in MW

• vt is spot transactions in MW (counted positive for sales)

• q(t, p) is the power of the futures product p bought at time t in MW

• Bt is the spread bid-ask in euros/MWh taking into account the illiquidity of the market:
its double value is the price gap purchase/sale of one MWh

• Rt is the level of the reservoir at time t in MWh

• St = F(t, t) is the spot price in euros/Mwh

• F(t, p) is the futures price of the product p at time t in euros/MWh

• wt is the production of the reservoir at time t in MW

• At are the reservoir inflows in MW

• ∆t the time step in hours

• qp,min, qp,max are bounds on what can be bought and sold per time step on the futures
market in MW

• yp,min, yp,max are the bounds on the size of the portfolio for futures product p

• Rmin, Rmax are (natural) bounds on the energy the reservoir can contain.

Some additional values for the initial stocks are also given, and some final values are set for
the reservoir stock remaining at date T.

5.1.3 Numerical data

We consider at the begin of a month a four months optimization, where the operator can take
position in the future market twice a month using month ahead futures peak and offpeak, two
month ahead futures peak and off peak, and three month ahead futures base and peak. So the
user has at date 0 6 future products at disposal. The number of trajectories for optimization
is 400. The depth of the market for the 6 future products is set to 2000 MW for purchase and
sales (yp,min = −2000, yp,max = 2000). Every two weeks, the company is allowed to change its
position in the futures market within the limits of 1000 MW (qp,min = −1000, qp,max = 1000).
All the commands for the futures stocks are tested from -1000 MW to 1000 MW with a step
of 1000 MW. The hydraulic command is tested with a step of 1000MW. All the stocks are
discretized with a 1000MW step leading to a maximum of 225 ∗ 56 points to explore for the
stock state variables. The maximum number of commands tested is 5 ∗ 36 at day 30 for each
point stock not saturating the constraints. This discretization is a very accurate one leading
to a huge problem to solve. Notice that the number of stocks is decreasing with time. After
two months, the two first future delivery periods are past so the problem becomes a 5 stocks
problem. After three months , we are left with a three stocks problems and no command to
test (delivery of the two last future contracts has begun). The global problem is solved with 6
steps per days, defining the reservoir strategy, and the future commands are tested every two
weeks.

1E7

1E6

1E5

1E4

1E3

1E2

1E1

1E0
 0 20 40 60 80 100 120

nu
m

be
r o

f s
to

ck
 p

oi
nt

s a
nd

 w
or

ki
ng

 n
od

es

time steps

nb of stock points
nb of working nodes on BG with 8192 nodes
nb of working nodes on BG with 4096 nodes

nb of working nodes on PC cluster with 256 nodes

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 119

1E7

1E6

1E5

1E4

1E3

1E2

1E1

1E0
 0 20 40 60 80 100 120

nu
m

be
r o

f s
to

ck
 p

oi
nt

s a
nd

 w
or

ki
ng

 n
od

es

time steps

nb of stock points
nb of working nodes on BG with 8192 nodes
nb of working nodes on BG with 4096 nodes

nb of working nodes on PC cluster with 256 nodes

Fig. 7. Evolution of the number of stock points (problem size) and of the number of working
nodes (useful size of the machine)

5.2 Testbeds introduction

We used two different parallel machines to test our application and measure its performances:
a PC cluster and a supercomputer.

• Our PC cluster was a 256-node cluster of SUPELEC (from CARRI Systems company)
with a total of 512 cores. Each node hosts one dual-core processor: INTEL Xeon-3075 at
2.66 GHz, with a front side bus at 1333 MHz. The two cores of each processor share 4 GB
of RAM, and the interconnection network is a Gigabit Ethernet network built around a
large and fast CISCO 6509 switch.

• Our supercomputer was the IBM Blue Gene/P supercomputer of EDF R&D. It pro-
vides up to 8192 nodes and a total of 32768 cores, which communicate through propri-
etary high-speed networks. Each node hosts one quad-core PowerPC 450 processor at
850 MHz, and the 4 cores share 2 GB of RAM.

5.3 Experimental provisioning of the computing nodes

Figure 7 shows the evolution of the number of stock points of our benchmark application, and
the evolution of the number of available nodes that have some work to achieve: the number
of provisioned nodes. The number of stock points defines the problem size. It can evolve at
each time step of the optimization part and the splitting algorithm that distributes the N-cube
data and the associated work has to be run at the beginning of each time step (see section 3.1).
This algorithm determines the number of available nodes to use at the current time step. The
number of stock points of this benchmark increases up to 3 515 625, and we can see on figure
7 the evolution of their distribution on a 256-nodes PC cluster, and on 4096 and 8192 nodes
of a Blue Gene supercomputer. Excepted at time step 0 that has only one stock point, it has
been possible to use the 256 nodes of our PC cluster at each time step. But it has not been

www.intechopen.com

Stochastic Control120

possible to achieve this efficiency on the Blue Gene. We succeeded to use up to 8192 nodes of
this architecture, but sometimes we used only 2048 or 512 nodes.
However, section 5.4 will introduce the good scalability achieved by the optimization part of
our application, both on our 256-nodes PC cluster and our 8192-nodes Blue Gene. In fact, time
steps with small numbers of stock points are not the most time consuming. They do not make
up a significant part of the execution time, and to use a limited number of nodes to process
these time steps does not limit the performances. But it is critical to be able to use a large
number of nodes to process time steps with a great amount of stock points. This dynamic
load balancing and adaptation of the number of working nodes is achieved by our splitting
algorithm, as illustrated by figure 7.
Section 3.4 introduces our splitting strategy, aiming to create and distribute cubic subcubes and
avoiding flat ones. When the backward loop of the optimization part leaves step 61 and enters
step 60 the cube of stock points increases a lot (from 140 625 to 3 515 625 stock points) because
dimensions two and five enlarge from 1 to 5 stock levels. In both steps the cube is split in 8192
subcubes, but this division evolves to take advantage of the enlargement of dimensions two
and five. The following equations resume this evolution:

step 61 : 140625 stock points = 225 × 1 × 5 × 5 × 1 × 5 × 5 stock points (13)

step 60 : 3515625 stock points = 225 × 5 × 5 × 5 × 5 × 5 × 5 stock points (14)

step 61 : 8192 subcubes = 128 × 1 × 4 × 4 × 1 × 2 × 2 subcubes (15)

step 60 : 8192 subcubes = 128 × 2 × 2 × 2 × 2 × 2 × 2 subcubes (16)

subcube sizes =

[

min nb o f stock levels
max nb o f stock levels

]

dim1

×

[]

dim2

...

step 61 : subcube sizes =

[

1
2

]

×

[

1
1

]

×

[

1
2

]

×

[

1
2

]

×

[

1
1

]

×

[

2
3

]

×

[

2
3

]

(17)

step 60 : subcube sizes =

[

1
2

]

×

[

2
3

]

×

[

2
3

]

×

[

2
3

]

×

[

2
3

]

×

[

2
3

]

×

[

2
3

]

(18)

At time step 61, equations 13 and 15 show the dimension one has a stock level range of size 225
split in 128 subranges. This leads to subcubes with 1 (min) or 2 (max) stock levels in dimension
one on the different nodes, as summarized by equation 17. Similarly, the dimension two has
a stock level range of size 1 split in 1 subrange of size 1, the dimension three has a stock level
range of 5 split in 4 subranges of size 1 or 2. . . At time step 60, equations 14 and 16 show the
range of dimensions two and five enlarge from 1 to 5 stock levels and their division increases
from 1 to 2 subparts, while the division of dimensions three and four decreases from 4 to
2 subparts. Finally, equation 18 shows the 8192 subcubes are more cubic: they have similar
minimal and maximal sizes in their last six dimensions and only their first dimension can
have a smaller size. This kind of data re-distribution can happen each time the global N-cube
of data evolves, even if the number of provisioned nodes remains unchanged, in order to
optimize the computation load balancing and the communication amount.

5.4 Performances function of deployment and optimization mechanisms

Figure 8 shows the different total execution times on the two testbeds introduced in section
5.2 for the following parallelizations:

1E5

1E4

1E3

1E2
1E41E31E21E1

Ex
ec

ut
io

n
tim

e
(s

)

Number of nodes

PC-cluster, 2processes/node
PC-cluster, 1process+2threads/node

PC-cluster, 1process+2threads/node, SerialOptims
BG/P, 4processes/node

BG/P, 1process+4threads/node
BG/P, 1process+4threads/node, SerialOptims

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 121

1E5

1E4

1E3

1E2
1E41E31E21E1

Ex
ec

ut
io

n
tim

e
(s

)

Number of nodes

PC-cluster, 2processes/node
PC-cluster, 1process+2threads/node

PC-cluster, 1process+2threads/node, SerialOptims
BG/P, 4processes/node

BG/P, 1process+4threads/node
BG/P, 1process+4threads/node, SerialOptims

Fig. 8. Total execution times function of the deployment and optimization mechanisms

• implementing no serial optimization and using no thread but running several MPI pro-
cesses per node (one MPI process per core),

• implementing no serial optimization but using multithreading (one MPI process per
node and one thread per core),

• implementing serial optimizations and multithreading (one MPI process per node and
one thread per core).

Without multithreading the execution time decreases slowly on the PC-cluster or reaches an
asymptote on the Blue Gene/P. When using multithreading the execution time is smaller and
decreases regularly up to 256 nodes and 512 cores on PC cluster, and up to 8192 nodes and
32768 cores on Blue Gene/P. So, the deployment strategy has a large impact on performances
of our application. Performance curves of figure 8 show we have to deploy only one MPI
process per node and to run threads to efficiently use the different cores of each node. The
multithreading development introduced in section 4.3 has been easy to achieve (parallelizing
only some nested loops), and has reduced the execution time and extended the scalability of
the application.
These results confirm some previous experiments achieved on our PC cluster and on the Blue
Gene/L of EDF without serial optimizations. Multithreading was not available on the Blue
Gene/L. Using all cores of each nodes decreased the execution time but did not allowed to
reach a good scalability on our Blue Gene/L [(Vialle et al., 2008)].
Serial optimizations introduced in section 4.4 have also an important impact on the perfor-
mances. We can see on figure 8 they divide the execution time by a factor 1.63 to 2.14 on the
PC cluster of SUPELEC, and by a factor 1.88 to 2.79 on the Blue Gene/P supercomputer of
EDF (depending on the number of used nodes). Moreover, they lead to reach the scalability
limit of our distributed application: the execution time decreases but reaches a new asymptote

www.intechopen.com

Stochastic Control122

1E5

1E4

1E3

1E2
1E41E31E21E1

Ex
ec

ut
io

n
tim

e
(s

)

Number of nodes

PC-cluster, T-total
PC-cluster, T-optim
PC-cluster, T-simul

BG/P, T-total
BG/P, T-optim
BG/P, T-simul

Fig. 9. Details of the best execution times of the application

when using 4096 nodes and 16384 cores on our Blue Gene/P. We can not speedup more this
benchmark application with our current algorithms and implementation.
These experiments have allowed to identify the right deployment strategy (running one MPI
process per node and multithreading) and the right implementation (using all our serial opti-
mizations). We analyze our best performances in the next section.

5.5 Detailed best performances of the application and its subparts

Figure 9 shows the details of the best execution times (using multithreading and implement-
ing serial optimizations). First, we can observe the optimization part of our application scales
while the simulation part does not speedup and limits the global performances and scaling of
the application. So, our N-cube distribution strategy, our shadow region map and routing plan
computations, and our routing plan executions appear to be efficient and not to penalize the
speedup of the optimization part. But our distribution strategy of Monte carlo trajectories in
the simulation part does not speedup, and limits the performances of the entire application.
Second, we observe on figure 9 our distributed and parallel algorithm, serial optimizations
and portable implementation allow to run our complete application on a 7-stocks and 10-
state-variables in less than 1h on our PC-cluster with 256 nodes and 512 cores, and in less
than 30mn on our Blue Gene/P supercomputer used with 4096 nodes and 16384 cores. These
performances allow to plan some computations we could not run before.
Finally, considering some real and industrial use cases, with bigger data set, the optimization
part will increase more than the simulation part, and our implementation should scale both on
our PC cluster and our Blue Gene/P. Our current distributed and parallel implementation is
operational to process many of our real problems.

www.intechopen.com

Design and experimentation of a large scale distributed
stochastic control algorithm applied to energy management problems 123

1E5

1E4

1E3

1E2
1E41E31E21E1

Ex
ec

ut
io

n
tim

e
(s

)

Number of nodes

PC-cluster, T-total
PC-cluster, T-optim
PC-cluster, T-simul

BG/P, T-total
BG/P, T-optim
BG/P, T-simul

6. Conclusion and perspectives

Our parallel algorithm, serial optimizations and portable implementation allow to run our
complete application on a 7-stocks and 10-state-variables in less than 1h on our PC-cluster
with 256 nodes and 512 cores, and in less than 30mn on our Blue Gene/P supercomputer used
with 4096 nodes and 16384 cores. On both testbeds, the interest of multithreading and serial
optimizations have been measured and emphasized. Then, a detailed analysis has shown the
optimization part scales while the simulation part reaches its limits. These current performances
promise high performances for future industrial use cases where the optimization part will
increase (achieving more computations in one time step) and will become a more significant
part of the application.
However, for some high dimension problems, the communications during the simulation part
could become predominant. We plan to modify this part by reorganizing trajectories so that
trajectories with similar stocks levels are treated by the same processor. This will allow us to
identify and to bring back the shadow region only once per processor at each time step and to
decrease the number of communication needed.
Previously our paradigm has been successfully tested too on a smaller case for gaz storage
[Makassikis et al. (2008)]. Currently it is used to valuate power plants facing the market prices
and for different problems of asset liability management. In order to make easier the devel-
opment of new stochastic control applications, we aim to develop a generic library to rapidly
and efficiently distribute N dimensional cubes of data on large size architectures.

Acknowledgment

Authors thank Pascal Vezolle from IBM Deep Computing Europe for serial optimizations and
fine tuning of the code, achieving sensitive speed improvement.
This research has been part of the ANR-CICG GCPMF project, and has been supported both
by ANR (French National Research Agency) and by Region Lorraine.

7. References

Bacaud, L., Lemarechal, C., Renaud, A. & Sagastizabal, C. (2001). Bundle methods in stochas-
tic optimal power management: A disaggregated approach using preconditioner,
Computational Optimization and Applications 20(3).

Bally, V., Pagès, G. & Printems, J. (2005). A quantization method for pricing and hedging
multi-dimensional american style options, Mathematical Finance 15(1).

Bellman, R. E. (1957). Dynamic Programming, Princeton University Press, Princeton.
Bouchard, B., Ekeland, I. & Touzi, N. (2004). On the malliavin approach to monte carlo ap-

proximation of conditional expectations, Finance and Stochastics 8(1): 45–71.
Charalambous, C., Djouadi, S. & Denic, S. Z. (2005). Stochastic power control for wireless net-

works via sde’s: Probabilistic qos measures, IEEE Transactions on Information Theory
51(2): 4396–4401.

Chen, Z. & Forsyth, P. (2009). Implications of a regime switching model on natural gas storage
valuation and optimal operation, Quantitative Finance 10: 159–176.

Clewlow, L. & Strickland, C. (2000). Energy derivatives: Pricing and risk management, Lacima.
Culioli, J. C. & Cohen, G. (1990). Decomposition-coordination algorithms in stochastic opti-

mization, SIAM Journal of Control and Optimization 28(6).
Heitsch, H. & Romisch, W. (2003). Scenario reduction algorithms in stochastic programming,

Computational Optimization and Applications 24.

www.intechopen.com

Stochastic Control124

Hull, J. (2008). Options, Futures, and Other Derivatives, 7th Economy Edition, Prentice Hall.
Longstaff, F. & Schwartz, E. (2001). Valuing american options by simulation: A simple least-

squares, Review of Financial Studies 14(1).
Ludkovski, M. & Carmona, R. (2010, to appear). Gas storage and supply: An optimal switch-

ing approach, Quantitative Finance .
Makassikis, C., Vialle, S. & Warin, X. (2008). Large scale distribution of stochastic control

algorithms for financial applications, The First International Workshop on Parallel and
Distributed Computing in Finance (PdCoF08), Miami, USA.

Porchet, A., Touzi, N. & Warin, X. (2009). Valuation of a powerplant under production
constraints and markets incompleteness, Mathematical Methods of Operations research
70(1): 47–75.

Rotting, T. A. & Gjelsvik, A. (1992). Stochastic dual dynamic programming for seasonal
scheduling in the norwegian power system, Transactions on power system 7(1).

Veldhuizen, T. (2001). Blitz++ User’s Guide, Version 1.2,
http://www.oonumerics.org/blitz/manual/blitz.html.

Vezolle, P., Vialle, S. & Warin, X. (2009). Large scale experiment and optimization of a dis-
tributed stochastic control algorithm. application to energy management problems,
Workshop on Large-Scale Parallel Processing (LSPP 2009), Roma, Italy.

Vialle, S., Warin, X. & Mercier, P. (2008). A N-dimensional stochastic control algorithm for
electricity asset management on PC cluster and Blue Gene supercomputer, 9th In-
ternational Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA08),
NTNU, Trondheim, Norway.

www.intechopen.com

Stochastic Control

Edited by Chris Myers

ISBN 978-953-307-121-3

Hard cover, 650 pages

Publisher Sciyo

Published online 17, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Uncertainty presents significant challenges in the reasoning about and controlling of complex dynamical

systems. To address this challenge, numerous researchers are developing improved methods for stochastic

analysis. This book presents a diverse collection of some of the latest research in this important area. In

particular, this book gives an overview of some of the theoretical methods and tools for stochastic analysis,

and it presents the applications of these methods to problems in systems theory, science, and economics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Stephane Vialle and Xavier Warin (2010). Design and Experimentation of a Large Scale Distributed Stochastic

Control Algorithm Applied to Energy Management Problems, Stochastic Control, Chris Myers (Ed.), ISBN: 978-

953-307-121-3, InTech, Available from: http://www.intechopen.com/books/stochastic-control/design-and-

experimentation-of-a-large-scale-distributed-stochastic-control-algorithm-applied-to-ener

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

