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The deterministic versions of dynamical systems have been studied extensively in literature. 
The notion of noisy dynamical systems is attributed to random initial conditions and small 
perturbations felt by dynamical systems. The stochastic differential equation formalism is 
utilized to describe noisy dynamical systems. The Itô calculus, a pioneering contribution of 
Kiyoshi Itô, is regarded as a path-breaking discovery in the branch of mathematical science 

in which the term dtBdB tt
'' , where the Brownian motion }.,{ 0  ttBB t The 

Itô theory deals with multi-dimensional Itô differential rule, Itô stochastic integral and 
subsequently, can be exploited to analyse non-linear stochastic differential systems.  
   This chapter discusses the usefulness of Itô theory to analysing a noisy dynamical system. 
In this chapter, we consider a system of two coupled second-order fluctuation equations, 
which has central importance in noisy dynamical systems. Consider the system of the 
coupled fluctuation equations of the form  
 

),,,,,,( 1221111 BxxxxtFx    

),,,,,,( 2221122 BxxxxtFx    
 

where the state vector T
t xxxxx ),,,( 2121  and the vector Brownian 

motion .),( 21
T

t BBB   Interestingly, a suitable choice of the right-hand side 

terms 21 ,FF  of the above formalism describes the motion of an orbiting satellite in noisy 
environment, which w’d be the subject of discussion. After accomplishing the phase space 
formulation, the structure of the dynamical system of concern here becomes a multi-
dimensional stochastic differential equation. Remarkably, in this chapter, the resulting SDE 
is analysed using the Itô differential rule in contrast to the Fokker-Planck approach. This 
chapter aims to open the topic to a broader audience as well as provides guidance for 
understanding the estimation-theoretic scenarios of stochastic differential systems. 
Key words: Brownian motion, Itô differential rule, Fokker-Planck approach, second-order 
fluctuation equations, multi-dimensional stochastic differential equation 
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1. Introduction 

The Ordinary Differential Equation (ODE) formalism is utilized to analyse dynamical 
systems deterministically. After accounting the effect of random initial conditions and small 
perturbations felt by dynamical systems gives rise to the concept of stochastic processes and 
subsequently, stochastic differential equations, a branch of mathematical science. As a result 
of these, the SDE confirms actual physical situations in contrast to the ODE. A remarkable 
success of stochastic differential equations can be found in different branches of sciences, i.e. 
stochastic control, satellite trajectory estimations, helicopter rotor, stochastic networks, 
mathematical finance, blood clotting dynamics, protein kinematics, population dynamics, 
neuronal activity. A nice exposition about the application of stochastic processes  and 
Stochastic Differential Equations in sciences  can be found in celebrated books authored by 
Karatzas and Shreve (1991), Kloeden and Platen (1991),  Campen (2007) . The stochastic 
differential equation in the Itô sense is a standard form to describe dynamical systems in 
noisy environments. Alternatively, stochastic differential equations can be re-written 

involving 
2
1

 differential, i.e. the Stratonovich sense, as well as p -differential, where 

10  p  (Pugachev and Synstin 1977). The Itô stochastic differential equation describes 
stochastic differential systems driven by the Brownian motion process. The Brownian 
motion process has greater conceptual depth and ageless beauty. The Brownian motion 
process is a Gauss-Markov process as well as satisfies the martingale properties, 

i.e. stxFxE sst  ,)( and the sigma algebra rsrs FF

  (Revuz and Yor 1991, Strook 

and Varadhan 1979). The Central Limit Theorem (CLT) of stochastic processes confirms the 
usefulness of the Brownian motion for analysing randomly perturbed dynamical systems. 
The Brownian motion process can be utilized to generate the Ornstein-Uhlenbeck (OU) 
process, a colored noise (Wax 1954). This suggests that the stochastic differential system 
driven by the OU process can be reformulated as the Itô stochastic differential equation by 
introducing the notion of ‘augmented state vector approach’. Moreover, the state vector, 
which satisfies the stochastic differential equation driven by the OU process, will be non-
Markovian. On the other hand, the augmented state vector, after writing down the SDE for 
the OU process, becomes the Markovian. For these reasons, the Itô stochastic differential 
equation would be the cornerstone formalism in this chapter. The white noise can be 

regarded as informal non-existent time derivative tB of the Brownian motion .tB  Kiyoshi 

Ito considered the term '' tdB resulting from the multiplication between the white noise tB  

and the time differential .dt  
This chapter demonstrates the usefulness of the Itô theory to analysing the motion of an 
orbiting satellite accounting for stochastic accelerations. Without accounting the effect of 
stochastic accelerations, stochastic estimation algorithms may lead to inaccurate estimation 
of positioning of the orbiting particle.  
After introducing the phase space formulation, the stochastic problem of concern here can 
be regarded as a dynamical system perturbed by the Brownian motion process. In this 
chapter, the multi-dimensional Itô differential rule is exploited to analyse the stochastic 
differential system, which is the subject of discussion, in contrast to the Fokker-Planck 

approach (Sharma and Parthasarathy 2007). The Fokker-Planck Equation (FPE) is a 
parabolic linear homogeneous differential equation of order two in partial differentiation for 
the transition probability density. A discussion on the Fokker-Planck equation is given in 
appendix 2. The chapter encompasses estimation-theoretic scenarios as well as qualitative 
analysis of the stochastic problem considered here.    
This chapter is organized as follows: section (2) begins by writing a generalized structure of 
two-coupled second-order fluctuation equations. Subsequently, approximate evolutions of 
conditional mean vector and variance matrix are derived.   In section (3), numerical 
experiments were accomplished. Concluding remarks are given in section (4). Furthermore, 
a qualitative analysis of the stochastic problem of concern here can be found in ‘appendix’1. 

 
2. The structure of a noisy dynamical system and evolution equations 

In dynamical systems’ theory, second-order fluctuation equations describe dynamical 
systems perturbed by noise processes. Here, first we consider a system of two coupled 
second-order equations, which is an appealing case in dynamical systems and the theory of 
ordinary differential equations (Arnold 1995), 
 

),,,,,( 221111 xxxxtFx    

),,,,,( 221122 xxxxtFx    
 

after introducing the noise processes along the components ),( 21 xx of the coupled 
equations, the above can be re-written as 
 

                                                  ),,,,,,( 1221111 BxxxxtFx                                                 (1) 

                                                  ).,,,,,( 2221122 BxxxxtFx                                                (2) 
 

Equations (1)-(2) constitute  a system of two coupled second-order fluctuation equations. 
After accomplishing the phase space formulation, the above system of fluctuation equations 
leads to a multi-dimensional stochastic differential equation. Choose  
 

31 xx  , 

,42 xx   
and 

),,,,,,( 1432113 BxxxxtFx    

).,,,,,( 2432124 BxxxxtFx    
 
By considering a special case of the above system of equations, we have                                                               
 

,31 dtxdx   

,42 dtxdx   
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1. Introduction 
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of these, the SDE confirms actual physical situations in contrast to the ODE. A remarkable 
success of stochastic differential equations can be found in different branches of sciences, i.e. 
stochastic control, satellite trajectory estimations, helicopter rotor, stochastic networks, 
mathematical finance, blood clotting dynamics, protein kinematics, population dynamics, 
neuronal activity. A nice exposition about the application of stochastic processes  and 
Stochastic Differential Equations in sciences  can be found in celebrated books authored by 
Karatzas and Shreve (1991), Kloeden and Platen (1991),  Campen (2007) . The stochastic 
differential equation in the Itô sense is a standard form to describe dynamical systems in 
noisy environments. Alternatively, stochastic differential equations can be re-written 

involving 
2
1

 differential, i.e. the Stratonovich sense, as well as p -differential, where 
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motion process has greater conceptual depth and ageless beauty. The Brownian motion 
process is a Gauss-Markov process as well as satisfies the martingale properties, 

i.e. stxFxE sst  ,)( and the sigma algebra rsrs FF

  (Revuz and Yor 1991, Strook 

and Varadhan 1979). The Central Limit Theorem (CLT) of stochastic processes confirms the 
usefulness of the Brownian motion for analysing randomly perturbed dynamical systems. 
The Brownian motion process can be utilized to generate the Ornstein-Uhlenbeck (OU) 
process, a colored noise (Wax 1954). This suggests that the stochastic differential system 
driven by the OU process can be reformulated as the Itô stochastic differential equation by 
introducing the notion of ‘augmented state vector approach’. Moreover, the state vector, 
which satisfies the stochastic differential equation driven by the OU process, will be non-
Markovian. On the other hand, the augmented state vector, after writing down the SDE for 
the OU process, becomes the Markovian. For these reasons, the Itô stochastic differential 
equation would be the cornerstone formalism in this chapter. The white noise can be 

regarded as informal non-existent time derivative tB of the Brownian motion .tB  Kiyoshi 

Ito considered the term '' tdB resulting from the multiplication between the white noise tB  

and the time differential .dt  
This chapter demonstrates the usefulness of the Itô theory to analysing the motion of an 
orbiting satellite accounting for stochastic accelerations. Without accounting the effect of 
stochastic accelerations, stochastic estimation algorithms may lead to inaccurate estimation 
of positioning of the orbiting particle.  
After introducing the phase space formulation, the stochastic problem of concern here can 
be regarded as a dynamical system perturbed by the Brownian motion process. In this 
chapter, the multi-dimensional Itô differential rule is exploited to analyse the stochastic 
differential system, which is the subject of discussion, in contrast to the Fokker-Planck 

approach (Sharma and Parthasarathy 2007). The Fokker-Planck Equation (FPE) is a 
parabolic linear homogeneous differential equation of order two in partial differentiation for 
the transition probability density. A discussion on the Fokker-Planck equation is given in 
appendix 2. The chapter encompasses estimation-theoretic scenarios as well as qualitative 
analysis of the stochastic problem considered here.    
This chapter is organized as follows: section (2) begins by writing a generalized structure of 
two-coupled second-order fluctuation equations. Subsequently, approximate evolutions of 
conditional mean vector and variance matrix are derived.   In section (3), numerical 
experiments were accomplished. Concluding remarks are given in section (4). Furthermore, 
a qualitative analysis of the stochastic problem of concern here can be found in ‘appendix’1. 

 
2. The structure of a noisy dynamical system and evolution equations 

In dynamical systems’ theory, second-order fluctuation equations describe dynamical 
systems perturbed by noise processes. Here, first we consider a system of two coupled 
second-order equations, which is an appealing case in dynamical systems and the theory of 
ordinary differential equations (Arnold 1995), 
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                                                  ).,,,,,( 2221122 BxxxxtFx                                                (2) 
 

Equations (1)-(2) constitute  a system of two coupled second-order fluctuation equations. 
After accomplishing the phase space formulation, the above system of fluctuation equations 
leads to a multi-dimensional stochastic differential equation. Choose  
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,42 xx   
and 
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and 
,),,,,(),,,,( 143213432133 dBxxxxtgdtxxxxtfdx   

.),,,,(),,,,( 243214432143 dBxxxxtgdtxxxxtfdx   
 

The resulting stochastic differential equation is a direct consequence of the Itô theory, i.e. 

.'' dtBdB tt
  More precisely,  

 
                tt dBxxxxtGdtxxxxtfdx ),,,,(),,,,( 43214321  ,                         (3) 

 
where                    

  ,,,, 4321
T

t xxxxx    ,,,,),,,,( 43434321
Tffxxxxxxtf   

 

,

0
0

00
00

),,,,(

4

3
4321























g
gxxxxtG .),( 21

T
t dBdBdB   

 
Equation (3) can be regarded as the stochastic differential equation in the Itô sense. 
Alternatively, the above stochastic differential equation can be expressed in the Stratonovich 
sense. The Stratonovich stochastic differential equation can be re-written as the Itô stochastic 
differential equation using mean square convergence. A greater detail can be found in 
Jazwinski (1970), Protter (2005) and Pugachev and Synstin (1977). Here, the Itô SDE w’d be 
the cornerstone formalism for the stochastic problem of concern here. It is interesting to note 
that the motion of an orbiting particle accounting for stochastic dust particles’ perturbations 
can be modeled in the form of stochastic differential equation, i.e. equation (3), where 
                                                                                          

  ,,,,),,,( 4321
T

r
T

t vrxxxxx   

,,(),,,(),( 4343 r
T

t vffxxtxf  )),('( 2 rVr  ,)2 Tr

r
v 

  

                        

























r

rtxG rt




0

0
00
00

),(
,                                                                 (4) 

and r ,   are the radial and angular co-ordinates respectively. The radial and angular 

components of the stochastic velocity are 
 dB
r

dBr rr  and  respectively. A  

procedure for deriving the equation of motion of the stochastic differential system of 
concern here involves the following: (i) write down the Lagrangian of the orbiting particle                              
 

).()(
2
1),,( 222 rmVrrmrrL     

 
This form of the Lagrangian is stated in Landau (1976), which results from the Lagrangian 

)())(sin(
2
1),,,,( 222222 rmVrrrmrrL    evaluated at .

2
   

(ii) Subsequently, the use of the Euler-Lagrange equation with additional random forces 
along ))(),(( ttr  results stochastic two-body dynamics, a system of two coupled second-
order fluctuation equations assuming the structure of equations (1)-(2) (iii) accomplish 
phase space formulation, which leads to the multi-dimentional stochastic differential 
equation. For a greater detail about the motion of the orbiting particle in a stochastic dust 
environment, the Royal Society paper (Sharma and Partasarathy 2007) can be consulted. A 
theoretical justification explaining ‘why the Brownian motion process is accurate to describe 
the dust perturbation’ hinges on the Central Limit Theorem of stochastic processes. 
 Equation (3) in conjunction with equation (4) can be re-stated in the standard format as                          
 

trttt dBtxGdttxfdx ),,,(),(  , 

 
where tx is the state vector, ),( txf t  is the system non-linearity, ),,,(  rt txG is the 

dispersion matrix,  r and   are diffusion  parameters. The on-line estimation of the 

diffusion parameters r and   can be accomplished from experiments by taking 

measurements on the particle trajectory at discrete-time instants using the Maximum 
Likelihood Estimate (MLE). The MLE involves the notion of the conditional probability 

density ),,,,,....,(
0121   rzzzzzp

nn 
where 

i
z denotes the observation vector  

at i th time instant, .0 ni   The estimated parameter 

vector


,
max),(
r

T
r  ).,,,,....,(

0121   rzzzzzp
nn 

 Moreover, the 

conditional probability density ),,,,....,(
0121   rzzzzzp

nn 
can be regarded as 

the conditional expectation of the conditional probability density 

),,,,....,,,,,....,(
012210121  xxxxxxzzzzzp

nnnnn 
i.e. 
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.'' dtBdB tt
  More precisely,  
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Equation (3) can be regarded as the stochastic differential equation in the Itô sense. 
Alternatively, the above stochastic differential equation can be expressed in the Stratonovich 
sense. The Stratonovich stochastic differential equation can be re-written as the Itô stochastic 
differential equation using mean square convergence. A greater detail can be found in 
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components of the stochastic velocity are 
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procedure for deriving the equation of motion of the stochastic differential system of 
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along ))(),(( ttr  results stochastic two-body dynamics, a system of two coupled second-
order fluctuation equations assuming the structure of equations (1)-(2) (iii) accomplish 
phase space formulation, which leads to the multi-dimentional stochastic differential 
equation. For a greater detail about the motion of the orbiting particle in a stochastic dust 
environment, the Royal Society paper (Sharma and Partasarathy 2007) can be consulted. A 
theoretical justification explaining ‘why the Brownian motion process is accurate to describe 
the dust perturbation’ hinges on the Central Limit Theorem of stochastic processes. 
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dispersion matrix,  r and   are diffusion  parameters. The on-line estimation of the 
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),,,,....,,(
0121   rzzzzzp

nn 
 

),,),,,....,,,,,....,,((
012210121   rxxxxxxzzzzzpE

nnnnn 
  

 
where 

11 11 ))(,(


  kkkk
wxfxx kkkkk  


, 

1k
w is ).1,0(N  

 
After determining the diffusion parameters on the basis of the MLE, the diffusion 
parameters are plugged into the above diffusion equation, i.e. stochastic differential 
equation. As a result of this, we have                             
 

                                                   ,),G( tttt dBtxdttxfdx  ),(                                          (5) 
 

where ).,0(~ IdtNdBt  A detailed discussion about the on-line estimation of unknown 
parameters of the stochastic differential system can be found in Dacunha-Castelle and 
Florens-Zmirou (1986). The above stochastic differential equation, equation (5), in 
conjunction with equation (4) can be analysed using the Fokker-Planck approach. Making 
the use of the FPE, we derive the evolution of the conditional moment, conditional 
expectation of the scalar function of an n -dimensional state vector. Note that the Fokker-
Planck operator is an adjoint operator.    
  This chapter is intended to analyse the stochastic problem of concern here using the multi-
dimensional Itô differential rule in contrast to the FPE approach. Here, we explain the Itô 
theory briefly and subsequently, its usefulness for analysing the noisy dynamical system. 

Consider the state vector   Uxxx T
t  21 ,  is a solution vector of the above SDE, 

RU : , i.e. ,)( Rxt  and the phase space .nRU   Suppose the 

function )( tx is twice differentiable.  The stochastic evolution )( txd of the scalar 
function of the n -dimensional state vector using the stochastic differential rule     can be 
stated as                                             
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After plugging the i th component of stochastic differential equation, i.e. equation (5), in the 
above evolution, we have         
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where the size of the vector Brownian motion process is .r   Note that the contribution to the 
term )( txd coming from the second and third terms of the right-hand side of equation (6) 

is attributed to the property .dtdBdB    The integral counterpart of equation (6) can 

be written as 
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The evolution )( txd
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of the conditional moment is the standard formalism to analyse 

stochastic differential systems. The contribution to the term )( txd
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comes from the system 

non-linearity and dispersion matrix, since the term )( tx is a scalar function of the 
n dimensional state vector. The state vector satisfies the Itô stochastic differential 

equation, see equation (5). As a result of this, the expectation and differential operators can 
be interchanged.  
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Note that the expected value of the last term of the right-hand side of equation (6) vanishes, 
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 The analytical and numerical solutions of the exact estimation procedure for the non-linear 
stochastic differential system are not possible, since its evolutions are infinite dimensional 
and require knowledge of higher-order moment evolutions. For these reasons, approximate 
evolutions, which preserve some of the qualitative characteristics of the exact evolutions, are 
analysed. Here, the bilinear and second-order approximations are the subject of 
investigation. The second-order approximate evolution equations can be derived by 
introducing second-order partials of the system non-linearity ),( txf t and the diffusion 

coefficient ),)(( txGG t
T  into the exact mean and variance evolutions, equations (7)-(8). 

Thus, the mean and variance evolutions for the non-linear stochastic differential system, 
using the second-order approximation, are 
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Making the use of the above conditional moment evolutions for the system non-linearity 
and process noise coefficient matrix stated in equation (4), leads to the following mean and 
variance evolutions for the stochastic differential system considered here: 
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 The analytical and numerical solutions of the exact estimation procedure for the non-linear 
stochastic differential system are not possible, since its evolutions are infinite dimensional 
and require knowledge of higher-order moment evolutions. For these reasons, approximate 
evolutions, which preserve some of the qualitative characteristics of the exact evolutions, are 
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The mean trajectory for the stochastically perturbed dynamical system using bilinear 
approximation does not include variance terms in the mean evolution. The term 

,)),(( ttxGGT the expected value of the diffusion coefficient, in the variance evolution 

accounts for the stochastic perturbation felt by the orbiting particle. For this reason, the 
bilinear approximation leads to the ‘unperturbed mean trajectory’, see figures (1)-(4) as well. 
On the other hand, the variance evolution using bilinear approximation for the dust-

perturbed model includes perturbation effects, i.e. ),( txGG t
T  . In order to account for the 

stochastic perturbation in the mean evolution, we utilize the second-order approximation in 
the mean evolution. The second-order approximation includes ‘the second-order partials’ of 
the system non-linearity ),( txf t and variance terms in the mean trajectory, which leads to 

better estimation of the trajectory. The variance evolution 
rv

dP of the radial velocity, using 

the second-order approximation, involves an additional term rrr P
2  in contrast to the 

bilinear approximation. The variance evolution dP of the angular velocity, using the 

second-order approximation, accounts for a correction term 4
23
r
Prr , in contrast to the 

bilinear approximation as well.  
 Note that the conditional moment evolutions derived in this chapter for the stochastic 
problem of concerns here agree with the evolutions stated in a Royal society paper (Sharma 
and Parthasarathy 2007). However, the approach of this chapter, multi-dimensional Itô rule, 
is different from the Fokker-Plank approach adopted in the Royal Society contribution. 

 
3. Numerical experiments 

The simulations of the mean and variance evolutions are accomplished using a simple, but 
effective finite difference method-based numerical scheme. The discrete version of the 
standard stochastic differential equation is  
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The mean trajectory for the stochastically perturbed dynamical system using bilinear 
approximation does not include variance terms in the mean evolution. The term 
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accounts for the stochastic perturbation felt by the orbiting particle. For this reason, the 
bilinear approximation leads to the ‘unperturbed mean trajectory’, see figures (1)-(4) as well. 
On the other hand, the variance evolution using bilinear approximation for the dust-
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stochastic perturbation in the mean evolution, we utilize the second-order approximation in 
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second-order approximation, accounts for a correction term 4
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bilinear approximation as well.  
 Note that the conditional moment evolutions derived in this chapter for the stochastic 
problem of concerns here agree with the evolutions stated in a Royal society paper (Sharma 
and Parthasarathy 2007). However, the approach of this chapter, multi-dimensional Itô rule, 
is different from the Fokker-Plank approach adopted in the Royal Society contribution. 

 
3. Numerical experiments 

The simulations of the mean and variance evolutions are accomplished using a simple, but 
effective finite difference method-based numerical scheme. The discrete version of the 
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where 

1kt
w is a standard normal variable. The dimension of the phase space of the 

stochastic problem of concern here is four, since the state vector 
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t    The size of the mean state vector is 
four  and the number of entries in the variance matrix of the state is sixteen. Since the state 
vector is a real-valued vector stochastic process, the condition jiij PP  holds. The total 

number of distinct entries in the variance matrix w’d be ten. The initial conditions are 
chosen as                    
 

.  and   variablestate for the
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The initial conditions considered here are in canonical system of units. Astronomers adopt a 
normalized system of units, i.e. ‘canonical units’, for the simplification purposes. In 
canonical units, the physical quantities are expressed in terms of Time Unit (TU) and 

Astronomical Unit (AU). The diffusion parameters 2
3

(TU)0121.0


r  and 

2
3

4

)(
102.2

TU

AU are chosen for numerical simulations. Here we consider   a set of 

deterministic initial conditions, which implies that the initial variance matrix w’d be zero. 
Note that  random initial conditions lead to the non-zero initial variance matrix. The system 
is deterministic at 0tt  and becomes stochastic at 0tt   because of the stochastic 
perturbation. This makes the contribution to the variance evolution coming from the ‘system 

non-linearity coupled with ‘initial variance terms’ will be zero at .1tt   The contribution 

to the variance evolution at 1tt   comes from the perturbation term ),)(( txGG t
T  only. 

For ,1tt  the contribution to the variance evolution comes from the system non-linearity 
as well as the perturbation term. This assumption allows to study the effect of random 
perturbations explicitly on the dynamical system. The values of diffusion parameters are 
selected so that the contribution to the force coming from the random part is smaller than 
the force coming from the deterministic part. It has been chosen for simulational 
convenience only.              

 
 
Fig. 1. 

 
 

Fig. 2. 
          

 
Fig. 3. 

                                           Time (TU)                      
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Fig. 4. 

 
Fig. 5. 

 
Fig. 6.                               

                              

                                  
 

Fig. 7. 

 
Fig. 8. 
 
Here, we analyse the stochastic problem involving the numerical simulation of approximate 
conditional moment evolutions. The approximate conditional moment evolutions, i.e. 
conditional mean and variance evolutions, were derived in the previous section using the 
second-order and bilinear approximations. The variance evolutions using the second-order 
approximation result reduced variances of the state variables rather than the bilinear, see 
figures (5), (6), (7), and (8). These illustrate that the second-order approximation of the mean 
evolution produces less random fluctuations in the mean trajectory, which are attributed to 
the second-order partials of the system non-linearity ),,( txf t i.e. 
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term .pqP  The evolution of the variance term ijP  encompasses the contributions from the 

preceding variances, partials of the system non-linearity, the diffusion coefficient 
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Significantly, the variance terms are also accounted for in the mean trajectory. This explains 
the second-order approximation leads to the perturbed mean trajectory. This section 
discusses very briefly about the numerical testing for the mean and variance evolutions 
derived in the previous section. A greater detail is given in the Author’s Royal Society 
contribution. This chapter is intended to demonstrate the usefulness of the Itô theory for 
stochastic problems in dynamical systems by taking up an appealing case in satellite 
mechanics.  

 
4. Conclusion 

In this chapter, the Author has derived the conditional moment evolutions for the motion of 
an orbiting satellite in dust environment, i.e. a noisy dynamical system. The noisy 
dynamical system was modeled in the form of multi-dimensional stochastic differential 
equation. Subsequently, the Itô calculus for ‘the Brownian motion process as well as the 
dynamical system driven by the Brownian motion’ was utilized to study the stochastic 
problem of concern here. Furthermore, the Itô theory was utilized to analyse the resulting 
stochastic differential equation qualitatively. The Markovian stochastic differential system 
can be analysed using the Kolmogorov-Fokker-Planck Equation (KFPE) as well. The KFPE-
based analysis involves the definition of conditional expectation, the adjoint property of the 
Fokker-Planck operator as well as integration by part formula. On the other hand, the Itô 
differential rule involves relatively fewer steps, i.e. Taylor series expansion, the Brownian 
motion differential rule. It is believed that the approach of this chapter will be useful for 
analysing stochastic problems arising from physics, mathematical finance, mathematical 
control theory, and technology.                

 
Appendix 1 

The qualitative analysis of the non-linear autonomous system can be accomplished by 
taking the Lie derivative of the scalar function , where ,: RU  U is the phase space 

of the non-linear autonomous system and .)( Rxt   The function   is said to be the first 

integral if the Lie derivative vL  vanishes (Arnold 1995). The problem of analysing the 
non-linear stochastic differential system qualitatively becomes quite difficult, since it 
involves multi-dimensional diffusion equation formalism. The Itô differential rule (Liptser 
and Shirayayev 1977, Sage and Melsa 1971) allows us to obtain the stochastic evolution of 
the function . Equation (6) of this chapter can be re-written as  
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Consider the function )()( tt xEx  , where E (.) is the energy function. Thus the 
stochastic evolution of the energy function (Sharma and Parthasarathy 2007) can be stated as            
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The above evolution   for the stochastic differential system of this chapter assumes the 
following structure: 
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Thus the derivative of the energy function for the stochastic system of concern here will not 
vanish leading to the non-conservative nature of the energy function.  

 
Appendix 2  

The Fokker-Planck equation has received attention in literature and found applications for 
developing the prediction algorithm for the Itô stochastic differential system. Detailed 
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the second-order approximation leads to the perturbed mean trajectory. This section 
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motion differential rule. It is believed that the approach of this chapter will be useful for 
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Consider the function )()( tt xEx  , where E (.) is the energy function. Thus the 
stochastic evolution of the energy function (Sharma and Parthasarathy 2007) can be stated as            
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The above evolution   for the stochastic differential system of this chapter assumes the 
following structure: 
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Thus the derivative of the energy function for the stochastic system of concern here will not 
vanish leading to the non-conservative nature of the energy function.  

 
Appendix 2  

The Fokker-Planck equation has received attention in literature and found applications for 
developing the prediction algorithm for the Itô stochastic differential system. Detailed 
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discussions on the Fokker-Planck equation, its approximate solutions and applications in 
sciences can be found in Risken (1984), Stratonovich (1963). The Fokker-Planck equation is 
also known as the Kolmogorov forward equation. The Fokker-Planck equation is a special 
case of the stochastic equation (kinetic equation) as well. The stochastic equation is about the 
evolution of the conditional probability for given initial states for non-Markov processes. 
The stochastic equation is an infinite series. Here, we explain how the Fokker-Planck 
equation becomes a special case of the stochastic equation. The conditional probability 
density 
 

).()()....,...,,(),...,,(),.....,,( 143232121 nnnnnn xpxxpxxxxpxxxxpxxxp   

 
In the theory of the Markov process, the above can be re-stated as 
 

).()()....()(),.....,,( 1322121 nnnn xpxxpxxpxxpxxxp   

 
Thus, 

),(),()....,(),(),.....,,( 1,32,21,21 13221 nnnttttttn xqxxqxxqxxqxxxp
nn 

  

 
where ),( 1,1 iitt xxq

ii 
is the transition probability density, ni 1  and .1 ii tt  The 

transition probability density is the inverse Fourier transform of the conditional 
characteristic function, i.e. 
 

      .
2
1),( )(),(

1,
11

1
duEeexxq iiii

ii

xxiuxxiu
iitt






 


                           (11) 

 
For deriving the stochastic equation, we consider the conditional probability 

density ),( 21 xxp where  

 

).()(),( 22121 xpxxpxxp   

 
After integrating over the variable 2x , the above equation leads to  
 

                                              .)(),()( 2221,1 21
dxxpxxqxp tt                                        (12) 

 
Equation (12) in combination with equation (11) leads to  
 

           .)()(
2
1)( 22

)()(
1

2121 dudxxpEeexp xxiuxxiu 


                       (13) 

 

The conditional characteristic function is the conditional moment generating function and 
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the 0u gives the n th order conditional moment. This can be demonstrated by using the 
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discussions on the Fokker-Planck equation, its approximate solutions and applications in 
sciences can be found in Risken (1984), Stratonovich (1963). The Fokker-Planck equation is 
also known as the Kolmogorov forward equation. The Fokker-Planck equation is a special 
case of the stochastic equation (kinetic equation) as well. The stochastic equation is about the 
evolution of the conditional probability for given initial states for non-Markov processes. 
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The above equation describes the evolution of conditional probability density for given 
initial states for the non-Markovian process. The Fokker-Plank equation is a stochastic 
equation with ixk i  2,0)( . Suppose the scalar stochastic differential equation of the 
form 

,),(),( tttt dBtxgdttxfdx   
 

using the definition of the coefficient )(xkn of the stochastic equation (16), i.e. 

),(
)(

xk
xx

n

n





 0 , we have 

),,()(1 txfxk   

),,()( 2
2 txgxk   

 

and the higher-order coefficients of the stochastic equation will vanish as a consequence of 
the Itô differential rule. Thus, the Fokker-Planck equation  
 

).(),(
2
1)(),()( 2

22

xp
x
txgxptxf

x
xp








  

 
Acknowledgement 

I express my gratefulness to Professor Harish Parthasarathy, a Scholar and Author, for 
introducing me to the subject and explaining cryptic mathematics of stochastic calculus. 

 
5. References 

Arnold, V. I. (1995). Ordinary Differential Equations, The MIT Press, Cambridge and 
Massachusetts. 

Dacunha-Castelle, D. & Florens-Zmirou, D. (1986). Estimations of the coefficients of a 
diffusion from discrete observations, Stochastics, 19, 263-284. 

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, Academic Press, New York 
and London. 

Karatzas, I. & Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus (graduate text in 
mathematics), Springer, New York. 

Kloeden, P. E. & Platen, E. (1991). The Numerical Solutions of Stochastic Differential Equations 
(applications of mathematics), Springer, New York, 23. 

Landau, I. D. & Lifshitz, E. M. (1976). Mechanics (Course of Theoretical Physics, Vol 1), 
Butterworth-Heinemann, Oxford, UK. 

Liptser, R. S. & Shiryayev, A. N. (1977). Statistics of Random Processes 1, Springer, Berlin. 
Protter, Philip E. (2005). Stochastic Integration and Differential Equations, Springer, Berlin, 

Heidelberg, New York.  
Pugachev, V. S. & Sinitsyn, I. N. ( 1977). Stochastic Differential Systems (analysis and filtering), 

John-Wiley and Sons, Chichester and New York.  
Revuz, D. & Yor, M. (1991). Continuous Martingales and Brownian Motion, Springer-Verlag, 

Berlin,   Heidelberg. 
Risken, H. (1984). The Fokker-Planck Equation: Methods of Solution and Applications, Springer-

Verlag, Berlin. 
Sage, A. P. & Melsa, M. L. (1971). Estimation Theory with Applications to Communications and 

Control, Mc-Graw Hill, New York. 
Stratonovich, R. L. (1963). Topics in the Theory of Random Noise (Vol 1and 2), Gordan and 

Breach, New York. 
Shambhu N. Sharma & Parthasarathy, H. (2007). Dynamics of a stochastically perturbed 

two-body problem. Pro. R. Soc. A, The Royal Society: London, 463, pp.979-1003, 
(doi: 10.1080/rspa.2006.1801). 

Shambhu N. Sharma (2009). A Kushner approach for small random perturbations of a 
stochastic Duffing-van der Pol system, Automatica (a Journal of IFAC, International 
Federation of Automatic Control), 45, pp. 1097-1099.  

Strook, D. W. & Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes (classics in 
mathematics), Springer, Berlin, Heidelberg, New York.  

Campen, N. G. van (2007). Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam, 
Boston, London.  

Wax, N. (ed.) (1954). Selected Papers on Noise and Stochastic Processes, Dover Publications, Inc, 
New York. 

 

www.intechopen.com



The Itô calculus for a noisy dynamical system 41

 

where  )(
)(

xk
xx

n

n





 and the time interval condition  0  leads to   

)()()(
!

1)()(
10

xpxk
xn

xpxp
Lt n

n

n 



  



 


 

 

or 

                                      ).()()(
!

1)(
1

xpxk
xn

xp n
n

n 





                                      (16) 

 

The above equation describes the evolution of conditional probability density for given 
initial states for the non-Markovian process. The Fokker-Plank equation is a stochastic 
equation with ixk i  2,0)( . Suppose the scalar stochastic differential equation of the 
form 

,),(),( tttt dBtxgdttxfdx   
 

using the definition of the coefficient )(xkn of the stochastic equation (16), i.e. 

),(
)(

xk
xx

n

n





 0 , we have 

),,()(1 txfxk   

),,()( 2
2 txgxk   

 

and the higher-order coefficients of the stochastic equation will vanish as a consequence of 
the Itô differential rule. Thus, the Fokker-Planck equation  
 

).(),(
2
1)(),()( 2

22

xp
x
txgxptxf

x
xp








  

 
Acknowledgement 

I express my gratefulness to Professor Harish Parthasarathy, a Scholar and Author, for 
introducing me to the subject and explaining cryptic mathematics of stochastic calculus. 

 
5. References 

Arnold, V. I. (1995). Ordinary Differential Equations, The MIT Press, Cambridge and 
Massachusetts. 

Dacunha-Castelle, D. & Florens-Zmirou, D. (1986). Estimations of the coefficients of a 
diffusion from discrete observations, Stochastics, 19, 263-284. 

Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory, Academic Press, New York 
and London. 

Karatzas, I. & Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus (graduate text in 
mathematics), Springer, New York. 

Kloeden, P. E. & Platen, E. (1991). The Numerical Solutions of Stochastic Differential Equations 
(applications of mathematics), Springer, New York, 23. 

Landau, I. D. & Lifshitz, E. M. (1976). Mechanics (Course of Theoretical Physics, Vol 1), 
Butterworth-Heinemann, Oxford, UK. 

Liptser, R. S. & Shiryayev, A. N. (1977). Statistics of Random Processes 1, Springer, Berlin. 
Protter, Philip E. (2005). Stochastic Integration and Differential Equations, Springer, Berlin, 

Heidelberg, New York.  
Pugachev, V. S. & Sinitsyn, I. N. ( 1977). Stochastic Differential Systems (analysis and filtering), 

John-Wiley and Sons, Chichester and New York.  
Revuz, D. & Yor, M. (1991). Continuous Martingales and Brownian Motion, Springer-Verlag, 

Berlin,   Heidelberg. 
Risken, H. (1984). The Fokker-Planck Equation: Methods of Solution and Applications, Springer-

Verlag, Berlin. 
Sage, A. P. & Melsa, M. L. (1971). Estimation Theory with Applications to Communications and 

Control, Mc-Graw Hill, New York. 
Stratonovich, R. L. (1963). Topics in the Theory of Random Noise (Vol 1and 2), Gordan and 

Breach, New York. 
Shambhu N. Sharma & Parthasarathy, H. (2007). Dynamics of a stochastically perturbed 

two-body problem. Pro. R. Soc. A, The Royal Society: London, 463, pp.979-1003, 
(doi: 10.1080/rspa.2006.1801). 

Shambhu N. Sharma (2009). A Kushner approach for small random perturbations of a 
stochastic Duffing-van der Pol system, Automatica (a Journal of IFAC, International 
Federation of Automatic Control), 45, pp. 1097-1099.  

Strook, D. W. & Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes (classics in 
mathematics), Springer, Berlin, Heidelberg, New York.  

Campen, N. G. van (2007). Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam, 
Boston, London.  

Wax, N. (ed.) (1954). Selected Papers on Noise and Stochastic Processes, Dover Publications, Inc, 
New York. 

 

www.intechopen.com



Stochastic Control42

www.intechopen.com



Stochastic Control

Edited by Chris Myers

ISBN 978-953-307-121-3

Hard cover, 650 pages

Publisher Sciyo

Published online 17, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Uncertainty presents significant challenges in the reasoning about and controlling of complex dynamical

systems. To address this challenge, numerous researchers are developing improved methods for stochastic

analysis. This book presents a diverse collection of some of the latest research in this important area. In

particular, this book gives an overview of some of the theoretical methods and tools for stochastic analysis,

and it presents the applications of these methods to problems in systems theory, science, and economics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Shambhu N. Sharma (2010). The Itô Calculus for a Noisy Dynamical System, Stochastic Control, Chris Myers

(Ed.), ISBN: 978-953-307-121-3, InTech, Available from: http://www.intechopen.com/books/stochastic-

control/the-it-calculus-for-a-noisy-dynamical-system



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


