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Discrete-Mixture HMMs-based Approach for 
Noisy Speech Recognition
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Yamagata University 

 Japan 

1. Introduction  

It is well known that the application of hidden Markov models (HMMs) has led to a 
dramatic increase of the performance of automatic speech recognition in the 1980s and from 
that time onwards. In particular, large vocabulary continuous speech recognition (LVCSR) 
could be realized by using a recognition unit such as phones. A variety of speech 
characteristics can be modelled by using HMMs effectively. The HMM represents the 
transition of statistical characteristics by using the state sequence of a Markov chain. Each 
state of the chain is composed by either a discrete output probability or a continuous output 
probability distribution. In 1980s, discrete HMM was mainly used as an acoustic model of 
speech recognition. The SPHINX speech recognition system was developed by K.-F. Lee in 
the late 1980s (Lee & Hon, 1988). The system was a speaker-independent, continuous speech 
recognition system based on discrete HMMs.  It was evaluated on the 997-word resource 
management task and obtained a word accuracy of 93% with a bigram language model. 
After that, comparative investigation between discrete HMM and continuous HMM had 
been made and then it was concluded that the performance of continuous-mixture HMM 
overcame that of discrete HMM. Then almost all of recent speech recognition systems use 
continuous-mixture HMMs (CHMMs) as acoustic models.  
The parameters of CHMMs can be estimated efficiently under assumption of normal 
distribution. Meanwhile, the discrete Hidden Markov Models (DHMMs) based on vector 
quantization (VQ) have a problem that they are effected by quantization distortion. 
However, CHMMs may unfit to recognize noisy speech because of false assumption of 
normal distribution. The DHMMs can represent more complicated shapes and they are 
expected to be useful for noisy speech. 
This chapter introduces new methods of noise robust speech recognition using discrete-
mixture HMMs (DMHMMs) based on maximum a posteriori (MAP) estimation. The aim of 
this work is to develop robust speech recognition for adverse conditions which contain both 
stationary and non-stationary noise. Especially, we focus on the issue of impulsive noise 
which is a major problem in practical speech recognition system. 
DMHMM is one type of DHMM frameworks. The method of DMHMM was originally 
proposed to reduce computation costs in decoding process (Takahashi et al., 1997).

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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Figure 1. Block diagram of speech recognition system 

DMHMM has more advantages of recognition performance than original DHMM. 
Nevertheless, the performance of DMHMM was lower than that of CHMM. In our work, we 
propose some new methods to improve the performance of DMHMM and demonstrate that 
the performance of DMHMM overcome that of CHMM in noisy conditions. We describe the 
characteristics of DMHMM and indicate the effectiveness and impact of the DMHMM for 
noisy speech recognition. 

2. Noise Robust Speech Recognition 

2.1 Basic approach of speech recognition under noisy conditions 

Many efforts have been made for the issue of noise robust speech recognition over the years. 
For example, Parallel Model Combination (PMC) (Gales & Young, 1993), and Spectral 
Subtraction (SS) (Boll, 1979) are well known as effective methods of noisy speech 
recognition. And many other methods of noise robust speech recognition have been 
proposed. They are organized by some category. Fig. 1 is the block diagram of speech 
recognition system. Here, categorized methods of noise robust recognition are explained by 
using this figure. The noise robust methods can be roughly categorized into three groups: 
voice activity detection (VAD), speech analysis and acoustic modeling.  
First, input speech is processed in voice activity detector. In this module, the presence or 
absence of speech is determined in noisy environment. If the speech detection fails, it is 
difficult to recognize input speech accurately. In recent years, the investigation on noise 
robust VAD has become active.   
After a speech segment is detected, the speech signal is analyzed to extract the useful 
information for speech recognition.  A cepstral analysis is a popular method for feature 
extraction in speech recognition. In particular, mel-scale frequency cepstrum coefficients 
(MFCC) are widely used as speech parameter in recent speech recognition system. Some 
noise reduction algorithms have been proposed to remove noise in speech waveform.  The 
spectral subtraction method we mentioned above is one of those algorithms. One of the 
working groups in the European Telecommunication Standards Institute has approved the 
front-end (feature extraction module) for distributed speech recognition (ETSI, 2002). In this 
front-end, a noise reduction algorithm based on Wiener filter theory is employed. It is well 
known that this front-end is effective for various kinds of noise conditions and it is used as 
the baseline of the evaluation of proposed noise robust technique. Some new feature 
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extraction methods have been also proposed. Relative-Spectral Perceptual linear prediction 
(RASTA-PLP) method is one of the extraction methods and was reported that it was 
effective for noisy speech recognition (Hermansky et al., 1992).  
Analysed speech is recognized in decoding process. In the decoder, a search algorithm is 
carried out with acoustic and language models. Those acoustic models are basically trained 
by clean data in which training utterances are recorded in quiet condition. However, models 
trained in clean condition cause a mismatch between models and input features in noisy 
condition. In order to eliminate it, many methods have been proposed. Multi-condition 
training is direct way to eliminate the mismatch condition (Pearce & Hirsch, 2000). In this 
training method, several types of noises are artificially added to the 'clean speech’ data at 
several SNRs. The obtained noisy data were used for creating acoustic models. It was 
reported that this training method was effective, even if the noise conditions between 
training data and test data were different. Parallel Model Combination we mentioned above 
is also the one of the effective methods in this category. In this method, noisy speech model 
can be derived by combining the noise model and the clean speech model. Due to the 
assumption that the speech signal is affected by the additive noise in the linear spectral 
domain, cepstral parameters of the models are transformed to liner spectral domain for the 
combination. After the model combination, combined parameters are re-transformed to 
cepstral domain again. 

2.2 Problem to be solved in this work 

We categorized the previous works in the field of noise robust speech recognition and 
introduced some proposed methods in section 2.1. All the three approaches are important 
and many methods have been proposed. Most of these researches are, however, focused on 
stationary noise in which spectrum of noise signal is stationary in time domain. In contrast, 
speech recognition in non-stationary noise environments remains as a major problem. In 
practical speech recognition systems, the speech signals can be corrupted by transient noises 
created by tongue clicking, phone rings, door slams, or other environmental sources. These 
noises have a large variety of spectral features, onset time and amplitude, and a modeling of 
those features is difficult. Here, we call them 'impulsive noise’. The aim of this work is to 
develop robust speech recognition technology for adverse conditions which contain both 
stationary and non-stationary noise. In particular, we focus on the issue of impulsive noise. 

2.3 Two types of approaches for noisy speech recognition 

In order to solve the problem as shown in Section 2.2, we employ DMHMM as acoustic 
model. While three approaches are introduced in Fig. 1, the proposed method is categorized 
into the model-based approach. For model-based approach of robust speech recognition, we 
propose two different strategies.  
In the first strategy, adverse conditions are represented by acoustic model. In this case, a 
large amount of training data and accurate acoustic models are required to present a variety 
of acoustic environments. This strategy is suitable for recognition in stationary or slow-
varying noise conditions, because modeling of stationary noise is easier than that of non-
stationary noise. In recent years, large speech corpora which contain much amount of 
training data are available. For ASR in stationary or slow-varying noise conditions, the 
effectiveness of multi-condition training has been reported (Pearce & Hirsch, 2000). For the 
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multi-condition training, a scheme of accurate modeling is needed because a large amount 
of noisy data created artificially is available. 
In contrast, such training method is inadequate to recognize speech under impulsive noise. 
As mentioned above, impulsive noise has a large variety of features. However hard you 
may try to collect speech data in impulsive noise conditions, accurate modeling is very 
difficult. Then the second strategy is based on the idea that the corrupted frames are either 
neglected or treated carefully to reduce the adverse effect. 
In order to achieve robust speech recognition in both stationary and impulsive noise 
conditions, we employ both strategies in this work. The concrete methods to realize both 
strategies are described in the next section. They are based on DMHMM framework which 
is one type of discrete HMM (DHMM). The method of DMHMM was originally proposed to 
reduce computation costs in decoding process. Two types of DMHMM systems have been 
proposed in recent years. One is subvector based quantization (Tsakalidis et al., 1999) and 
the other is scalar based quantization (Takahashi et al., 1997). In the former method, feature 
vectors are partitioned into subvectors, and then the subvectors are quantized by using 
separate codebooks. In the latter, each dimension of feature vectors is scalar-quantized. The 
quantization size can be reduced largely by partitioning feature vectors. For example, 
quantization size was reported as 2 to 5 bits in the former, and in the latter method, it was 4 
to 6 bits. Because the quantization size is small, the DMHMM system has superior 
trainability in acoustic modeling. 

2.4 MAP estimation and model compensation in DMHMM approach 

As we mentioned in the previous sub-section, two kinds of strategies are employed to 
achieve robust speech recognition in both stationary and non-stationary noise conditions. In 
order to realize the first strategy, we propose a new modeling scheme of DMHMMs based 
on maximum a posteriori (MAP) estimate. For the second strategy, a method of 
compensating the observation probabilities of DMHMMs is proposed. 
First, a new method of the MAP estimated DMHMMs for the first strategy is described 
below. In recent speech recognition systems, continuous-mixture HMMs (CHMMs) are 
generally used as acoustic models. It is well known that the CHMM system has an 
advantage in recognition performance over discrete HMM system. The parameters of 
CHMMs can be estimated efficiently under assumption of Gaussian distribution. However, 
CHMMs may unfit to recognize noisy speech because of false assumption of Gaussian 
distribution.  
Fig. 2 shows an example of the discrete probability in DMHMM estimated by the method 
which is described below. The xy-plane represents the cepstrum (c1- c2) space and the z-axis 
represents the probability. The estimation was performed on noisy speech. It is obviously 
found that the shape of the distribution is not similar to that of the Gaussian distribution. As 
just described, discrete HMM can represent more complicated shapes and they are expected 
to be useful for noisy speech.  
Considering the use of DHMMs, the insufficient performance is the major problem. The 
main reason why DHMMs show worse performance than CHMMs is because the accuracy 
of quantization in DHMM is insufficient. There is a trade off between quantization size and 
trainability. It is well known that reduction of quantization size of DHMMs leads to increase 
of quantization distortions, conversely, increase of quantization size leads to a lack of 
training data and poor estimation of parameters. As described above, the DMHMMs require  
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Figure 2. An example of discrete-mixture output distribution taken from the triphone 'a-
a+a'.

a smaller amount of training data than ordinary discrete HMMs. Nevertheless, they still 
require larger amount of training data than CHMMs. In order to reduce the amount of 
training data and improve trainability further, we propose a new method for MAP 
estimation of DMHMM parameters. The MAP estimation is successfully used for adaptation 
of CHMM parameters (Lee & Gauvain, 1993). It uses information of an initial model as a
priori knowledge to complement the training data. 
In order to achieve the second strategy, we propose a method of compensating the 
observation probabilities of DMHMMs. Observation probabilities of impulsive noise tend to 
be much smaller than those of normal speech. The motivation in this approach is that 
flooring the observation probability reduces the adverse effect caused by impulsive noise. 
The method is based on missing feature theory (MFT) (Cooke et al., 1997) to reduce the 
effect of impulsive noise, so that the decoding process may become insensitive to 
distortions. In the MFT framework, input frames are partitioned into two disjoint parts, one 
having reliable frames and the other having unreliable frames which are corrupted by noise. 
Two different approaches are explored in the MFT framework: marginalization and 
imputation. In the marginalization approach, unreliable data are either ignored or treated 
carefully. The motivation of this approach is that unreliable components carry no 
information or even wrong information. In the imputation approach, values for the 
unreliable regions are estimated by knowledge of the reliable regions. The proposed 
compensation method is based on the first approach. Applying the MFT framework to 
speech recognition, it is difficult to determine reliable and unreliable regions. The proposed 
method does not require any determination of two regions in advance. 
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3. MAP Estimation of DMHMM Parameters   

3.1 Discrete-Mixture HMMs 

Before explaining MAP estimation of DMHMM parameters, the DMHMM proposed by 
Tskalidis (Tsakalidis et al., 1999) is briefly introduced here. As mentioned in Section 2, there 
are two types of DMHMM systems. In this paper, subvector based DMHMMs are 

employed. The feature vector is partitioned into S subvectors, ],,,,[ 1 Ststtt oooo = . VQ

codebooks are provided for each subvector, and then the feature vector ot is quantized as 
follows: 

   )].(,),(,),([)( 11 StSststt qqqq oooo =   (1) 

 where qs(ost) is the discrete symbol for the s-th subvector. The output distribution of 
DMHMM bi(ot) is given by: 

∏=
m s

stssimimti qpwb ))((ˆ)( oo   (2) 
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 where imw  is the mixture coefficient for the m-th mixture in state i, and simp̂  is the 

probability of the discrete symbol for the s-th subvector. In this equation, it is assumed that 
the different subvectors are conditionally independent in the given state and mixture index. 

3.2 MAP Estimation 

For creating HMMs from training data, maximum likelihood (ML) estimation is generally 
used as a parameter estimation method. MAP estimation is successfully used for adaptation 
of CHMM parameters (Lee & Gauvain, 1993). MAP estimation uses information from an 
initial model as a priori knowledge to complement the training data. This a priori knowledge 
is statistically combined with a posteriori knowledge derived from the training data. When 
the amount of training data is small, the estimates are tightly constrained by the a priori
knowledge, and the estimation error is reduced. On the other hand, the availability of a 
large amount of training data decreases the constraints of the a priori knowledge, thus 
preventing loss of the a posteriori knowledge. Accordingly, MAP estimation tends to achieve 
better performance than ML estimation, if the amount of training data is small. The amount 
of training data tends to lack of the parameter estimation of DMHMMs, because the number 
of parameters in DMHMMs is larger than that in CHMMs. 
In order to improve trainability further, we propose an estimation method of DMHMM 

parameters based on MAP. The ML estimate of discrete probability )(kpsim  is calculated in 

the following form: 
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where k is the index of subvector codebook and imtγ  is the probability of being in state i at 

time t with the m-th mixture component. Assume that the prior distribution is represented 

by Dirichlet distribution. The MAP estimate of DMHMM )(ˆ kpsim  is given by: 

( )
( )

=
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⋅+−
=

K
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 where simkv  is the parameter of the prior distribution. And imn  is given as follows: 
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 In order to simplify the calculation, some constraints were added on the prior parameters. 

Assume that simkv  is given by: 
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 where )(0 kpsim  is the constrained prior parameter. Applying Eq. (8) to Eq. (6), the MAP 

estimate )(ˆ kpsim  can be calculated by: 
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 where τ  indicates the relative balance between the corresponding prior parameter and the 

observed data. In our experiments, τ  was set to 10.0. Although both mixture coefficient and 

transition probability can be estimated by MAP, only output probability is estimated by 
MAP in this work. 

3.3 Prior Distribution 

The specification of the parameters of prior distributions is one of the key issues of MAP 
estimation. In this work, it is assumed that the prior distributions can be represented by 
models which are converted from CHMMs to DMHMMs. The conversion method is 
described below. 

First, input vector to  is divided into S subvectors, ],,,,[ 1 Ststtt oooo = . The probability 

density of CHMMs in subvector s, state i and the m-th mixture component is given by: 
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where simµ  is mean vector, sim  is covariance matrix and d is the number of dimension for 

subvector s. In the case of 2=d , sto , simµ  and sim  are given by: 
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 where 1s  and 2s  represent 1st and 2nd dimensions respectively. An output probability 

)(' tib o  is calculated by: 
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 where '
imw  is the weighting coefficient of mixture component m. In order to obtain discrete 

parameters, the probability density for each centroid is calculated and normalized. As a 

result, parameters of the prior distribution )(0 kpsim  are solved by: 

=

k
ssim

ssim
sim

kb

kb
kp

))((

))((
)(

'

'
0   (16) 

 where )(ks  is the centroid for each subvector s. While )(0 kpsim  has a constraint of a normal 

distribution, )(ˆ kpsim  in Eq. (10) does not have such constraint. Thus it is expected that 

)(ˆ kpsim  will be updated to represent more complicated shapes in training session. 

Some experimental results on MAP estimation are shown in Table 1 where word error rates 
(WERs) are indicated. ‘DMHMM-ML’ means ML estimated DMHMM and ‘DMHMM-MAP’ 
means MAP estimated DMHMM. MAP and ML estimation methods were compared at 

∞=SNR dB and 5=SNR dB. The maximum number of training samples is 15,732. It is 

apparent that the performance of MAP is superior to that of ML. Then it can be concluded 
that the trainability of DMHMMs is improved by using MAP estimation.  

SNR model\number of samples 1000 5000 10000 15732 

DMHMM-ML 100.0 54.66 27.54 18.63 
∞ dB

DMHMM-MAP 22.26 13.56 11.18 9.42 

DMHMM-ML 99.0 45.01 31.99 29.45 
5dB

DMHMM-MAP 58.26 36.31 30.82 27.92 

Table 1. Word error rate (%) results of the comparison between ML and MAP 
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4. Compensation of Discrete Distributions 

In this section, a method of compensating the observation probabilities of DMHMMs is 
described to achieve robust speech recognition in noisy conditions. In particular, this 
method is effective for impulsive noise. The proposed method is based on the idea that the 
corrupted frames are either neglected or treated carefully to reduce the adverse effect. In 
other words, the decoding process becomes insensitive to distortions in the method. It is 
more likely that significant degradation of output probability appears in the case of 
mismatch conditions caused by unknown noise. Since the effect of impulsive noise is not 
considered in model training process, it is treated as unknown noise. If one of the subvector 

probabilities, ))((ˆ
stssim qp o , is close to 0 in Eq. (2), the value of output probability, )( tib o , is 

also close to 0. It causes adverse effects in decoding process, even if the length of noise 
segment is short. Since an acoustic outlier such as impulsive noise is just unknown signal for 
acoustic model, difference in log likelihoods between outliers doesn't make sense for speech 
recognition. However, small difference between features of outliers causes large difference 
between log likelihoods, and it leads to changing the order of hypothesis in some situations. 
In the proposed method, flooring the observation probability by threshold is employed. 
Since no difference in log likelihoods between outliers is shown in this method, it can reduce 
a negative effect in decoding process. Suppose that unreliable part can be found by using 
the value of discrete probability. In the proposed method, threshold for discrete probability 
is set, and negative effect is reduced in decoding process. Especially the method is effective 
for short duration noise. It is expected that pruning the correct candidate caused by 
impulsive noise is avoided. 
For CHMM system, some compensation methods have been proposed with the same 
motivation. For example, Veth et al. proposed acoustic backing-off (Veth et al., 2001) where 
unreliable information is either neglected or treated carefully. Also the similar method was 
proposed in (Yamamoto et al., 2002). In those methods, the Gaussian distribution was 
compensated by threshold value. In our method, threshold can be set directly by value of 
probability. In other words, each threshold is given in the same way based on a probabilistic 
criterion. In contrast, it requires a kind of complicated way in CHMM system, because 
observation probabilities are given by probability density functions. 
In the method proposed by Yamamoto (Yamamoto et al., 2002), single threshold was given 
for all Gussian distributions. In this case, since each shape of distribution is different, 
magnitude of the effect of threshold is also different. In the acoustic backing-off method, 
compensation values are different in each distribution. However, the compensation values 
depend on training data in the method. Comparison experiments with the acoustic backing-
off are shown in Section 5.8.  
Three types of compensation processing are proposed as follows: 

Compensation at subvector level 

A compensation is done at subvector level. In Eq. (2), ))((ˆ
stssim qp o  is compensated by the 

threshold for subvector, dth.

≥
=

otherwisedth

dthqpifqp
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where ))(('ˆ
stssim qp o  is the compensated discrete probability of sto . This threshold is 

especially effective in the case that specific subvector is corrupted. 

Compensation at mixture level 

A compensation is done at mixture level. In Eq. (2), ))((ˆ
stss sim qp o∏  is compensated by the 

threshold for mixture component, mth.
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s
stssim
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 where ∏s stssim qp ))(('ˆ o  is the compensated discrete probability of sto  at mixture level. This 

threshold is useful in the case that corruption affects a wide range of subvectors. 

Compensation at both levels 

Effectiveness of the above compensation methods depends on noise types. Thus, a 
combination of both compensation methods is expected to be effective for various types of 
noises. 
Three types of compensation methods were compared in noisy speech recognition. The 
result of comparison in average error rate reduction among three was mixture level < 
subvector level < combination at both levels, and the reduction rate was 30.1%, 48.2% and 
48.5%, respectively. The combination method obtained the best performance. From the 
viewpoint of the calculation cost, however, the compensation at subvector is not bad 
because the performance is similar. In the subvector method, the best performance can be 

obtained by the threshold from 3100.2 −×  to 3100.5 −× . In the case that threshold is set to 
3100.5 −× , 68.6% of probability values in discrete distributions are floored. It turns out that a 

large proportion of probability values are useless for speech recognition. 

5. Overview of Speech Recognition System Using DMHMMs 

5.1 System Configuration 

An experimental system of speech recognition for the study of DMHMMs has been 
developed. In this section, we describe the overview of the system. The recognition system 
makes use of a statistical speech recognition approach that uses DMHMM as the acoustic 
model and statistical language models such as word bigrams. This type of recognition 
system is called a large vocabulary continuous speech recognition (LVCSR) system. It can 
recognize more than several thousands of different words. Fig. 3 shows a block diagram of 
the system. It employs a time-synchronous beam search. The recognition results indicated in 
the previous sessions were obtained by this system. 
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Figure 3. Speech recognition system 

5.2 Speech Analysis 

In the speech analysis module, a speech signal is digitized at a sampling frequency of 16kHz 
and at a quantization size of 16bits with the Hamming window. The length of the analysis 
frame is 32ms and the frame period is set to 8ms. The 13-dimensional feature (12-
dimensional MFCC and log power) is derived from the digitized samples for each frame. 
Additionally, the delta and delta-delta features are calculated from MFCC feature and log 
power. Then the total number of dimensions is 39. The 39-dimentional parameters are 
normalized by the cepstral mean normalization (CMN) method (Furui, 1974) which can 
reduce the adverse effect of channel distortion.

5.3 Decoder 

For a large vocabulary continuous speech recognition (LVCSR), search space is very large 
and an expensive computation cost is required. A language model, which represents 
linguistic knowledge, is used to reduce search space. The detail of the language model is 
described in the next sub-section. In our system, one-pass frame-synchronous search 
algorithm with beam searching has been adopted. The searching algorithm calculates 
acoustic and language likelihood to obtain word sequence candidates. These word sequence 
candidates are pruned according to their likelihood values to reduce the calculation cost. 
Triphone models and word bigrams are used as acoustic and language models, respectively. 

5.4 Language Model 

A bigram is an occurrence probability of a pair of words that directly follow each other in 
text and is used as a linguistic constraint to reduce a calculation cost and improve 
recognition performance. The set of the probabilities are calculated with a large amount of 
text data. In this system, the bigrams have a 5000-vocabulary and are trained from 45 
months’ worth of issues of the Mainichi newspaper. Those data are in the database of ‘JNAS: 
Japanese Newspaper Article Sentences’. It contains speech recordings and their 
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orthographic transcriptions. Text sets for reading were extracted from the articles of 
newspaper.  The Mainichi Newspaper is one of the major nation-wide newspapers in Japan.  

5.5 Acoustic Model 

In recent years, context dependent models are widely used as acoustic models for speech 
recognition, since allophones or co-articulations can be modeled more accurately than 
context independent ones. Triphone model is one of the context dependent models and both 
the left and the right context are taken into consideration. It is well known that triphone is 
the effective model for continuous speech recognition. However, there is a problem when 
model parameters of triphone are estimated. The number of models exponentially increases 
depending on the number of contextual factors ant it causes the decrease of estimation 
accuracy. Then state sharing technique is widely used for context dependent models. In our 
system, shard-state triphone DMHMMs are uses as acoustic models. The topology of shard-
state DMHMMs is represented by a hidden Markov network (HM-Net) which has been 
proposed by Takami (Takami & Sagayama, 1992). The HM-Net is a network efficiently 
representing context dependent left-to-right HMMs which have various state lengths and 
share their states each other. Each node of the network is corresponding to an HMM state 
and has following information: 

• state number, 

• acceptable context class, 

• lists of preceding states and succeeding states, 

• parameters of the output probability density distribution, 

• state transition probabilities. 
When the HM-Net is given, a model corresponding to a context can be derived by 
concatenating states which can accept the context from the starting node to the ending node.  

1 2 3 4

5 6 7
start end

g/u/r,w d,g/u/r b,d,g/u/r b,d,g/u/r

b,d/u/* d,g/u/w */u/w,y

1 2 3 4

5 6 7
start end

g/u/r,w d,g/u/r b,d,g/u/r b,d,g/u/r

b,d/u/* d,g/u/w */u/w,y

 Figure 4. Example of the HM-Net 
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Fig. 4 shows an example of the HM-Net. In this figure, A/B/C stands for the acceptable 
context class, where A, B and C are the acceptable preceding, base and succeeding phone 
classes respectively. And the asterisk represents a class consisted of all phones. For 
example, the model for a context g/u/w is derived from a string of the states 1, 6 and 7. The 
extracted model is equivalent to general left-to-right HMMs. The structure of HM-Net we 
used in this work is determined by the state clustering-based method proposed by Hori 
(Hori et al., 1998).  Although the output probability distribution of a HMM state is 
represented by Gaussian mixture density in original HM-Net, discrete mixture density is 
used in this system. The acoustic model we used is 2000-state HM-Net, and the number of 
mixture components was 4, 8 and 16, respectively. The 2000-state continuous mixture HM-
Net is also prepared, and it is used for comparative experiments. As a comparative 
experiments in various number of mixture components, 16-mixture HM-Net shows the best 
result with either DMHMMs or CHMMs. 

5.6 Codebook design of DMHMM 

The codebook design in our experiments was determined in reference to the results in the 
paper written by Tsakalidis (Tsakalidis et al., 1999) and the split vector quantizer in the DSR 
front-end (ETSI, 2002). Tsakalidis has reported that DMHMMs with from 9 to 24 subvectors 
showed better performance. The feature vector is partitioned into subvectors that contain 
two consecutive coefficients. The consecutive coefficients that comprise subvector are 
expected to be correlated more closely. It was also reported that subvectors that contained 
consecutive coefficients performed well. Table 2 shows subvector allocation and codebook 
size. In the table, although delta and delta-delta parameters are omitted, those codebooks 
are designed in the same manner. The total number of codebooks is 21. The LBG algorithm 
was utilized for creating the codebook. Two types of codebooks were generated: 1) Clean 
codebook: A codebook derived from clean data. 2) Noisy codebook: A codebook derived 
from multi-condition data. Fig. 5 shows the examples of two codebooks. One represents c1-

c2 plane, and the other is 21 cc Δ−Δ  plane. Each point represents the codebook centroid and 

its number is 64 on c1-c2 or 21 cc Δ−Δ  plane. Both clean codebook and noisy codebook are 

shown. As the experiment results, the performance of the DHMMs with noisy codebooks 
overcame that with clean codebooks for noisy speech recognition. 

5.7 Training Data for Acoustic modeling 

There are two sets of training data. They are on JNAS database. One is used for clean 
training, and the other is used for multi-condition training. The training data set consists of 
15,732 Japanese sentences uttered by 102 male speakers. For clean training, no noise was 
added to the data. For multi-condition training, those utterances were divided into 20 
subsets. No noise was added to 4 subsets. In the rest of the data, noise was artificially added. 

parameter logP, c0 c1,c2 c3,c4 c5,c6 c7,c8 c9,c10 c11,c12 

codebook size 256 64 64 64 64 64 64 

Table 2. Codebook design 
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Figure 5. Examples of the codebooks (left figure: 21 cc −  plane, right figure: 21 cc Δ−Δ

plane)

Four types of noise (train, crowd, car and exhibition hall) were selected, and those were 
added to the utterances at SNRs of 20, 15, 10 and 5dB. The set of clean training data was 
used for parameter estimation of initial CHMMs and also used for clean codebook creation. 
The set of multi-condition training data was used for parameter re-estimation of both 
CHMMs and DMHMMs, and that was also used for creation of noisy codebook. 
The procedures of acoustic model training are described as follows: First, initial CHMMs 
were trained by using clean speech data. Then the CHMMs were converted into DMHMMs 
using Eq. (16). The parameters of the DMHMMs derived here were used as the prior 
parameters of MAP estimation. After that, MAP estimation of DMHMMs was carried out by 
using multi-condition data. 

5.8 Comparative experiments with other methods 

Comparative experiments with other methods were conducted in adverse conditions that 
contain both stationary and impulsive noises. Noise signals from two test sets were mixed 
artificially to make new testset. Twelve types of noises (4 noise types (train, crowd, car and 
exhibition hall) times 3 SNR conditions) were prepared as stationary or slow-varying noise. 
These noises were mixed with 3 impulsive noises which were selected from RWCP database 
(Nakamura et al., 2000). Thus 36 types of noises were used for evaluation. Three types of 
impulsive noise were as follows: 

• whistle3 blowing a whistle 

• claps1 handclaps 

• bank  hitting a coin bank  
The impulsive noises were added at intervals of 1-sec into speech data at SNR of 0 dB.  
In the experiments, DMHMMs were compared with conventional CHMMs and CHMMs 
with acoustic backing-off method which is introduced in Section 4. As we described in the 
previous section, the compensation of discrete distributions is effective for noisy speech 
recognition. The acoustic backing-off is a similar method for CHMMs. In this method, 
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likelihood is calculated by using robust mixture distribution which consists of distribution 

)(yp  and 'outlier' distribution )(ypo . Log likelihood ))(log( ypab  is given by 

{ })()()1(log))(log( ypypyp oab ⋅+−= εε   (19) 

1
minmax )()( −−= RRypo   (20) 

 where ε  is the backing-off parameter, maxR  and minR  are the maximum and minimum 

values for each component as observed in the training data.  
Comparative experiments between acoustic backing-off and the proposed method were 

carried out. In the paper by Veth (Veth et al., 2001), maxR  and minR  are given the maximum 

and minimum values of training data respectively. To avoid the dependence on training 

data, maxR  and minR  are set to 

2
max σμ ⋅+= rR   (21) 

and

2
min σμ ⋅−= rR   (22) 

 where 2σ  is a variance of training data. Both r  and ε  were varied to find the best 

performance. As a result, r  and ε  were set to 3.0 and 5100.5 −× , respectively. 

The results of the comparison among DMHMMs, CHMMs and CHMMs with the acoustic 
backing-off are shown in Table 3. The threshold value of compensation for subvector and 

mixture component were set to 3100.5 −×  and 40100.1 −× , respectively.  

The proposed method shows the best performance among three methods. In the table, 
‘improvement’ means the average error rate reduction from CHMM. It was 28.1% with the 
proposed method. In contrast, it was only 5.5% with the acoustic backing-off method. For 
DMHMMs, various thresholds for subvector were applied. The best performance was 

obtained by the threshold of 3100.2 −× . More detailed results can be shown in the paper by 

Kosaka (Kosaka et al., 2005). 
The results of CHMMs were too bad. It has been generally believed that the recognition 
error rates of DHMM were much higher than those of CHMM until now. Our experiments 
showed that the DMHMM framework performed better than conventional CHMM in noisy 
condition. In contrast, it was found that CHMM system showed similar or even better 
performance at high SNR in our experiments. In clean condition, the WER of DMHMMs 
was 6.7% and that of CHMMs with the acoustic backing-off was 6.6%. Recognition in clean 
conditions remains as an issue to be solved in the DMHMM system. 

6. Conclusions 

This chapter introduced a new method of robust speech recognition using discrete-mixture 
HMMs (DMHMMs) based on maximum a posteriori (MAP) estimation. The aim of this work 
was to develop robust speech recognition for adverse conditions which contain both 
stationary and non-stationary noise. In order to achieve the goal, we proposed two methods. 
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First, an estimation method of DMHMM parameters based on MAP was proposed. The 
second was a method of compensating the observation probabilities of DMHMMs to reduce 
adverse effect of outlier values. Experimental evaluations were done on Japanese speech 
recognition for read newspaper task. Compared with conventional CHMMs and CHMMs 
using the acoustic backing-off method, MAP estimated DMHMMs performed better in noisy 
conditions than those systems. The average error rate reduction from CHMMs was 28.1%
with the proposed method. It has been generally believed that the recognition error rates of 
DHMM were much higher than those of CHMM until now. However, our experiments 
showed that the DMHMM framework performed better in noisy conditions than 
conventional CHMM framework. 

WER(%)  
method\noise

 whistle3 claps1 bank 

improvement(%)

CHMM  65.9 43.9 37.5 - 

CHMM-AB  65.2 39.5 36.8 5.5 

4100.5 −× 51.5 34.9 31.2 22.7 

3100.2 −× 46.8 32.9 30.5 28.1 DMHMM

3100.5 −× 46.5 35.2 31.2 24.7 

Table 3. The WER results of the comparison among three methods in mixed noise conditions

Although, the proposed method is effective in noisy conditions, its performance is 
insufficient in clean conditions. What we are aiming for as a future work is to improve 
trainability and recognition performance in clean conditions further. 

7. Future prospects 

We are now conducting the evaluation of the method on more difficult task. In Japan, a 
large-scale spontaneous speech database ‘Corpus of Spontaneous Japanese (CSJ)” has been 
used as the common evaluation database for spontaneous speech now (Furui et al., 2005). 
This corpus consists of roughly 7M words with a total speech length of 650 h.  In the corpus, 
monologues such as academic presentations and extemporaneous presentations have been 
recorded. The recordings were carried out by a headset microphone with relatively little 
background noise. It is well known that the recognition of this task is too difficult because 
those presentations are real and the spontaneity is high. For example, 25.3% of word error 
rate was reported by Furui (Furui et al., 2005). In our experiments, 20.72% of word error rate 
has been obtained with 6000-state 16-mixture DMHMMs and the trigram model of 47,099 
word-pronunciation entries (Yamamoto et al., 2006).  It shows that DMHMM system has a 
high performance even if in low noise conditions. The DMHMM-based system has much 
more potential for speech recognition, because it needs no assumption of Gaussian 
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distribution. For example, model adaptation in which the shape of distribution of HMM is 
modified intricately cannot be carried out in CHMM framework, but could be done in 
DMHMM. We plan to develop DMHMM-related technologies further for improving speech 
recognition performance. 
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