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1. Introduction 

The most successful modeling approach to automatic speech recognition (ASR) is to use a 
set of hidden Markov models (HMMs) as the acoustic models for subword or whole-word 
speech units and to use the statistical N-gram model as language model for words and/or 
word classes in sentences. All the model parameters, including HMMs and N-gram models, 
are estimated from a large amount of training data according to certain criterion. It has been 
shown that success of this kind of data-driven modeling approach highly depends on the 
goodness of estimated models. As for HMM-based acoustic models, the dominant 
estimation method is the Baum-Welch algorithm which is based on the maximum likelihood 
(ML) criterion. As an alternative to the ML estimation, discriminative training (DT) has also 
been extensively studied for HMMs in ASR. It has been demonstrated that various DT 
techniques, such as maximum mutual information (MMI), minimum classification error 
(MCE) and minimum phone error (MPE), can significantly improve speech recognition 
performance over the conventional maximum likelihood (ML) estimation. 
More recently, we have proposed the large margin estimation (LME) of HMMs for speech 
recognition (Li et al., 2005; Liu et al., 2005a; Li & Jiang, 2005; Jiang et al., 2006), where 
Gaussian mixture HMMs are estimated based on the principle of maximizing the minimum 
margin. From the theoretical results in machine learning (Vapnik, 1998), a large margin 
classifier implies a good generalization power and generally yields much lower 
generalization errors in new test data, as shown in support vector machine and boosting 
method. As in Li et al., 2005 and Li & Jiang, 2005, estimation of large margin CDHMMs 
turns out to be a constrained minimax optimization problem. In the past few years, several 
optimization methods have been proposed to solve this problem, such as iterative localized 
optimization in Li et al., 2005, constrained joint optimization method in Li & Jiang, 2005 and Jiang 
et al., 2006, and semi-definite programming (SDP) method in Li & Jiang, 2006a and Li & Jiang 
2006b. In this paper, we present a general Approximation-optiMization (AM) approach to 
solve the LME problem of Gaussian mixture HMMs in ASR. Similar to the EM algorithm, 
each iteration of the AM method consists of two distinct steps: namely A-step and M-step. 
In A-step, the original LME problem is approximated by a simple convex optimization 
problem in a close proximity of initial model parameters. In M-step, the approximate convex 
optimization problem is solved by using efficient convex optimization algorithms. 

Source: Robust Speech Recognition and Understanding, Book edited by: Michael Grimm and Kristian Kroschel,
ISBN 987-3-90213-08-0, pp.460, I-Tech, Vienna, Austria, June 2007
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This paper is structured as follows. In section 2, we present the large margin estimation 
formulation for HMMs in speech recognition. In section 3, we explain the proposed AM 
approach under a general framework. Next, as two examples, we consider to apply the AM 
method to solve the LME of HMMs for ASR. In section 4, we use the so-called V-approx for
the case where competing hypotheses are given as N-Best lists. In section 5, we use E-approx 

for the case where competing hypotheses are given as word graphs. At last, some final 
remarks are discussed in section 6. 

2. Large Margin Estimation (LME) of HMMs for ASR 

In ASR, we consider a joint probability distribution between any speech utterance X and any 
word W, i.e. p(X, W). Depending on the problem of interest, a word W may be any linguistic 
unit, e.g., a phoneme, a syllable, a word, a phrase, even a sentence. Given a speech utterance 
X, a speech recognizer will choose the word W as output based on the following plug-in 
MAP decision rule (Jiang et al., 1999): 

(1)

where denotes the composite HMM representing word W and is called 
discriminant function of given X, which is normally calculated in the logarithm domain 

as . In this work, we are only 
interested in estimating HMM and assume language model used to calculate p(W) is
fixed.
For a speech utterance Xi , assuming its true word identity as Wi, following Weston & 
Watkins, 1999 and Crammer & Singer, 2001 and Altun et al., 2003, the multi-class separation 
margin for Xi is defined as: 

(2)

where  denotes the set of all possible words. Clearly, eq.(2) can be re-arranged as: 

(3)

Obviously, if d(Xi) 0, Xi will be incorrectly recognized by the current HMM set, denoted as 
, which includes all HMMs in the recognizer. On the other hand, if d(Xi) > 0, Xi will be 

correctly recognized by the model set .
Given a set of training data  = {X1 , X2, ··· XT}, we usually know the true word identities 
for all utterances in , denoted as  = {W1, W2, ··· WT }- Thus, we can calculate the 
separation margin (or margin for short hereafter) for every utterance in T based on the 
definition in eq. (2) or (3). According to the statistical learning theory (Vapnik, 1998), the 
generalization error rate of a classifier in new test sets is theoretically bounded by a quantity 
related to its margin. A large margin classifier usually yields low error rate in new test sets 
and it shows more robust and better generalization capability. Motivated by the large 
margin principle, even for those utterances in the training set which all have positive 
margin, we may still want to maximize the minimum margin to build an HMM-based large 
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margin classifier. In this paper, we will study how to estimate HMMs for speech recognition 
based on the principle of maximizing minimum margin. First of all, from all utterances in 

, we need to identify a subset of utterances as: 

(4)

where  > 0 is a pre-set positive number. Analogically, we call as support vector set and 
each utterance in is called a support token which has relatively small positive margin 
among all utterances in the training set . In other words, all utterances in are relatively 
close to the classification boundary even though all of them locate in the right decision 
regions. To achieve better generalization power, it is desirable to adjust decision boundaries, 
which are implicitly determined by all models, through optimizing HMM parameters  to 
make all support tokens as far from the decision boundaries as possible, which will result in 
a robust classifier with better generalization capability. This idea leads to estimating the 
HMM models  based on the criterion of maximizing the minimum margin of all support 
tokens, which is named as large margin estimation (LME) of HMMs. 

(5)

The HMM models, , estimated in this way, are called large margin HMMs. 
Considering eq. (3), large margin estimation of HMMs can be formulated as the following 
maximin optimization problem: 

(6)

Note it is fine to include all training data into the support token set with a large value for e
in eq. (4). However, this may significantly increase the computational complexity in the 
following optimization process and most of those data with large margin are usually 
inactive in the optimization towards maximizing the minimum one, especially when a 
gradual optimization method is used, such as gradient descent and other local optimization 
methods. 
As shown in Li et al., 2005 and Liu et al., 2005a and Jiang et al., 2006, the above maximin 
optimization may become unsolvable for Gaussian mixture HMMs because its margin as 
defined in eq. (3) may become unbounded with respect to model parameters. As one 
possible solution to solve this problem, some additional constraints must be imposed to 
ensure the margin is bounded during optimization as in Li & Jiang, 2005, Jiang et al., 2006. 
As suggested in Li & Jiang, 2006a and Liu et al., 2007, a KL-divergence based constraint can 
be introduced for HMM parameters to bound the margin. The KL-divergence (KLD) is 
calculated between an HMM  and its initial value as follows: 

(7)

or

(8)
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where denotes the initial model parameters and r2 is a constant to control a trust region 
for large margin optimization which is centered at the initial models. Since the KLD 
constraints given in eq. (7) defines a closed and compact set, it is trivial to prove that the 

margin in eq. (3) is a bounded function of HMM parameters  so that the maximin
optimization in eq. (6) is solvable under these constraints. 
Furthermore, as shown in Li, 2005 and Li & Jiang, 2006a, the maximin optimization problem 
in eq. (6) can be equivalently converted into a constrained maximization problem by 
introducing a new variable  (  > 0) as a common lower bound to represent min part of all 

terms in eq.(6) along with the constraints that every item must be larger than or equal to .

As the result, the maximin optimization in eq.(6) can be equivalently transformed into the 
following optimization problem: 
Problem 1 

(9)

subject to: 

(10)

(11)

(12)

3. A General Approximation-optiMization (AM) Approach to Large Margin 
Estimation of HMMs 

Obviously, we can use a gradient descent method to solve the optimization Problem 1. As in 
Li & Jiang, 2005 and Jiang et al., 2006, we cast all constraints in eqs.(10) to (12) as some 
penalty terms in the objective function so that the model parameter updating formula can be 
easily derived. Thus, HMM parameters can be optimized gradually by following the 
calculated gradient direction. The gradient descent method is easy to implement and 
applicable to any differentiable objective functions. However, the gradient descent method 
can be easily trapped into a shallow local optimum if the derived objective function is 
jagged and complicated in nature, especially when the gradient descent method is operated 
in a high-dimensionality space. Also it is very difficult to set appropriate values for some 
critical parameters in gradient descent, such as step size and so on. As the result, the 
gradient method normally can not significantly improve over the initial models in a high-
dimensionality space if the initial models have been set to some reasonably good values. 
In this paper, we propose a novel approach to solve the above large margin estimation 
problem for HMMs. The key idea behind this approach is that we first attempt to find a 
simpler convex function to approximate the original objective function in a close proximity 
of initial model parameters if the original objective function is too complicated to optimize 
directly. Then, the approximate function is optimized by using an efficient convex 
optimization algorithm. In some cases, some relaxation must be made to ensure the 
resultant problem is indeed an convex optimization problem. As we know, a convex 
optimization problem can be efficiently solved even in a very high-dimensionality space 
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since it never suffers from the local optimum problem in a convex optimization problem. 
Based on the proximity approximation, we hope the optimal solution found for this 
approximate convex problem will also improve the original objective function as well. Then, 
in next iteration, the original objective function can be similarly approximated in the close 
proximity of this optimal solution as another convex optimization problem based on the 
same approximation principle. This process repeats until convergence conditions are met for 
the original objective function. Analogous to the popular EM algorithm (Dempster et al., 
1977 and Neal & Hinton, 1998), each iteration consists of two separate steps: i) 
Approximation step (A-step): the original objective function is approximated in a close 
proximity of initial model parameters; ii) optiMization step (M-step): the approximate 
function is optimized by a convex optimization algorithm (convex relaxation may be 
necessary for some models). Analogously, we call this method as the AM algorithm. It is 
clear that the AM algorithm is more general than the EM algorithm since the expectation (E-
step) can also be viewed as a proximity approximation method as we will show later. More 
importantly, comparing with the EM algorithm, the AM algorithm will be able to deal with 
more complicated objective functions such as those arising from discriminative training of 
many statistical models with hidden variables. 
As one particular application of the AM algorithm, we will show how to solve the large 
margin estimation (LME) problem of HMMs in speech recognition. 

3.1 Approximation Step (A-step): 

There are many different methods to approximate an objective function in a close proximity. 
In this section, we introduce two different methods, namely Viterbi-based approximation 
(V-approx) and Expectation-based approximation (E-approx).

Let us first examine the log-likelihood function of HMMs, . Since HMMs have 
hidden variables such as unobserved state sequence, denoted as s, and unobserved 
Gaussian mixture labels (for Gaussian mixture HMMs), denoted as 1, we have the following: 

(13)

As the first way to approximate the above log-likelihood function, we can use the Viterbi 
approximation, i.e., we use the best Viterbi path, s* and 1*, to approximate the above 
summation instead of summing over all possible paths. And the best Viterbi path can be 

easily derived based on the initial models, by the following max operation using the 
well-known Viterbi algorithm: 

(14)

Thus, the log-likelihood function can be approximated as follows: 

(15)

This approximation scheme is named as Viterbi approximation, i.e., V-approx.  Obviously, 

for HMMs, the approximate function  is a convex function. 
If we assume the language model, p(W), is fixed, the discriminant function of HMM, ,
in LME can be viewed as difference of log-likelihood functions. If we use the V-approx for 

both correct model and incorrect competing model :
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(16)

(17)

Then, the constraints in eq.(10) can be approximated by difference of two convex functions 
as follows: 

(18)

for all possible i and j.
Now let us consider the second scheme to approximate the objective function, i.e., E-approx. 

For the log-likelihood function of HMMs,  in eq.(13), we consider the following 
auxiliary function used in the EM algorithm: 

(19)

As shown in Dempster et al., 1977 and Neal & Hinton, 1998, the above auxiliary function is 
related to the original log-likelihood function as follows: 

(20)

 (21)

(22)

From these, it is clear that can be viewed as a close proximity approximation of 

log-likelihood function  at with accuracy up to the first order. Under the 
proximity constraint in eq.(ll), it serves as a good approximation of the original log-
likelihood function. Since the function is originally computed as an expectation in the EM 
algorithm, this approximation scheme is named as Expectation-based approximation (E-

approx). Similarly, we use E-approx to approximate both correct model and 

incorrect competing model in discriminant function as: 

(23)

(24)

It can be easily shown that the function is also a convex function for HMMs. Therefore, 
the discriminant function can also be similarly approximated as difference of two convex 
functions as follows: 

(25)

for all possible i and j.
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3.2 OptiMization Step (M-step): 

After the approximation, either V-approx or E-approx, the original Problem 1 has been 
converted into a relatively simpler optimization problem since all constraints have been 
approximately represented by differences of convex functions. As we know, a difference of 
two convex functions is not necessarily a convex function. Thus, in some cases, we will have 
to make some convex relaxations to convert the problem into a convex optimization 
problem so that a variety of convex optimization algorithms can be applied to find the 
global optimum of the approximate problem under the proximity constraint in eq.(ll). Due 
to this proximity constraint, we expect the global optimal solution will also improve the 
original LME optimization problem since the approximate convex optimization problem 
approaches the original LME problem with sufficient accuracy under the proximity 
constraint. 
In the remainder of this paper, we will use two examples to show how to make convex 
relaxations and how to perform the convex optimization for LME of Gaussian mean vectors 
in Gaussian mixture HMMs. In the first example, we use V-approx to approximate the 
likelihood function of HMMs and then make some convex relaxations to convert the 
problem into an SDP (semi-definite programming) problem. This method is suitable for both 
isolated word recognition and continuous speech recognition based on the string-model of 
N-Best lists. In the second example, we use E-approx to approximate likelihood function of 
HMMs when the competing hypotheses are represented by word graphs or lattices. Then 
we similarly convert the problem into an SDP problem by making the same relaxation. This 
method is suitable for LME in large vocabulary continuous speech recognition where 
competing hypotheses are encoded in word graphs or lattices. 

4. LME of Gaussian Mixture HMMs based on N-Best Lists 

In this section, we apply the AM algorithm to solve the large margin estimation for 
Gaussian mixture HMMs in speech recognition. Here, we consider to use V-approx in the A-
Step of the AM algorithm. This method is applicable to isolated word recognition and 
continuous speech recognition using string-models based on N-Best lists. 
At first, we assume each speech unit, e.g., a word W, is modeled by an N-state Gaussian 
mixture HMM with parameter vector , where is the initial state distribution, 

is transition matrix, and is parameter vector composed of 
mixture parameters for each state i, where K denotes 
number of Gaussian mixtures in each state. The state observation p.d.f. is assumed to be a 
mixture of multivariate Gaussian distribution: 

(26)

where D denotes dimension of feature vector x and mixture weights  satisfy the 

constraint . In this paper, we only consider multivariate Gaussian 
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distribution with diagonal covariance matrix. Thus, the above state observation p.d.f. is 
simplified as: 

(27)

We assume training data is given as along with true labels for all 

utterances in , denoted as . In this section, we assume for each 

Xi in , its competing hypotheses are encoded as an N-Best list, , which can be 
generated from an N-Best Viterbi decoding process. We also assume the correct label has 
been excluded from the list. Then, the LME formulation in section 2 can be easily extended 
to this case. The only difference is that the set of all possible words, , used to define 
margin for each training data Xi in eq.(2), becomes different for different training data, Xi,

where we denote its N-Best list as . And each model  denotes the string model 
concatenated according to the true transcription or a hypothesis from N-Best lists. 

4.1 A-Step: V-approx 

Given any speech utterance , let be the 
unobserved state sequence, and be the associated sequence of the 
unobserved mixture component labels, if we use V-approx, the discriminant function, i.e., 

, can be expressed as: 

(28)

where we denote the optimal Viterbi path as and the best mixture 

component label as .
In this paper, for simplicity, we only consider to estimate Gaussian mean vectors of HMMs 
based on the large margin principle while keeping all other HMM parameters constant 
during the large margin estimation. Therefore, we have 

 (29) 

where c • is a constant which is independent from all Gaussian mean vectors. 
Furthermore, we assume there are totally M Gaussian mixtures in the whole HMM set ,

denoted as . We denote each Gaussian as  where k .

For notation convenience, the optimal Viterbi path s* and 1* can be equivalently represented 

as a sequence of Gaussian mixture index, i.e., , where jt . is index 
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of Gaussians along the optimal Viterbi path {s*, 1*}. Therefore, we can rewrite the 
discriminant function in eq. (29) according to this new Gaussian index as: 

(30)

For , let us assume the optimal Viterbi path is , where it

. As we are only considering to estimate mean vectors of CDHMMs, after V-approx, 
the decision margin dij(Xi) can be represented as a standard diagonal quadratic form as 
follows: 

(31)

where cij is another constant independent of all Gaussian means. 
Furthermore, if we only estimate Gaussian mean vectors, the KL-divergence based 
constraint in eq.(11) can also be simplified for Gaussian mixture HMMs with diagonal 
covariance matrices as follows: 

(32)

To convert the above optimization problem into an SDP problem, we first represent the 

above approximated problem in a matrix form. We first define a mean matrix by
concatenating all normalized Gaussian mean vectors in  as its columns as follows: 

(33)

where each column is a normalized mean vector (column vector): 

(34)

Then we have 

(35)

where  denotes a normalized feature vector (column vector) as 

(36)
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Since we have 

(37)

where ID is D-dimension identity matrix and ek is a column vector with all zeros except only 
one —1 in k-th location. Then, we have 

(38)

where Vi and Z are (D + L) x (D + L) dimensional symmetric matrices defined as: 

(39)

(40)

Similarly, we can express the discriminant function, , as: 

where Vj is a (D + L) x (D + L) dimensional symmetric matrix defined as: 

(41)

Thus, it is straightforward to convert the constraint in eq. (10) into the following form: 

(42)
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where Vij = Vi—Vj and .

Following the same line, we can convert the constraint in eq. (32) into the following matrix 
form as well: 

(43)

(44)

(45)

where R is a (D + L) x (D + L) dimensional symmetric matrix defined as: 

(46)

and  is normalized Gaussian mean vector in the initial model set, as defined in eq. 

(34).
In summary, after V-approx in the A-Step, the approximate optimization problem can be 
represented as: 
Problem 2 

(47)

subject to: 

(48)

(49)

(50)

(51)

4.2 M-Step: SDP 

Obviously, Problem 2 is equivalent to the original LME optimization Problem 1 except it is 

expressed in a matrix form. However, since the constraint is not convex, it is a 
non-convex optimization problem. Thus, some relaxations are necessary to convert it into a 
convex optimization problem. In this section, we consider to use a standard SDP (semi-
definite programming) relaxation to convert Problem 2 into an SDP problem. 
As shown in Boyd et al., 1994, the following statement always holds for matrices: 

(52)
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where  denotes is a positive semidefinite matrix. 

Therefore, following Boyd et al., 1994, if we relax the constraint to

, we are able to make a positive semidefinite matrix. During the 

optimization, the top left corner of must be an identity matrix, i.e., , which 
can be easily represented as a group of linear constraints as: 

(53)

where  is 1 when k = l and 0 otherwise. If k = l (for l k, l D),

(54)

otherwise

(55)

since Z is a symmetric matrix, zkl = zlk. Obviously, the unique solution for this set of linear 
constraints is zkk = 1 and zkl = zlk = 0 for all 1 k D,   k l D.
Finally, under the relaxation in eq. (52), Problem 2 is converted into a standard SDP 
problem as follows: 
Problem 3 

(56)

subject to: 

(57)

(58)

(59)

(60)

Problem 3 is a standard SDP problem, which can be solved efficiently by many SDP 
algorithms, such as interior-point methods (Boyd & Vandenberghe, 2004). In Problem 3, the 
optimization is carried out w.r.t. Z (which is constructed from all HMM Gaussian means) 
and , and Vij and cij and R are constant matrix calculated from training data and initial 

models, and r is a pre-set control parameter. Then, all Gaussian mean vectors are updated 
based on the found SDP solution Z*.
At last, the AM algorithm for LME of Gaussian mixture HMMs based on N-Best lists is 
summarized as follows: 

Algorithm 1 The AM Algorithm for LME of HMMs based on N-Best Lists 

repeat

1. Perform N-Best Viterbi decoding for all training data using models 
2. Identify the support set according to eq. (4). 

3. A-Step: collect sufficient statistics including R, and Vij, cij for all Xi and j
4. M-Step: Perform SDP to solve Problem 3 and update models.
5. n = n + 1. 

until some convergence conditions are met. 
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5. LME of Gaussian mixture HMMs based on Word Graphs 

As in most large vocabulary continuous speech recognition systems, competing hypotheses 
for training utterances are encoded in a more compact format, i.e., word graphs or word 
lattices. In this section, we apply the AM algorithm to LME of Gaussian mixture HMMs for 
speech recognition based on word graphs instead of N-Best lists. Here, we use E-approx in
A-step to derive an efficient method to conduct LME for large vocabulary continuous speech 
recognition tasks using word graphs. 

Assume we are given a training set as , for each training utterance 
Xi, assume its true transcription is Wi and its competing hypotheses are represented as a 
word graph, denoted as . Ideally the true transcription Wj should be excluded from the 

word graph . In this case, we define the margin for Xi as follows: 

(61)

where the summation is taken for all hypotheses in word graph . In this paper, we only 

consider to estimate acoustic models and assume language model scores p(Wi) and p(Wj) are 
constants. Then, the idea of LME in section 2 can be extended to estimate acoustic models 
towards maximizing the minimum margin across a selected support token set , as in 
eq.(5). In the following, we consider to solve this LME problem with the AM algorithm 
where E-approx is used in A-step and SDP is used to solve M-step. For simplicity, we only 
estimate Gaussian mean vectors and assume other HMM parameters are kept constant in 
LME. But it is quite trivial to extend to estimating all HMM parameters with the same idea. 

5.1 A-Step: E-approx 

Given any speech utterance , in E-approx, the HMM log-

likelihood function  is approximated by the following auxiliary function 
calculated based on expectation: 

(62)

where  denotes posterior probability calculated for k-th Gaussian component in the 

model set (k ) using the Baum- Welch algorithm conditional on the initial model 
and training utterance Xi, and is a constant independent from all Gaussian mean vectors. 

After rearranging all terms in eq. (62), we can organize  as a quadratic function 
of all Gaussian mean vectors: 

(63)

where is another constant independent of Gaussian mean vectors and 
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(64)

(65)

If we denote two column vectors as 

(66)

and

(67)

then we have 

(68)

Since we have 

 (69) 

Then, we have 

(70)
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where Z and are (D + L) x (D + L) dimensional symmetric matrices, Z is defined as in 

eq.(40) and is calculated as: 

(71)

Similarly, we consider to approximate the log-likelihood function of word graph with E-

approx as follows: 

(72)

where both and are two constants independent of Gaussian mean vectors, and 

(73)

(74)

And  and  can be calculated efficiently by running the forward-backward algorithm 
in the word graph as in Wessel et al., 2001. 
Similarly, can be expressed as the following matrix form: 

(75)

where

(76)

Therefore, the margin d(Xi) can be approximated as: 

(77)

where .

As the result, the LME problem based on the word graphs can be approximately represented 
as follows: 
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Problem 4 

(78)

subject to:: 

(79)

(80)

(81)

(82)

5.2 M-Step: SDP 

Next, using the same relaxation in eq.(52), we convert the above optimization problem into 
the following SDP problem: 
Problem 5 

(83)

subject to:: 

(84)

(85)

(86)

(87)

The Problem 5 can be efficiently solved using a fast SDP optimization algorithm. The found 
solution Z* can be used to update all Gaussian mean vectors. 
At last, the AM algorithm for LME of Gaussian mixture HMMs using E-approx based on 
word graphs is summarized as follows: 

Algorithm 2 The AM Algorithm for LME of HMMs based on Word Graphs 

repeat
1. Perform Viterbi decoding for all training data to generate word graphs using models 

.
2. Identify the support set according to eq.(4).

3. A-Step: collect sufficient statistics including R, and , bi for all Xi .

4. M-Step: Perform SDP to solve Problem 5 and update models.
5. n = n+ 1. 

until some convergence conditions are met. 
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6. Final Remarks 

In this paper, we have proposed a general Approximation-optiMization (AM) approach for 
large margin estimation (LME) of Gaussian mixture HMMs in speech recognition. Each 
iteration of the AM method consists of A-step and M-step. In A-step, the original LME 
problem is approximated by a simple convex optimization problem in a close proximity of 
initial model parameters. In M-step, the approximate convex optimization problem is solved 
by using efficient convex optimization algorithms. The AM method is a general approach 
which can be easily applied for discriminative training of statistical models with hidden 
variables. In this paper, we introduce two examples to apply the AM approach to LME of 
Gaussian mixture HMMs. The first method uses V-approx and is applicable for isolated 
word recognition and continuous speech recognition based on N-Best lists. The second 
method uses E-approx and can be applied to large vocabulary continuous speech 
recognition when competing hypotheses are given as word graphs or word lattices. Due to 
space limit, we can not report experimental results in this paper. Readers can refer to Li, 
2005 and Li & Jiang, 2006a, Li & Jiang, 2006b for details about ASR experiments. 
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