
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 91

Effective Planning for Conlicting Situations for Ubiquitous Sensor
Network Environments

Toshiharu Sugawara, Satoshi Kurihara, Toshio Hirotsu, Kensuke Fukuda and Toshihiro
Takada

X

Effective Planning for Conflicting Situations for

Ubiquitous Sensor Network Environments

Toshiharu Sugawara1 Satoshi Kurihara2 Toshio Hirotsu3
Kensuke Fukuda4 and Toshihiro Takada5

1Waseda University,
2Osaka University,
3Hosei University,

4National Institute of Informatics,
5NTT Communication Science Laboratories,

Japan

1. Introduction

Applications of sensor networks and ubiquitous computing have received attention. They
can provide many kinds of important services for supporting daily and social activities in
home, schools, offices and public spaces in the future (Kurihara, 2008). However, to realize
these kinds of applications, a number of new technologies in AI and multi-agent systems
(MAS) are also required because many devices and control programs are concurrently work
to achieve their goals in cooperation with other ones. These works arise according to the
human requirements based on their individual activities. In order to achieve these required
goals, each agent has to create the plan (means-end analysis) and then performs it. However,
the plan often conflict with those that are being created, already being scheduled, and
executed by other agents because of the limited resources. Furthermore, since the human’s
activities are usually real-time with deadline, the agent must also be able to complete its
planning and resolution of these conflicts within a reasonable time to have an acceptable
quality plan. This means that both efficient planning and sophisticated conflict resolution
are strongly required.
We adopt hierarchical planning (for example, see (Erol & Nau, 1994; Sacerdoti, 1974) using
the decision-theoretic planning approach (Goldwin, & Simmons, 1998) for efficient planning
but it is not trivial to apply hierarchical planning to MAS. In hierarchical planning,
appropriate (abstract) plans are selected level by level to maximize the utility U(p), where p
is the expected final plan comprising a sequence of primitive actions. However, in the MAS
context, conflicts between agents affect the efficiency and quality of resulting plans. When a
conflict is found at lower levels, an additional sophisticated process for avoiding it (conflict
resolution) must be invoked and some extra actions (such as waiting for synchronization and
detouring) may have to be added to the plan. The conflict resolution process may become
costly or fail. Even a single conflict, if it is difficult to resolve, will result in a plan with

5

www.intechopen.com

Autonomous Agents92

considerably lower quality. As a result, in multi-agent systems, the second- or third-best
plans may result in better overall performance.
The objective of our research is to enable agents, using reinforcement learning, to predict
which tasks in an abstract plan will conflict with other agents' plans at a lower level with
higher probability and either involve a costly conflict resolution process and/or result in a
low-quality plan after it has been resolved. We emphasize that the appearances of conflicts
strongly depend on the resource structures of the environments of the sensor-network
applications. This suggests that the learning is mandatory.
Our basic idea is threefold, conflict patterns, screening level and conflict discount. First, we will
introduce conflict patterns (CP) at a certain abstract level called the screening level (SL). The
screening level is a one of intermediary level of the hierarchical model at which the conflicts
of generating plans are predicted. The possible conflicts are stored as conflict patterns to
specify the situations where conflicts will occur with high probabilities if the agents refine
the current plan to the lower levels. The conflict discount is a negative utility that
cumulatively predicts the probability of conflicts in the subsequent refinement process, the
cost of resolutions, and the quality/performance of the resulting plans on the basis of CPs in
the plans at the screening level and past experience. The conflict discount is calculated and
updated by using statistically learned expected values or by reinforcement learning, so that
the agents select the appropriate refinement at the SL.
Note that we assume that the initial utility is good for selecting plans for single-agent cases.
This utility may lead to acceptable but minimum quality plans after conflict resolution in the
MAS context. Thus, agents learn the conflict discount appropriate for the environment in
order to select better SL plans.
In this chapter, we formally define conflict patterns and discuss the estimation of their
conflict discounts. We then introduce the notion of sub-conflict patterns for avoiding
redundant calculations of conflict discounts and reducing memory space. We also clarify the
distributed version of the planning framework with our conflict estimation, which is an
extension of that in (Sugawara et al., 2005). Then we present an experimental evaluation of
the efficiency of plans generated by our method for a simulated laboratory room. This
chapter is organized as follows: First, we discuss the issue addressed here and the planning
framework used in our application systems. We then explain the process of conflict
detection and resolution. Following that, we introduce the use of conflict patterns to classify
situations involving conflicts with other agents' plans. Then, the experimental results to
evaluate our approach are presented. We show that our proposed planning strategy makes
agent’s planning more efficient in the situation where conflicts are predicted. Finally, we
cover related work and offer some concluding remarks.

2. Conflict estimation in hierarchical planning

In hierarchical planning, plans are generated using an abstract hierarchy of the domain
model, which includes tasks and resources in an abstract form. Initial states and goals are
first described in the most abstract model, and a number of task sequences are generated to
achieve these goals. One of the sequences is then selected according to a particular planning

strategy (A utility is used in the case of the decision-theoretic planning.1

 Normal utilities for making efficient or high-quality plans do not usually take into account
possible conflicts with other agents. As a result, although they can create acceptable plans
when there is no interference between plans, they might not be able to do so when there is
interference. Furthermore, in applications where real-time performance is stipulated, it is
preferable that agents predict which conflicts will vanish or be easy or difficult to resolve
during the remainder of the planning period. It is important, therefore, to provide another
utility for plan selection when there is the possibility of conflict. However, determining
what the conflicts are and which tasks easily cause them is a function of the location of
scarce or heavily used resources and the type of agent; thus, the outcome strongly depends
on the situation and environment where the sensor-network system is deployed. This type

), and each task in
the sequence is further refined into task sequences in the less-abstract model. This refine-
and-select process is iterated until all tasks have been refined to primitive tasks in the lowest
model. In general, while abstract (higher-level) models are simple and thus do not contain
complete information, they are appropriate for understanding the global and long-term
picture of activities. Naturally, the lower-layer models are more informative and
complicated, so they are used for detailed descriptions of local and sectional plans.
 Let’s consider our laboratory room shown in Figure 1 that will be the example environment
of the experiments in this paper. In this figure, there are a number of hierarchical models of
the room; the model at level 0 is the most abstract and the one at level 3 is the most concrete
(so primitive). The plan at a certain level is generated based on the corresponding model.
Initial states and goals are first described in the most abstract (or uppermost) model, and a
number of task sequences are generated to achieve these goals in this model. (An example of
the task hierarchy established in accordance with the model hierarchy is shown in Figure 2.)
This plan generation is usually based on the descriptive information represented in the
corresponding model. One of the sequences is selected according to a particular planning
strategy (the utility is used in the case of DTP), and then each task in the sequence is further
refined, that is, the sub-task sequences in the less-abstract model for achieving the task are
generated. These sequences are called refinements of the task.
Actual conflicts are identified when all tasks have been expanded into primitive tasks, since
the required amount of resources and time needed for executing the plan are precisely
determined at this level. This may not prevent an agent from investigating the possibility of
conflicts at an abstract level, however. For example, if a certain room is roughly modelled as
a single object at an abstract level such as the level-0 model in Figure 1 and two agents have
plans to work in this room at the same time, they can resolve this possible conflict by one
agent deciding to work at another time. However, this conflict may not occur after the plans
have been expanded into primitive ones, because it might turn out that the agents are able to
work at different places in the room. In general, the process of conflict detection and
resolution in abstract layers is simple because its domain model and related operators are
simple. However, it usually results in redundant and inefficient plans.

1 An agent selects the plan that may lead to the highest utility. However, the utility value is
determined from the primitive task/plan, so the utility of a non-primitive task/plan is
expressed as a range calculated according to the possible lower-level refined plans. It has
been reported that agents should choose the plan that contains the highest utility and
expand it to the next layer for effective planning (Goldwin & Simmons, 1998).

www.intechopen.com

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 93

considerably lower quality. As a result, in multi-agent systems, the second- or third-best
plans may result in better overall performance.
The objective of our research is to enable agents, using reinforcement learning, to predict
which tasks in an abstract plan will conflict with other agents' plans at a lower level with
higher probability and either involve a costly conflict resolution process and/or result in a
low-quality plan after it has been resolved. We emphasize that the appearances of conflicts
strongly depend on the resource structures of the environments of the sensor-network
applications. This suggests that the learning is mandatory.
Our basic idea is threefold, conflict patterns, screening level and conflict discount. First, we will
introduce conflict patterns (CP) at a certain abstract level called the screening level (SL). The
screening level is a one of intermediary level of the hierarchical model at which the conflicts
of generating plans are predicted. The possible conflicts are stored as conflict patterns to
specify the situations where conflicts will occur with high probabilities if the agents refine
the current plan to the lower levels. The conflict discount is a negative utility that
cumulatively predicts the probability of conflicts in the subsequent refinement process, the
cost of resolutions, and the quality/performance of the resulting plans on the basis of CPs in
the plans at the screening level and past experience. The conflict discount is calculated and
updated by using statistically learned expected values or by reinforcement learning, so that
the agents select the appropriate refinement at the SL.
Note that we assume that the initial utility is good for selecting plans for single-agent cases.
This utility may lead to acceptable but minimum quality plans after conflict resolution in the
MAS context. Thus, agents learn the conflict discount appropriate for the environment in
order to select better SL plans.
In this chapter, we formally define conflict patterns and discuss the estimation of their
conflict discounts. We then introduce the notion of sub-conflict patterns for avoiding
redundant calculations of conflict discounts and reducing memory space. We also clarify the
distributed version of the planning framework with our conflict estimation, which is an
extension of that in (Sugawara et al., 2005). Then we present an experimental evaluation of
the efficiency of plans generated by our method for a simulated laboratory room. This
chapter is organized as follows: First, we discuss the issue addressed here and the planning
framework used in our application systems. We then explain the process of conflict
detection and resolution. Following that, we introduce the use of conflict patterns to classify
situations involving conflicts with other agents' plans. Then, the experimental results to
evaluate our approach are presented. We show that our proposed planning strategy makes
agent’s planning more efficient in the situation where conflicts are predicted. Finally, we
cover related work and offer some concluding remarks.

2. Conflict estimation in hierarchical planning

In hierarchical planning, plans are generated using an abstract hierarchy of the domain
model, which includes tasks and resources in an abstract form. Initial states and goals are
first described in the most abstract model, and a number of task sequences are generated to
achieve these goals. One of the sequences is then selected according to a particular planning

strategy (A utility is used in the case of the decision-theoretic planning.1

 Normal utilities for making efficient or high-quality plans do not usually take into account
possible conflicts with other agents. As a result, although they can create acceptable plans
when there is no interference between plans, they might not be able to do so when there is
interference. Furthermore, in applications where real-time performance is stipulated, it is
preferable that agents predict which conflicts will vanish or be easy or difficult to resolve
during the remainder of the planning period. It is important, therefore, to provide another
utility for plan selection when there is the possibility of conflict. However, determining
what the conflicts are and which tasks easily cause them is a function of the location of
scarce or heavily used resources and the type of agent; thus, the outcome strongly depends
on the situation and environment where the sensor-network system is deployed. This type

), and each task in
the sequence is further refined into task sequences in the less-abstract model. This refine-
and-select process is iterated until all tasks have been refined to primitive tasks in the lowest
model. In general, while abstract (higher-level) models are simple and thus do not contain
complete information, they are appropriate for understanding the global and long-term
picture of activities. Naturally, the lower-layer models are more informative and
complicated, so they are used for detailed descriptions of local and sectional plans.
 Let’s consider our laboratory room shown in Figure 1 that will be the example environment
of the experiments in this paper. In this figure, there are a number of hierarchical models of
the room; the model at level 0 is the most abstract and the one at level 3 is the most concrete
(so primitive). The plan at a certain level is generated based on the corresponding model.
Initial states and goals are first described in the most abstract (or uppermost) model, and a
number of task sequences are generated to achieve these goals in this model. (An example of
the task hierarchy established in accordance with the model hierarchy is shown in Figure 2.)
This plan generation is usually based on the descriptive information represented in the
corresponding model. One of the sequences is selected according to a particular planning
strategy (the utility is used in the case of DTP), and then each task in the sequence is further
refined, that is, the sub-task sequences in the less-abstract model for achieving the task are
generated. These sequences are called refinements of the task.
Actual conflicts are identified when all tasks have been expanded into primitive tasks, since
the required amount of resources and time needed for executing the plan are precisely
determined at this level. This may not prevent an agent from investigating the possibility of
conflicts at an abstract level, however. For example, if a certain room is roughly modelled as
a single object at an abstract level such as the level-0 model in Figure 1 and two agents have
plans to work in this room at the same time, they can resolve this possible conflict by one
agent deciding to work at another time. However, this conflict may not occur after the plans
have been expanded into primitive ones, because it might turn out that the agents are able to
work at different places in the room. In general, the process of conflict detection and
resolution in abstract layers is simple because its domain model and related operators are
simple. However, it usually results in redundant and inefficient plans.

1 An agent selects the plan that may lead to the highest utility. However, the utility value is
determined from the primitive task/plan, so the utility of a non-primitive task/plan is
expressed as a range calculated according to the possible lower-level refined plans. It has
been reported that agents should choose the plan that contains the highest utility and
expand it to the next layer for effective planning (Goldwin & Simmons, 1998).

www.intechopen.com

Autonomous Agents94

of information cannot be provided a priori during the design time. Therefore, agents have to
learn an additional utility for MAS contexts.

Fig. 1. Example of a hierarchical description.

Fig. 2. Hierarchical task structure based on the hierarchical model.

3. Planning at the screening level

3.1 Planning architecture
In our planning architecture, agents first exchange only the presently being generated,
scheduled and executed plans described in a certain abstract-level model, called the
screening level (SL). We assume that the plans at this level are simpler than ones at the
primitive level but are enough to classify the conflicting situations. The SL plans presently
scheduled or being executed are called SL-valid plans, and the SL plans that are currently
being generated (so are pending) are called SL-pending plans.
When agent ai starts to create its plan for this environment, it first generates a number of SL
plans (from the abstract-level plan) and tentatively selects one of them (using conventional
utility). It then requests SL-valid and SL-pending plans from other agents to investigate the
possible conflicts between ai's new plan and other plans, by using an estimation based on the
utility with the learned conflict discount as described in Section 4. According to this result, ai
selects one of the SL plans to refine further. This plan is marked as `SL-pending'. If ai is
requested to send its plans during this process, it immediately notifies the request for that it
is `SL planning' and sends the SL-pending plan right after it is determined. Agent ai then
waits for a short while for other unreceived plans; if it receives no other SL plans that have
high conflict discounts, it proceeds to the next stage described below. Otherwise, one of the
agents selects another SL plan instead of the current SL-pending plan; this may slow down
the system in an extremely busy environment, so a tailored method for this issue will need
to be developed in the future.
For further conflicts analysis, agent ai requests primitive plans only from the agents whose
plans are predicted to conflict with ai 's SL plan. Then ai modifies the primitive plan to
eliminate the detected conflicts. If conflict discount is sufficiently learned, the cost of conflict
resolution is relatively low and the resulting plan is acceptable. When ai completes a
primitive plan without conflicts, the plan is scheduled or executed immediately; and its SL-
plan is marked `SL-valid'. Section 4 discusses how ai learns to predict conflicts at the SL and
how the utilities with a conflict discount are estimated.

www.intechopen.com

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 95

of information cannot be provided a priori during the design time. Therefore, agents have to
learn an additional utility for MAS contexts.

Fig. 1. Example of a hierarchical description.

Fig. 2. Hierarchical task structure based on the hierarchical model.

3. Planning at the screening level

3.1 Planning architecture
In our planning architecture, agents first exchange only the presently being generated,
scheduled and executed plans described in a certain abstract-level model, called the
screening level (SL). We assume that the plans at this level are simpler than ones at the
primitive level but are enough to classify the conflicting situations. The SL plans presently
scheduled or being executed are called SL-valid plans, and the SL plans that are currently
being generated (so are pending) are called SL-pending plans.
When agent ai starts to create its plan for this environment, it first generates a number of SL
plans (from the abstract-level plan) and tentatively selects one of them (using conventional
utility). It then requests SL-valid and SL-pending plans from other agents to investigate the
possible conflicts between ai's new plan and other plans, by using an estimation based on the
utility with the learned conflict discount as described in Section 4. According to this result, ai
selects one of the SL plans to refine further. This plan is marked as `SL-pending'. If ai is
requested to send its plans during this process, it immediately notifies the request for that it
is `SL planning' and sends the SL-pending plan right after it is determined. Agent ai then
waits for a short while for other unreceived plans; if it receives no other SL plans that have
high conflict discounts, it proceeds to the next stage described below. Otherwise, one of the
agents selects another SL plan instead of the current SL-pending plan; this may slow down
the system in an extremely busy environment, so a tailored method for this issue will need
to be developed in the future.
For further conflicts analysis, agent ai requests primitive plans only from the agents whose
plans are predicted to conflict with ai 's SL plan. Then ai modifies the primitive plan to
eliminate the detected conflicts. If conflict discount is sufficiently learned, the cost of conflict
resolution is relatively low and the resulting plan is acceptable. When ai completes a
primitive plan without conflicts, the plan is scheduled or executed immediately; and its SL-
plan is marked `SL-valid'. Section 4 discusses how ai learns to predict conflicts at the SL and
how the utilities with a conflict discount are estimated.

www.intechopen.com

Autonomous Agents96

We focus on applications where the same or similar plans are frequently reproduced.
Examples of target applications are planning for the intelligent behaviours in sensor-
network and ubiquitous-computing systems with many devices, such as sensors, effectors
and robots (Figure 1), where agents reside in these devices to control them (Takada et al.,
2003). Examples of application scenarios are described in (Kurihara et al., 2005). In this sort
of application, e.g., robots moving in a room and assisting in people's daily activities, certain
actions are repeated. We assume that other plans that are already scheduled or being
executed are not modified (at least, the plans that have already been approved should be
preferred) in the current implementation. Often this restricts the quality of the resulting
plan. Our aim, however, is to select the most appropriate SL plan in a timely manner. If all
of the plans generated at the SL appear to have high-discount conflicts, the agent can
backtrack and select another plan at the SL or at a higher level; the agent still creates an
abstract plan, which is simpler than creating a useless primitive plan, so we believe that the
cost is not so high.

3.2 Conflict detection at screening level
The agent detects possible conflicts, according to resource and task information at the SL, by
identifying the possibility of whether multiple plans will use the same resources, such as
locations (e.g., squares in Figure 1). An example is illustrated in Figure 3, for which the SL is
level 2 in Figure 1; a square at this SL (specified by a pair of lower-case letters) corresponds
to 4x4 squares in the primitive model (A square in the primitive level is specified by a pair of
positive integers.). In Figure 3, the agent can suggest that task tl = move(cd

→ dd) in the new
plan may conflict with task t'n = move(cd

→ bd) in the SL-valid plan, where move(cd

→ dd)
is the SL plan expressing the agent's movement from somewhere in area (c, d) to area (d, d).
This conflict can be expected if some squares in area (c, d) can be simultaneously occupied
by two agents during a certain time interval.

Fig. 3. Example of a detected conflict.

An agent has to take into account time relationships between tasks in the plans. The
duration of each task in the SL-valid plans has already been determined, but not that of the

new plan. Thus, it uses the expected average duration of each SL task. This value is initially
given as part of the SL model; for example, move(cd

→ bd) takes four ticks if agents (that is,
robots) can move to the next small square in a tick. The expected duration is then
statistically adjusted according to the generated primitive plans induced from this SL task.
The questions of when and where conflicts likely occur and whether their resolutions are
difficult depend upon the system's environment. Suppose that three agents want to pass
through area (b, d). In the SL model, this area (place is a resource) is expressed as a single
entity, so conflicts can be expected. However, this area has enough room for three agents if
each agent occupies a small square at the primitive level; hence, the conflicts might not
actually occur or might be easily resolved. However, in (c, d) where agents move only left or
right, there is not enough room for three agents. Thus, it seems probable that the agents'
plans will have conflicts there. Of course, this probability is influenced by the temporal
relationships of the agents entering area (c, d). If a conflict is detected, one of the agents
must step out of the other agent's way and wait for it to pass by before resuming its
movement.

Method Description

Synchronizat
ion

 Stop until another agent performing a task that requires a needed
resource finishes the task and releases the resource. Wait for a primitive
task or use of some resource by another agent until the task finishes or
the agent releases the resource. This method may insert a number for
“wait for a tick” for synchronization.

Waiting
Stop until other agents finish tasks that create pre-conditions of the local
task. This method may insert a number for “wait for a tick” for
synchronization.

Replacement

Replace tasks whose post-conditions do not affect tasks in other agents or
whose pre-conditions are not affected by tasks in other agents. This
method may replace the conflicting task with others, but these other tasks
usually have lower utility (or incur extra cost).

Reordering Reorder tasks to avoid negative relationships.

Insertion
Insert tasks whose post-conditions recover the pre-conditions of the task.
This method adds some tasks, so the utility of the resulting plan
decreases.

Commission

Entrust the task to other agents. This form of resolution is preferable
when, for example, a conflict can only be resolved by other agents, or if
another agent can do the task at lower cost. This method can eliminate
some tasks, though some communications, not only for detecting the
sharable tasks of the plans but also for committing them to another agent,
take place.

Table 1. Examples of methods of resolution.

3.3 Conflict detection and resolution
A number of resolution methods, shown in Table 1, are applied to resolve conflicts. Thus,
the agents involved must negotiate which agent (or all agents involved) should commit to
modifying their plans and then decide what methods should be applied. These resolution

www.intechopen.com

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 97

We focus on applications where the same or similar plans are frequently reproduced.
Examples of target applications are planning for the intelligent behaviours in sensor-
network and ubiquitous-computing systems with many devices, such as sensors, effectors
and robots (Figure 1), where agents reside in these devices to control them (Takada et al.,
2003). Examples of application scenarios are described in (Kurihara et al., 2005). In this sort
of application, e.g., robots moving in a room and assisting in people's daily activities, certain
actions are repeated. We assume that other plans that are already scheduled or being
executed are not modified (at least, the plans that have already been approved should be
preferred) in the current implementation. Often this restricts the quality of the resulting
plan. Our aim, however, is to select the most appropriate SL plan in a timely manner. If all
of the plans generated at the SL appear to have high-discount conflicts, the agent can
backtrack and select another plan at the SL or at a higher level; the agent still creates an
abstract plan, which is simpler than creating a useless primitive plan, so we believe that the
cost is not so high.

3.2 Conflict detection at screening level
The agent detects possible conflicts, according to resource and task information at the SL, by
identifying the possibility of whether multiple plans will use the same resources, such as
locations (e.g., squares in Figure 1). An example is illustrated in Figure 3, for which the SL is
level 2 in Figure 1; a square at this SL (specified by a pair of lower-case letters) corresponds
to 4x4 squares in the primitive model (A square in the primitive level is specified by a pair of
positive integers.). In Figure 3, the agent can suggest that task tl = move(cd

→ dd) in the new
plan may conflict with task t'n = move(cd

→ bd) in the SL-valid plan, where move(cd

→ dd)
is the SL plan expressing the agent's movement from somewhere in area (c, d) to area (d, d).
This conflict can be expected if some squares in area (c, d) can be simultaneously occupied
by two agents during a certain time interval.

Fig. 3. Example of a detected conflict.

An agent has to take into account time relationships between tasks in the plans. The
duration of each task in the SL-valid plans has already been determined, but not that of the

new plan. Thus, it uses the expected average duration of each SL task. This value is initially
given as part of the SL model; for example, move(cd

→ bd) takes four ticks if agents (that is,
robots) can move to the next small square in a tick. The expected duration is then
statistically adjusted according to the generated primitive plans induced from this SL task.
The questions of when and where conflicts likely occur and whether their resolutions are
difficult depend upon the system's environment. Suppose that three agents want to pass
through area (b, d). In the SL model, this area (place is a resource) is expressed as a single
entity, so conflicts can be expected. However, this area has enough room for three agents if
each agent occupies a small square at the primitive level; hence, the conflicts might not
actually occur or might be easily resolved. However, in (c, d) where agents move only left or
right, there is not enough room for three agents. Thus, it seems probable that the agents'
plans will have conflicts there. Of course, this probability is influenced by the temporal
relationships of the agents entering area (c, d). If a conflict is detected, one of the agents
must step out of the other agent's way and wait for it to pass by before resuming its
movement.

Method Description

Synchronizat
ion

 Stop until another agent performing a task that requires a needed
resource finishes the task and releases the resource. Wait for a primitive
task or use of some resource by another agent until the task finishes or
the agent releases the resource. This method may insert a number for
“wait for a tick” for synchronization.

Waiting
Stop until other agents finish tasks that create pre-conditions of the local
task. This method may insert a number for “wait for a tick” for
synchronization.

Replacement

Replace tasks whose post-conditions do not affect tasks in other agents or
whose pre-conditions are not affected by tasks in other agents. This
method may replace the conflicting task with others, but these other tasks
usually have lower utility (or incur extra cost).

Reordering Reorder tasks to avoid negative relationships.

Insertion
Insert tasks whose post-conditions recover the pre-conditions of the task.
This method adds some tasks, so the utility of the resulting plan
decreases.

Commission

Entrust the task to other agents. This form of resolution is preferable
when, for example, a conflict can only be resolved by other agents, or if
another agent can do the task at lower cost. This method can eliminate
some tasks, though some communications, not only for detecting the
sharable tasks of the plans but also for committing them to another agent,
take place.

Table 1. Examples of methods of resolution.

3.3 Conflict detection and resolution
A number of resolution methods, shown in Table 1, are applied to resolve conflicts. Thus,
the agents involved must negotiate which agent (or all agents involved) should commit to
modifying their plans and then decide what methods should be applied. These resolution

www.intechopen.com

Autonomous Agents98

methods are defined as rules and applied under a certain policy. The resulting plans usually
have extra cost for the resolutions. In this paper, we do not care what kind of policy is used;
our only concern is the cost of resolution and the quality of the resulting plan.

4. Conflict estimation from conflict patterns

4.1 Conflict pattern --- an expression of conflicting situations
A conflict pattern (CP) expresses a conflict between SL plans. First, we focus on an SL task
identified as having a conflict. Let t be an SL task in a new SL plan p, denoted by t

∈ p.
Suppose that SL plans p1, …, pk of other agents are SL-valid. Then CP, denoted here by P(t),
is expressed as

P(t) = (t, (t'1, o1), …, (t'h, oh))

where t’i

∈ pj (1

≤

∃ j

≤ h) and oi is optional data. CP describes the situation where t is
expected to conflict with t'1, …, t'h in SL-valid plans.
The optional data oi can be any information that can be used to distinguish conflicting
situations more accurately. For instance, it may be information about (relative) the time of
execution and agents' names or types that suggest their ability/performance or physical size
(when agents, such as robots and vehicles, have physical bodies). In the example of Figure 3,
CP is expressed as

P1(tl) = (tl, (t'n, (max (s'n – sl, 0), min(el – sl, e'n – sl)))),

where the optional data is the relative time interval during which the expected conflict may
occur. To simplify the expression of this example, we describe the optional data in a more
abstract form. For this purpose, we can use the expressions of time relativity; the duration of
t'n overlaps the anterior half (ah) or posterior half (ph) of the duration of tl. Other cases of
time relativity are expressed as “overlap (ol).” Thus, P1(tl) = (tl, (t'n, r'l)), where r'l = ah, ph or
ol.
The situation in Figure 4 shows that tl may conflict with t'n+1 and t''m-1. The following CP
corresponds to this situation:

P2(tl) = (tl, (t'n+1, r'l), (t''m-1, r''l))

where r'l, r''l = ah, ph or ol.

4.2 Concept of conflict discount
Let U(p) (or U(t)) be the initial utility for a primitive plan p (or a primitive task t). U(p) for a
non-primitive plan (or task) is the range that cumulatively indicates possible lower-
primitive plans/tasks. We introduce the conflict discount for a CP, cd(P). The conflict
discount is conceptually defined as

 cd(P) = U(pp) – U(ppm) + CCR(P) (1)

where pp is the primitive plan of SL plan p before conflict resolution, and ppm is the modified
primitive plan for resolving conflict P. The term CCR indicates the cost of conflict detection
and resolution at the primitive level, which is calculated by combining the costs of
requesting, receiving, and analyzing primitive plans from other agents and applying conflict
resolution rules to modify the new plan. So even if no conflict actually occurs at the
primitive level (U(pp)=U(ppm)), cd(P)

≠ 0. This is because, if a conflict is expected at SL, the
cost of conflict detection will be incurred. Define cd’(P) = U(pp) – U(ppm) as the difference in
utilities. The estimation of cd(P) is described in the next section.
When an agent has a new SL plan p that is expected to have CPs, P1 , …, PN,

cd(p) =

i = 1

N

∑ cd(Pi).

The agent uses the modified utility U(p) – cd(p) instead of U(p). When no conflicts are
predicted, the agent uses U(p) since cd(p) = 0. Our method statistically adjusts the conflict
discounts for frequently appearing CPs. Because we focus on the efficiency of plans, we
assume that U(p) is the estimated execution time of the primitive plan in the example below.

4.3 Estimation of conflict discount
The conflict discount for a CP, cd(P), is iteratively adjusted by the average or update
function as follows when CP is observed s times.

 cds(P) =

di
si = 1

s

∑ (2)

 cds(P) =

λ * cds-1(P) + (1 –

λ) * ds (3)

where 0<

λ < 1 and ds indicates the s-th CCRs plus the s-th observed utility difference
between the original primitive plan and the plan after the resolution of the conflict
corresponding to P. Eq. (3) is more sensitive to environmental changes than Eq. (2). Note
that the conflict of P might not occur at the primitive level after all; if so, ds = 0 + CCRs. For
example, if the partner agent takes route (1) in Figure 3, and this conflict can be resolved by
taking a detour or by using “wait for two ticks” to wait until the partner agent passes by. In
this case, ds =2 + CCRs. However, if the partner agent takes route (2) in Figure 3, no conflict
actually occurs and ds = 0 + CCRs.
To acquire the CCR value for each plan, we assume that agents can monitor their planning
activities by themselves. More precisely, CCR consists of the time for (1) requesting and
receiving primitive plans from other agents that are suggested to have conflicts, (2)
detecting actual conflicts between these plans and the local plan, and (3) modifying the local
plan to resolve these conflicts. Agents keep the times for these activities. The conflict
discount is re-calculated using the value of CCR plus the differential utility for each CP
acquired by each agent from Eq. (2) or (3).

www.intechopen.com

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 99

methods are defined as rules and applied under a certain policy. The resulting plans usually
have extra cost for the resolutions. In this paper, we do not care what kind of policy is used;
our only concern is the cost of resolution and the quality of the resulting plan.

4. Conflict estimation from conflict patterns

4.1 Conflict pattern --- an expression of conflicting situations
A conflict pattern (CP) expresses a conflict between SL plans. First, we focus on an SL task
identified as having a conflict. Let t be an SL task in a new SL plan p, denoted by t

∈ p.
Suppose that SL plans p1, …, pk of other agents are SL-valid. Then CP, denoted here by P(t),
is expressed as

P(t) = (t, (t'1, o1), …, (t'h, oh))

where t’i

∈ pj (1

≤

∃ j

≤ h) and oi is optional data. CP describes the situation where t is
expected to conflict with t'1, …, t'h in SL-valid plans.
The optional data oi can be any information that can be used to distinguish conflicting
situations more accurately. For instance, it may be information about (relative) the time of
execution and agents' names or types that suggest their ability/performance or physical size
(when agents, such as robots and vehicles, have physical bodies). In the example of Figure 3,
CP is expressed as

P1(tl) = (tl, (t'n, (max (s'n – sl, 0), min(el – sl, e'n – sl)))),

where the optional data is the relative time interval during which the expected conflict may
occur. To simplify the expression of this example, we describe the optional data in a more
abstract form. For this purpose, we can use the expressions of time relativity; the duration of
t'n overlaps the anterior half (ah) or posterior half (ph) of the duration of tl. Other cases of
time relativity are expressed as “overlap (ol).” Thus, P1(tl) = (tl, (t'n, r'l)), where r'l = ah, ph or
ol.
The situation in Figure 4 shows that tl may conflict with t'n+1 and t''m-1. The following CP
corresponds to this situation:

P2(tl) = (tl, (t'n+1, r'l), (t''m-1, r''l))

where r'l, r''l = ah, ph or ol.

4.2 Concept of conflict discount
Let U(p) (or U(t)) be the initial utility for a primitive plan p (or a primitive task t). U(p) for a
non-primitive plan (or task) is the range that cumulatively indicates possible lower-
primitive plans/tasks. We introduce the conflict discount for a CP, cd(P). The conflict
discount is conceptually defined as

 cd(P) = U(pp) – U(ppm) + CCR(P) (1)

where pp is the primitive plan of SL plan p before conflict resolution, and ppm is the modified
primitive plan for resolving conflict P. The term CCR indicates the cost of conflict detection
and resolution at the primitive level, which is calculated by combining the costs of
requesting, receiving, and analyzing primitive plans from other agents and applying conflict
resolution rules to modify the new plan. So even if no conflict actually occurs at the
primitive level (U(pp)=U(ppm)), cd(P)

≠ 0. This is because, if a conflict is expected at SL, the
cost of conflict detection will be incurred. Define cd’(P) = U(pp) – U(ppm) as the difference in
utilities. The estimation of cd(P) is described in the next section.
When an agent has a new SL plan p that is expected to have CPs, P1 , …, PN,

cd(p) =

i = 1

N

∑ cd(Pi).

The agent uses the modified utility U(p) – cd(p) instead of U(p). When no conflicts are
predicted, the agent uses U(p) since cd(p) = 0. Our method statistically adjusts the conflict
discounts for frequently appearing CPs. Because we focus on the efficiency of plans, we
assume that U(p) is the estimated execution time of the primitive plan in the example below.

4.3 Estimation of conflict discount
The conflict discount for a CP, cd(P), is iteratively adjusted by the average or update
function as follows when CP is observed s times.

 cds(P) =

di
si = 1

s

∑ (2)

 cds(P) =

λ * cds-1(P) + (1 –

λ) * ds (3)

where 0<

λ < 1 and ds indicates the s-th CCRs plus the s-th observed utility difference
between the original primitive plan and the plan after the resolution of the conflict
corresponding to P. Eq. (3) is more sensitive to environmental changes than Eq. (2). Note
that the conflict of P might not occur at the primitive level after all; if so, ds = 0 + CCRs. For
example, if the partner agent takes route (1) in Figure 3, and this conflict can be resolved by
taking a detour or by using “wait for two ticks” to wait until the partner agent passes by. In
this case, ds =2 + CCRs. However, if the partner agent takes route (2) in Figure 3, no conflict
actually occurs and ds = 0 + CCRs.
To acquire the CCR value for each plan, we assume that agents can monitor their planning
activities by themselves. More precisely, CCR consists of the time for (1) requesting and
receiving primitive plans from other agents that are suggested to have conflicts, (2)
detecting actual conflicts between these plans and the local plan, and (3) modifying the local
plan to resolve these conflicts. Agents keep the times for these activities. The conflict
discount is re-calculated using the value of CCR plus the differential utility for each CP
acquired by each agent from Eq. (2) or (3).

www.intechopen.com

Autonomous Agents100

Fig. 4. Example of conflicts between plans.

The calculation of cd(p) of SL plan p, like the conflict resolution process, is an iteration of the
procedures for (1) searching for, from the first task, the task t that has a conflict pattern P
with other plans, and (2) predicting the conflict discount cd(P). In procedure (2), the
additional cost of avoiding conflicts is predicted, and thus the start times of subsequent
tasks may be delayed for this amount of time. Since a number of conflicts may appear and
disappear in the remaining part of the plan because of this delay, the agent detects the next
conflicting task by using the adjusted duration.

4.4 Sub-conflict patterns
It is probable that many CPs will be created, and storing many CPs in the casebase would
require a large amount of memory. This also incurs a large search cost, which degrades
scalability. It also lowers the performance of conflict estimations of the CPs. Here, we can try
to reduce the memory taken up by the CPs.
Suppose that P1 and P2 are CPs:

P1 = (t, (t1, r1), …, (tn, rn))
P2 = (t', (t'1, r'1), …, (t'm, r'm))

If t = t' and {(t1, r1), …, (tn, rn)}

⊂ {(t'1, r'1), …, (t'm, r'm)}, then P1 is the sub-conflict pattern
(sub-CP) of P2, denoted by P1

⊂ P2. Now, we assume that cd(P1)

≤ cd(P2) if P1

⊂ P2. This is
a natural assumption because P1 is resolved if the conflict with P2 is resolved.
To save memory, the agent only stores CPs whose conflict discount values are near the
turning point of the decision. For example, if cd(P2) is sufficiently small, the cd value for P1
(

⊆P2) will not necessarily be stored, so its cd estimation can be eliminated. Similarly, if
cd(P1) is large, which means that the agent will give up the current SL plan, the cd value for
P2 (

⊇P1) does not have to be stored.

5. Experiments

5.1 Conflict discount estimation
We experimentally investigated how cd' (instead of cd) changes depending on the ways that
agents interfere in a simulated laboratory room (Figure 1). Agent A randomly selects a

starting point in region R1 and a goal in region R2 and then tries to generate a new plan for
this movement. Another agent, B, already has an approved plan whose start and goal are
also randomly selected in R1 and R2. In this setting, these agents do not cause any conflict
when they may take different routes, such as to the north or south of the meeting table.
However, they are likely to have conflicts when they both have to pass through area (c, d)
because chairs and computer tables slightly narrow the route through it. Hence, we focused
on the cases in which a conflict would be expected there at the SL and iterated the
experiment until A's task move(cd

→ dd) conflicted with B's task, which were both expressed
as move(cd

→ dd) (same direction) at the SL. Note that the duration of A's SL plan was an
estimated value that may differ from the actual duration of execution. This estimated
duration was not used in the experiments in (Sugawara et al., 2005); thus, some of the
experimental values shown below are slightly different from the ones reported in that paper.
The SL plan was expanded into a primitive plan, and we investigated the conflict discount
after conflict resolution. Because B requests A's primitive plan, extra costs may be incurred
even if no conflicts end up occurring. Therefore, in the following experiments, the number
of plans of other agents that were predicted to have conflicts with the new plan was used as
the approximate value of CCR (hence, a constant for each P) of Eq. (1), because it is
proportional to the number of these plans. This assumption means that it takes a tick to
request and receive a primitive plan from another agent, check for conflicts between the
received and local plans, and resolve these conflicts. We iterated this experiment a few
hundred times to calculate cd’.
The task move(cd

→ dd) usually takes four to six ticks in this environment. Note that we
assumed the SL-task move(X,Y) during interval [s, e] occupies resource X during s to e and
resource Y at e and that the primitive-level task move(x, y) during [s, s+1] (a primitive task
takes 1 tick) occupies x and y during s to s+1. If the agent finds a possible conflict within the
first two ticks, the relative time relationship is denoted by ah; Additionally note that if it
finds such a possibility within the last two ticks, the relative time relationship is denoted by
ph. Otherwise, the relative time relationship is denoted by ol. Hence, we estimated the
values of cd’ for the following conflict patterns:

P3 = (move(cd

→ dd), ((move(cd

→ dd), r))),

where r is ah, ph or ol, meaning that these two agents move in the same direction.

Fig. 5. Estimated cd’ and average values.

www.intechopen.com

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 101

Fig. 4. Example of conflicts between plans.

The calculation of cd(p) of SL plan p, like the conflict resolution process, is an iteration of the
procedures for (1) searching for, from the first task, the task t that has a conflict pattern P
with other plans, and (2) predicting the conflict discount cd(P). In procedure (2), the
additional cost of avoiding conflicts is predicted, and thus the start times of subsequent
tasks may be delayed for this amount of time. Since a number of conflicts may appear and
disappear in the remaining part of the plan because of this delay, the agent detects the next
conflicting task by using the adjusted duration.

4.4 Sub-conflict patterns
It is probable that many CPs will be created, and storing many CPs in the casebase would
require a large amount of memory. This also incurs a large search cost, which degrades
scalability. It also lowers the performance of conflict estimations of the CPs. Here, we can try
to reduce the memory taken up by the CPs.
Suppose that P1 and P2 are CPs:

P1 = (t, (t1, r1), …, (tn, rn))
P2 = (t', (t'1, r'1), …, (t'm, r'm))

If t = t' and {(t1, r1), …, (tn, rn)}

⊂ {(t'1, r'1), …, (t'm, r'm)}, then P1 is the sub-conflict pattern
(sub-CP) of P2, denoted by P1

⊂ P2. Now, we assume that cd(P1)

≤ cd(P2) if P1

⊂ P2. This is
a natural assumption because P1 is resolved if the conflict with P2 is resolved.
To save memory, the agent only stores CPs whose conflict discount values are near the
turning point of the decision. For example, if cd(P2) is sufficiently small, the cd value for P1
(

⊆P2) will not necessarily be stored, so its cd estimation can be eliminated. Similarly, if
cd(P1) is large, which means that the agent will give up the current SL plan, the cd value for
P2 (

⊇P1) does not have to be stored.

5. Experiments

5.1 Conflict discount estimation
We experimentally investigated how cd' (instead of cd) changes depending on the ways that
agents interfere in a simulated laboratory room (Figure 1). Agent A randomly selects a

starting point in region R1 and a goal in region R2 and then tries to generate a new plan for
this movement. Another agent, B, already has an approved plan whose start and goal are
also randomly selected in R1 and R2. In this setting, these agents do not cause any conflict
when they may take different routes, such as to the north or south of the meeting table.
However, they are likely to have conflicts when they both have to pass through area (c, d)
because chairs and computer tables slightly narrow the route through it. Hence, we focused
on the cases in which a conflict would be expected there at the SL and iterated the
experiment until A's task move(cd

→ dd) conflicted with B's task, which were both expressed
as move(cd

→ dd) (same direction) at the SL. Note that the duration of A's SL plan was an
estimated value that may differ from the actual duration of execution. This estimated
duration was not used in the experiments in (Sugawara et al., 2005); thus, some of the
experimental values shown below are slightly different from the ones reported in that paper.
The SL plan was expanded into a primitive plan, and we investigated the conflict discount
after conflict resolution. Because B requests A's primitive plan, extra costs may be incurred
even if no conflicts end up occurring. Therefore, in the following experiments, the number
of plans of other agents that were predicted to have conflicts with the new plan was used as
the approximate value of CCR (hence, a constant for each P) of Eq. (1), because it is
proportional to the number of these plans. This assumption means that it takes a tick to
request and receive a primitive plan from another agent, check for conflicts between the
received and local plans, and resolve these conflicts. We iterated this experiment a few
hundred times to calculate cd’.
The task move(cd

→ dd) usually takes four to six ticks in this environment. Note that we
assumed the SL-task move(X,Y) during interval [s, e] occupies resource X during s to e and
resource Y at e and that the primitive-level task move(x, y) during [s, s+1] (a primitive task
takes 1 tick) occupies x and y during s to s+1. If the agent finds a possible conflict within the
first two ticks, the relative time relationship is denoted by ah; Additionally note that if it
finds such a possibility within the last two ticks, the relative time relationship is denoted by
ph. Otherwise, the relative time relationship is denoted by ol. Hence, we estimated the
values of cd’ for the following conflict patterns:

P3 = (move(cd

→ dd), ((move(cd

→ dd), r))),

where r is ah, ph or ol, meaning that these two agents move in the same direction.

Fig. 5. Estimated cd’ and average values.

www.intechopen.com

Autonomous Agents102

Tables 1 and 2 show the average values from ten experiments based on ten different random
seeds, and the graphs in Figure 5 are from one of these experiments.
Graphs (a) in Figure 5 show the estimated values of cd’m (

λ = 0.98, 1

≤ m

≤ 500) derived
from Eqs. (2) and (3) when r = ol. In these cases, cd’(P3) = 0.71 (so cd(P3) = cd'(P3)+ CCR(P3)
= 1.71), which is reasonably small. This is because the two-square-wide path is wide enough
for two agents to pass through the area, but agent A sometimes has to take a detour to avoid
conflicts. Other cases, such as moving in the opposite direction, are shown in (Sugawara et
al., 2005).
However, the cd’ values largely differ when two agents, B and C, which have approved
plans (i.e., plans that do not conflict with each other), move in the same direction move(cd

→
dd) and agent A begins to create a plan to move in the opposite direction though the same
area. The conflict pattern of this situation is expressed as

P4 = (move(cd

→bd)), ((move(cd

→dd)), ol), (move(cd

→dd)), ol))).

The estimated cd’(P4) = 5.12 (cd(P4) = 7.12) is quite different from the previous cases, as
shown by graphs (b) in Figure 5. Because B and C move almost simultaneously without
conflicts, they usually occupy the narrow route in area (c, d) together. Thus, agent A always
has to move aside, wait for several ticks until B and C pass, and then move back to the
original route. If the agent's new plan is predicted to have this conflict pattern at the SL, it
can select, after learning, another route, such as one taking it north of the meeting table or
another taking it south of the sofa in Figure 1, provided the route is shorter than the one in
the original plan plus 7.12.
Table 2 shows the estimated cd’ values in time-relativity cases other than P4. For example, if
one of the relative time relationships in P4 is ah (This CP is denoted by P'4), the estimated
cd’(P'4) = 1.80. This is small because if B and C move a slight distance away from each other,
A can weave its way around them. In the case of ph-ph, A's planned task move(cd

→ bd) may
conflict in the latter half of its execution, so the agents will usually not meet in the narrow
area (A moves right to left). However, because of uncertainty, they infrequently meet at
different times in the narrow area. Table 2 suggests that the values of cd’ depend on the
resource structure of the routes, especially area (c, d) in Figure 1.

 ol-ol (P4) ph-ph ah-ah ah-ol (P'4) ah-ph ph-ol

Value of cd' 5.12 3.67 3.30 1.80 0.75 1.87
Table 2. Experimentally estimated conflict discount cd’.

Suppose that in another situation the agent finds a CP, P5 such that P4

⊂ P5. This CP may
appear when conflict among more than four agents at (c, d) is expected. In this case, cd’(P5)
must be larger than 5.12. If this value is larger than the predefined threshold, the agent can
calculate that cd(P5)

≥ 7.12 (or cd(P5)

≥ 8.12 if this conflict occurs among more than four
agents), suggesting that it should try to find another route or shift (delay) its start time to
avoid this conflict, even if it has no data about P5. Conversely, cd’(P'4) = 1.80 can induce
cd’(P3)

≤ 1.80. If this value is small enough, the agent does not need to calculate cd(P3).
Table 2 also indicates that cd’(P3)

≤ 0.70 if r = ah or ph in P3.

5.2 Cost (length) of generated plans
We investigated how efficient plans are generated with lower cost after a conflict pattern is
found. In our planning strategy, agent A tries to select or generate another SL plan that is
expected to have no conflict with other plans and whose estimated utility (in our case, the
length of the plan) is less than the estimated utility of the original SL plan plus cd (if the CP
is P4, then cd(P4) is 7.12). The cost of selecting or generating another SL-plan is relatively
low because we can set the upper limit of plan length. If A can find the new SL plan, it is
selected and further refined. If A cannot find one, the original plan is selected (so conflict
detection and resolution may be required). In the conventional planning strategy, the first
SL plan to be generated would always be refined even if some conflicts were expected. (Of
course, there might be no conflicts after all).
We examined, in our simulated room, the improvement of our planning strategy that
resulted from using the estimated conflict discount value in Table 2. The results of this
experiment (Table 3) show that our planning strategy provides an improvement of 2.65 ticks
on average when a conflicting situation corresponding P4 is detected. In other cases, our
planning method can generate efficient plans except when the conflict time relativity is ph-ol.
This improvement is not very large. However, the ability to provide some information for
deciding whether the agent should continue to refine the current plan even if the conflict
resolution process will very likely be invoked or try to find another plan that does not have
conflict with other agents is significant in applications like ours. In the ph-ol case, cd’ is low
so A cannot find any other better route.

 CPs Conventional strategy Our planning strategy Improvement
P4 (ol-ol) 33.34 30.69 2.65 %

ah-ah 32.39 30.44 1.95 %
ph-ph 30.93 29.40 1.53 %
ph-ol 23.80 23.80 0 %

Table 3. Cost (length) of resulting primitive plans. Columns 1 and 2 respectively show the
average cost of primitive plans derived from the original SL plans and that of primitive
plans derived under our planning strategy. In both cases, the cost of conflict detection and
resolution is included.

The improvement shown in Table 3 seems fairly small, but our simulated laboratory room is
based on an actual room; we believe that our method would be more significant in other
situations/environments. For example, (1) if more robots were to move right to left in the
narrow area in Figure 3, (2) if the chair there were a bench (a longer chair), or (3) if there
were a shorter detour, the improvement would be larger, thus the resulting plans would be
of relatively higher quality than the ones obtained by a conventional planning strategy. We
finally note that, although the start and goal positions were selected randomly in our
experiments, agents (including persons) in actual applications usually have fixed start and
goal points. Therefore, we believe that the improvements derived from the experimental
results would appear more when this is actually applied to this kind of systems.

www.intechopen.com

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 103

Tables 1 and 2 show the average values from ten experiments based on ten different random
seeds, and the graphs in Figure 5 are from one of these experiments.
Graphs (a) in Figure 5 show the estimated values of cd’m (

λ = 0.98, 1

≤ m

≤ 500) derived
from Eqs. (2) and (3) when r = ol. In these cases, cd’(P3) = 0.71 (so cd(P3) = cd'(P3)+ CCR(P3)
= 1.71), which is reasonably small. This is because the two-square-wide path is wide enough
for two agents to pass through the area, but agent A sometimes has to take a detour to avoid
conflicts. Other cases, such as moving in the opposite direction, are shown in (Sugawara et
al., 2005).
However, the cd’ values largely differ when two agents, B and C, which have approved
plans (i.e., plans that do not conflict with each other), move in the same direction move(cd

→
dd) and agent A begins to create a plan to move in the opposite direction though the same
area. The conflict pattern of this situation is expressed as

P4 = (move(cd

→bd)), ((move(cd

→dd)), ol), (move(cd

→dd)), ol))).

The estimated cd’(P4) = 5.12 (cd(P4) = 7.12) is quite different from the previous cases, as
shown by graphs (b) in Figure 5. Because B and C move almost simultaneously without
conflicts, they usually occupy the narrow route in area (c, d) together. Thus, agent A always
has to move aside, wait for several ticks until B and C pass, and then move back to the
original route. If the agent's new plan is predicted to have this conflict pattern at the SL, it
can select, after learning, another route, such as one taking it north of the meeting table or
another taking it south of the sofa in Figure 1, provided the route is shorter than the one in
the original plan plus 7.12.
Table 2 shows the estimated cd’ values in time-relativity cases other than P4. For example, if
one of the relative time relationships in P4 is ah (This CP is denoted by P'4), the estimated
cd’(P'4) = 1.80. This is small because if B and C move a slight distance away from each other,
A can weave its way around them. In the case of ph-ph, A's planned task move(cd

→ bd) may
conflict in the latter half of its execution, so the agents will usually not meet in the narrow
area (A moves right to left). However, because of uncertainty, they infrequently meet at
different times in the narrow area. Table 2 suggests that the values of cd’ depend on the
resource structure of the routes, especially area (c, d) in Figure 1.

 ol-ol (P4) ph-ph ah-ah ah-ol (P'4) ah-ph ph-ol

Value of cd' 5.12 3.67 3.30 1.80 0.75 1.87
Table 2. Experimentally estimated conflict discount cd’.

Suppose that in another situation the agent finds a CP, P5 such that P4

⊂ P5. This CP may
appear when conflict among more than four agents at (c, d) is expected. In this case, cd’(P5)
must be larger than 5.12. If this value is larger than the predefined threshold, the agent can
calculate that cd(P5)

≥ 7.12 (or cd(P5)

≥ 8.12 if this conflict occurs among more than four
agents), suggesting that it should try to find another route or shift (delay) its start time to
avoid this conflict, even if it has no data about P5. Conversely, cd’(P'4) = 1.80 can induce
cd’(P3)

≤ 1.80. If this value is small enough, the agent does not need to calculate cd(P3).
Table 2 also indicates that cd’(P3)

≤ 0.70 if r = ah or ph in P3.

5.2 Cost (length) of generated plans
We investigated how efficient plans are generated with lower cost after a conflict pattern is
found. In our planning strategy, agent A tries to select or generate another SL plan that is
expected to have no conflict with other plans and whose estimated utility (in our case, the
length of the plan) is less than the estimated utility of the original SL plan plus cd (if the CP
is P4, then cd(P4) is 7.12). The cost of selecting or generating another SL-plan is relatively
low because we can set the upper limit of plan length. If A can find the new SL plan, it is
selected and further refined. If A cannot find one, the original plan is selected (so conflict
detection and resolution may be required). In the conventional planning strategy, the first
SL plan to be generated would always be refined even if some conflicts were expected. (Of
course, there might be no conflicts after all).
We examined, in our simulated room, the improvement of our planning strategy that
resulted from using the estimated conflict discount value in Table 2. The results of this
experiment (Table 3) show that our planning strategy provides an improvement of 2.65 ticks
on average when a conflicting situation corresponding P4 is detected. In other cases, our
planning method can generate efficient plans except when the conflict time relativity is ph-ol.
This improvement is not very large. However, the ability to provide some information for
deciding whether the agent should continue to refine the current plan even if the conflict
resolution process will very likely be invoked or try to find another plan that does not have
conflict with other agents is significant in applications like ours. In the ph-ol case, cd’ is low
so A cannot find any other better route.

 CPs Conventional strategy Our planning strategy Improvement
P4 (ol-ol) 33.34 30.69 2.65 %

ah-ah 32.39 30.44 1.95 %
ph-ph 30.93 29.40 1.53 %
ph-ol 23.80 23.80 0 %

Table 3. Cost (length) of resulting primitive plans. Columns 1 and 2 respectively show the
average cost of primitive plans derived from the original SL plans and that of primitive
plans derived under our planning strategy. In both cases, the cost of conflict detection and
resolution is included.

The improvement shown in Table 3 seems fairly small, but our simulated laboratory room is
based on an actual room; we believe that our method would be more significant in other
situations/environments. For example, (1) if more robots were to move right to left in the
narrow area in Figure 3, (2) if the chair there were a bench (a longer chair), or (3) if there
were a shorter detour, the improvement would be larger, thus the resulting plans would be
of relatively higher quality than the ones obtained by a conventional planning strategy. We
finally note that, although the start and goal positions were selected randomly in our
experiments, agents (including persons) in actual applications usually have fixed start and
goal points. Therefore, we believe that the improvements derived from the experimental
results would appear more when this is actually applied to this kind of systems.

www.intechopen.com

Autonomous Agents104

6. Discussion and related work

There have been a number of studies on efficient planning in the MAS context. For example,
GPGP (Decker & Lesser, 1992) is a general framework for generating effective plans using
task and resource relationships among agents. Our method can be used in this framework to
identify which abstract plan (task) should be refined first so that the map of the task
relationships related to the plan can be created.
Hierarchical planning and coordination issues for improving MAS planning have also been
discussed. For example, Ref. (Clement et al., 2001) proposed choosing the most appropriate
abstract task/plan on the basis of summary information derived from the primitive tasks
and plans in a bottom-up fashion. This method can avoid hopeless planning if some
resources are recognized to be insufficient at an abstract level. It also introduced fewest-
threats-first (FTF) heuristics to choose a lower (deeper) plan. Our approach focuses on the
cases where conflicts can be accurately identified at only deeper levels, because the tasks,
resources, and their environment in an abstract model are described in an abstract way.
Furthermore, a plan with fewer conflicts does not always lead to a better plan; it is possible
that only one conflict fails to be resolved but that conflict is nonetheless a critical one. The
idea behind our research is that, although conflicts may be invisible at abstract levels
(including the SL), there is a tendency that conflicts often occur depending on the
environmental factors related to the availability and use of resources, such as the location of
agents, the kind of resources, and type of agents, as well as on the kind of task. Hence, we
aim at expressing and distinguishing these situations by using CPs in order to enable agents
to statistically learn the difficulty of conflict resolution and the quality of a resulting plan.
A number of issues related to MAS planning have been investigated in case-based reasoning
(CBR) or its related domains. For example, (Giampapa & Sycara, 2001) proposed a
conversational case-based reasoner, called NaCoDAE, which is a type of agent in their MAS
applications and helps users decide a course of action by engaging them in a dialogue in
which they must describe the problem or situation of assigning missions to platoons. Plan
reuse for the same/similar situations in a MAS context has also been proposed for MAS
coordination (Sugawara, 1995) and collaboration (Plaza, 2005). A remarkable work similar to
our approach is (Macedo & Cardoso, 2004), where a case is used to expand an abstract plan
to a less abstract one in HTN, although we focus on avoiding conflicts and/or selecting
costless conflicts. In this sense, our motivation is more similar to that in (Aha et al., 2005)
which applied CBR to a real-time strategy game.
Our work is also related to hierarchical reinforcement learning, such as (Dietterich, 1998;
Kaelbling, 1993; Sutton et al., 1998), because an abstract task is considered to be a subroutine
or a subfunction to be learned. For example, in the MAXQ approach (Dietterich, 1998), a task
is divided into subroutines that are individually learned by RL methods. Our approach is to
select an appropriate subroutine for each situation. In MAXQ, the conflict discount is
assumed to have been learned at lower levels. However, in a multi-agent setting, it is
naturally difficult to define the task hierarchy for all agents simultaneously.
One clear limitation of our method is that the reliability of cd values heavily depends on the
accuracy of the SL conflict detection and time-estimation processes. Thus, it is very
important to select the appropriate SL and carefully describe the SL model. For example, if
level 1 in Figure 1 is the SL, our method does not work well since that level is too abstract.
As mentioned above, another issue is that the use of optional data in CPs is important for
distinguishing one situation from another. To distinguish situations, our method needs the

location of task execution (which may determine available resources), type of agent (which
may determine required resources), and (relative) time information. Additionally, if many
CPs are expected in a plan, conflict detection at the SL may be ambiguous regarding the
scheduled time and resources of the SL tasks, which would affect the quality and cost of the
plans. Finally, our method will have to be extended before it can deal with situations where
multiple plans are created simultaneously; this extension is important for effective planning,
and it will be addressed in a future work.

7. Conclusion

This chapter proposed a method to predict, at an abstract level called the screening level, the
cost of possible conflict resolution, and the quality of the resulting plan, to generate better
primitive (concrete) plans. In our framework, an agent called the manager agent maintains
the plans that are scheduled or being executed at the screening level and predicts possible
conflicts between these plans and the newly proposed plan. Then, if necessary, a detailed
analysis of primitive plans is performed by individual agents. We conducted experiments to
reveal the estimated additional cost (estimated cd and cd’ values) of the plans after conflict
resolution and the efficiency of plans derived from our method. Our method enables agents
to decide whether the current plan should be refined or another plan should be created at an
earlier stage, that is, before an agent creates its primitive plan; this decision makes agents'
planning efficient.
Acknowledgement: This research was supported by SCOPE program of the Ministry of
Internal Affairs and Communications, Japan, under contract 071607001.

8. References

Aha, D. W.; Molineaux, M. & Ponsen, M. (2005). Learning to win: Case-based plan selection
in a real-time strategy game, Proc. of the Sixth International Conference on Case-Based
Reasoning (ICCBR 2005), LNAI 3620, pp. 5 – 20.

Clement, B. J.; Barrett, A. C.; Rabideau, G. R. & Durfee. E. H. (2001). Using abstraction in
planning and scheduling, Proc. of 6th European Conference on Planning.

Decker, K. & Lesser, V. (1992). Generalizing the Partial Global Planning Algorithm,
International Journal on Intelligent Cooperative Information Systems, Vol. 1, No. 2, pp.
319 – 346.

Dietterich, T. G. (1998). The MAXQ Method for Hierarchical Reinforcement Learning,
Proceedings of the International Conference on Machine Learning (ICML 98), pp. 118 – 126.

Giampapa, J. A. & Sycara, K. (2001). Conversational case-based planning for agent team
coordination, Proc. of the Fourth International Conference on Case-Based Reasoning
(ICCBR 2001), LNAI 2080, pp. 189 – 203.

Goldwin, R. & Simmons, R. (1998). Search Control of Plan Generation in Decision-Theoretic
Planners, Proc. of AIPS 1998, pp. 94 – 101.

Erol, J. H. K. & Nau, D. S. (1994). HTN planning: Complexity and expressivity, Proc. of the
National Conference on Artificial Intelligence (AAAI 94), pp. 1123 – 1128.

Kaelbling, L. P. (1993). Hierarchical Learning in Stochastic Domains: Preliminary Results,
Proceedings of the International Conference on Machine Learning (ICML-93), pp. 167 –
173.

www.intechopen.com

Effective Planning for Conlicting Situations for Ubiquitous Sensor Network Environments 105

6. Discussion and related work

There have been a number of studies on efficient planning in the MAS context. For example,
GPGP (Decker & Lesser, 1992) is a general framework for generating effective plans using
task and resource relationships among agents. Our method can be used in this framework to
identify which abstract plan (task) should be refined first so that the map of the task
relationships related to the plan can be created.
Hierarchical planning and coordination issues for improving MAS planning have also been
discussed. For example, Ref. (Clement et al., 2001) proposed choosing the most appropriate
abstract task/plan on the basis of summary information derived from the primitive tasks
and plans in a bottom-up fashion. This method can avoid hopeless planning if some
resources are recognized to be insufficient at an abstract level. It also introduced fewest-
threats-first (FTF) heuristics to choose a lower (deeper) plan. Our approach focuses on the
cases where conflicts can be accurately identified at only deeper levels, because the tasks,
resources, and their environment in an abstract model are described in an abstract way.
Furthermore, a plan with fewer conflicts does not always lead to a better plan; it is possible
that only one conflict fails to be resolved but that conflict is nonetheless a critical one. The
idea behind our research is that, although conflicts may be invisible at abstract levels
(including the SL), there is a tendency that conflicts often occur depending on the
environmental factors related to the availability and use of resources, such as the location of
agents, the kind of resources, and type of agents, as well as on the kind of task. Hence, we
aim at expressing and distinguishing these situations by using CPs in order to enable agents
to statistically learn the difficulty of conflict resolution and the quality of a resulting plan.
A number of issues related to MAS planning have been investigated in case-based reasoning
(CBR) or its related domains. For example, (Giampapa & Sycara, 2001) proposed a
conversational case-based reasoner, called NaCoDAE, which is a type of agent in their MAS
applications and helps users decide a course of action by engaging them in a dialogue in
which they must describe the problem or situation of assigning missions to platoons. Plan
reuse for the same/similar situations in a MAS context has also been proposed for MAS
coordination (Sugawara, 1995) and collaboration (Plaza, 2005). A remarkable work similar to
our approach is (Macedo & Cardoso, 2004), where a case is used to expand an abstract plan
to a less abstract one in HTN, although we focus on avoiding conflicts and/or selecting
costless conflicts. In this sense, our motivation is more similar to that in (Aha et al., 2005)
which applied CBR to a real-time strategy game.
Our work is also related to hierarchical reinforcement learning, such as (Dietterich, 1998;
Kaelbling, 1993; Sutton et al., 1998), because an abstract task is considered to be a subroutine
or a subfunction to be learned. For example, in the MAXQ approach (Dietterich, 1998), a task
is divided into subroutines that are individually learned by RL methods. Our approach is to
select an appropriate subroutine for each situation. In MAXQ, the conflict discount is
assumed to have been learned at lower levels. However, in a multi-agent setting, it is
naturally difficult to define the task hierarchy for all agents simultaneously.
One clear limitation of our method is that the reliability of cd values heavily depends on the
accuracy of the SL conflict detection and time-estimation processes. Thus, it is very
important to select the appropriate SL and carefully describe the SL model. For example, if
level 1 in Figure 1 is the SL, our method does not work well since that level is too abstract.
As mentioned above, another issue is that the use of optional data in CPs is important for
distinguishing one situation from another. To distinguish situations, our method needs the

location of task execution (which may determine available resources), type of agent (which
may determine required resources), and (relative) time information. Additionally, if many
CPs are expected in a plan, conflict detection at the SL may be ambiguous regarding the
scheduled time and resources of the SL tasks, which would affect the quality and cost of the
plans. Finally, our method will have to be extended before it can deal with situations where
multiple plans are created simultaneously; this extension is important for effective planning,
and it will be addressed in a future work.

7. Conclusion

This chapter proposed a method to predict, at an abstract level called the screening level, the
cost of possible conflict resolution, and the quality of the resulting plan, to generate better
primitive (concrete) plans. In our framework, an agent called the manager agent maintains
the plans that are scheduled or being executed at the screening level and predicts possible
conflicts between these plans and the newly proposed plan. Then, if necessary, a detailed
analysis of primitive plans is performed by individual agents. We conducted experiments to
reveal the estimated additional cost (estimated cd and cd’ values) of the plans after conflict
resolution and the efficiency of plans derived from our method. Our method enables agents
to decide whether the current plan should be refined or another plan should be created at an
earlier stage, that is, before an agent creates its primitive plan; this decision makes agents'
planning efficient.
Acknowledgement: This research was supported by SCOPE program of the Ministry of
Internal Affairs and Communications, Japan, under contract 071607001.

8. References

Aha, D. W.; Molineaux, M. & Ponsen, M. (2005). Learning to win: Case-based plan selection
in a real-time strategy game, Proc. of the Sixth International Conference on Case-Based
Reasoning (ICCBR 2005), LNAI 3620, pp. 5 – 20.

Clement, B. J.; Barrett, A. C.; Rabideau, G. R. & Durfee. E. H. (2001). Using abstraction in
planning and scheduling, Proc. of 6th European Conference on Planning.

Decker, K. & Lesser, V. (1992). Generalizing the Partial Global Planning Algorithm,
International Journal on Intelligent Cooperative Information Systems, Vol. 1, No. 2, pp.
319 – 346.

Dietterich, T. G. (1998). The MAXQ Method for Hierarchical Reinforcement Learning,
Proceedings of the International Conference on Machine Learning (ICML 98), pp. 118 – 126.

Giampapa, J. A. & Sycara, K. (2001). Conversational case-based planning for agent team
coordination, Proc. of the Fourth International Conference on Case-Based Reasoning
(ICCBR 2001), LNAI 2080, pp. 189 – 203.

Goldwin, R. & Simmons, R. (1998). Search Control of Plan Generation in Decision-Theoretic
Planners, Proc. of AIPS 1998, pp. 94 – 101.

Erol, J. H. K. & Nau, D. S. (1994). HTN planning: Complexity and expressivity, Proc. of the
National Conference on Artificial Intelligence (AAAI 94), pp. 1123 – 1128.

Kaelbling, L. P. (1993). Hierarchical Learning in Stochastic Domains: Preliminary Results,
Proceedings of the International Conference on Machine Learning (ICML-93), pp. 167 –
173.

www.intechopen.com

Autonomous Agents106

Kurihara, S.; Aoyagi, S.; Takada, T.; Hirotsu, T. & Sugawara, T. (2005). Agent-Based Human-
Environment Interaction Framework for Ubiquitous Environment, Proc. of the
International Workshop on Networked Sensing Systems, pp. 103 – 108.

Kurihara, S. (2008). Human Behavior Mining using Sensing Network, Proceedings of the First
International Workshop on Content Creation Activity Support by Networked Sensing
(CCASNS08).

Macedo, L. & Cardoso, A. (2004). Case-Based, Decision-Theoretic, HTN Planning, Proc. of
ECCBR 2004, LNAI 3155, pp. 257 – 271. Springer-Verlag.

Plaza, E. (2005). Cooperative reuse for compositional cases in multi-agent systems, Proc. of
the Sixth International Conference on Case-Based Reasoning (ICCBR 2005), LNAI 3620,
pp. 382 – 396.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces, Artificial Intelligence, Vol.
5, No. 2, pp.115 – 135.

Sugawara, T. (1995). Reusing Past Plans in Distributed Planning, Proc. of the 1st International
Conference on Multi-Agent Systems (ICMAS95), pp. 360 – 367.

Sugawara, T.; Kurihara, S.; Hirotsu, T.; Fukuda, K. & Takada, T. (2005). Predicting Possible
Conflicts in Hierarchical planning for Multi-Agent Systems, Proc. of 4th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pp. 813 –
820.

Sutton, R. S.; Precup, D. & Singh. S. (1998). Intra-Option Learning about Temporary Abstract
Actions, Proceedings of the International Conference on Machine Learning (ICML98), pp.
556 – 564.

Takada, T.; Kurihara, S.; Hirotsu, T. & Sugawara, T. (2003). Proximity Mining: Finding
Proximity using Sensor Data History, Proc. of IEEE Workshop on Mobile Computing
Systems and Applications, pp. 129 – 138.

www.intechopen.com

Autonomous Agents

Edited by Vedran Kordic

ISBN 978-953-307-089-6

Hard cover, 130 pages

Publisher InTech

Published online 01, June, 2010

Published in print edition June, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents a combination of different research issues which are

pursued by researchers in the domain of multi agent systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Toshiharu Sugawara, Satoshi Kurihara, Toshio Hirotsu, Kensuke Fukuda and Toshihiro Takada (2010).

Effective Planning for Conflicting Situations for Ubiquitous Sensor Network Environments, Autonomous Agents,

Vedran Kordic (Ed.), ISBN: 978-953-307-089-6, InTech, Available from:

http://www.intechopen.com/books/autonomous-agents/effective-planning-for-conflicting-situations-for-

ubiquitous-sensor-network-environments

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

