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1. Introduction  
 

Applications of sensor networks and ubiquitous computing have received attention. They 
can provide many kinds of important services for supporting daily and social activities in 
home, schools, offices and public spaces in the future (Kurihara, 2008). However, to realize 
these kinds of applications, a number of new technologies in AI and multi-agent systems 
(MAS) are also required because many devices and control programs are concurrently work 
to achieve their goals in cooperation with other ones. These works arise according to the 
human requirements based on their individual activities. In order to achieve these required 
goals, each agent has to create the plan (means-end analysis) and then performs it. However, 
the plan often conflict with those that are being created, already being scheduled, and 
executed by other agents because of the limited resources. Furthermore, since the human’s 
activities are usually real-time with deadline, the agent must also be able to complete its 
planning and resolution of these conflicts within a reasonable time to have an acceptable 
quality plan. This means that both efficient planning and sophisticated conflict resolution 
are strongly required. 
We adopt hierarchical planning (for example, see (Erol & Nau, 1994; Sacerdoti, 1974) using 
the decision-theoretic planning approach (Goldwin, & Simmons, 1998) for efficient planning 
but it is not trivial to apply hierarchical planning to MAS. In hierarchical planning, 
appropriate (abstract) plans are selected level by level to maximize the utility U(p), where p 
is the expected final plan comprising a sequence of primitive actions. However, in the MAS 
context, conflicts between agents affect the efficiency and quality of resulting plans. When a 
conflict is found at lower levels, an additional sophisticated process for avoiding it (conflict 
resolution) must be invoked and some extra actions (such as waiting for synchronization and 
detouring) may have to be added to the plan. The conflict resolution process may become 
costly or fail. Even a single conflict, if it is difficult to resolve, will result in a plan with 
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considerably lower quality. As a result, in multi-agent systems, the second- or third-best 
plans may result in better overall performance. 
The objective of our research is to enable agents, using reinforcement learning, to predict 
which tasks in an abstract plan will conflict with other agents' plans at a lower level with 
higher probability and either involve a costly conflict resolution process and/or result in a 
low-quality plan after it has been resolved. We emphasize that the appearances of conflicts 
strongly depend on the resource structures of the environments of the sensor-network 
applications. This suggests that the learning is mandatory. 
Our basic idea is threefold, conflict patterns, screening level and conflict discount. First, we will 
introduce conflict patterns (CP) at a certain abstract level called the screening level (SL). The 
screening level is a one of intermediary level of the hierarchical model at which the conflicts 
of generating plans are predicted. The possible conflicts are stored as conflict patterns to 
specify the situations where conflicts will occur with high probabilities if the agents refine 
the current plan to the lower levels. The conflict discount is a negative utility that 
cumulatively predicts the probability of conflicts in the subsequent refinement process, the 
cost of resolutions, and the quality/performance of the resulting plans on the basis of CPs in 
the plans at the screening level and past experience. The conflict discount is calculated and 
updated by using statistically learned expected values or by reinforcement learning, so that 
the agents select the appropriate refinement at the SL.  
Note that we assume that the initial utility is good for selecting plans for single-agent cases. 
This utility may lead to acceptable but minimum quality plans after conflict resolution in the 
MAS context. Thus, agents learn the conflict discount appropriate for the environment in 
order to select better SL plans.  
In this chapter, we formally define conflict patterns and discuss the estimation of their 
conflict discounts. We then introduce the notion of sub-conflict patterns for avoiding 
redundant calculations of conflict discounts and reducing memory space. We also clarify the 
distributed version of the planning framework with our conflict estimation, which is an 
extension of that in (Sugawara et al., 2005). Then we present an experimental evaluation of 
the efficiency of plans generated by our method for a simulated laboratory room. This 
chapter is organized as follows: First, we discuss the issue addressed here and the planning 
framework used in our application systems. We then explain the process of conflict 
detection and resolution. Following that, we introduce the use of conflict patterns to classify 
situations involving conflicts with other agents' plans. Then, the experimental results to 
evaluate our approach are presented. We show that our proposed planning strategy makes 
agent’s planning more efficient in the situation where conflicts are predicted. Finally, we 
cover related work and offer some concluding remarks. 

 
2. Conflict estimation in hierarchical planning 

In hierarchical planning, plans are generated using an abstract hierarchy of the domain 
model, which includes tasks and resources in an abstract form. Initial states and goals are 
first described in the most abstract model, and a number of task sequences are generated to 
achieve these goals. One of the sequences is then selected according to a particular planning 

 

strategy (A utility is used in the case of the decision-theoretic planning.1

 Normal utilities for making efficient or high-quality plans do not usually take into account 
possible conflicts with other agents. As a result, although they can create acceptable plans 
when there is no interference between plans, they might not be able to do so when there is 
interference. Furthermore, in applications where real-time performance is stipulated, it is 
preferable that agents predict which conflicts will vanish or be easy or difficult to resolve 
during the remainder of the planning period. It is important, therefore, to provide another 
utility for plan selection when there is the possibility of conflict. However, determining 
what the conflicts are and which tasks easily cause them is a function of the location of 
scarce or heavily used resources and the type of agent; thus, the outcome strongly depends 
on the situation and environment where the sensor-network system is deployed. This type 

), and each task in 
the sequence is further refined into task sequences in the less-abstract model. This refine-
and-select process is iterated until all tasks have been refined to primitive tasks in the lowest 
model. In general, while abstract (higher-level) models are simple and thus do not contain 
complete information, they are appropriate for understanding the global and long-term 
picture of activities. Naturally, the lower-layer models are more informative and 
complicated, so they are used for detailed descriptions of local and sectional plans. 
 Let’s consider our laboratory room shown in Figure 1 that will be the example environment 
of the experiments in this paper. In this figure, there are a number of hierarchical models of 
the room; the model at level 0 is the most abstract and the one at level 3 is the most concrete 
(so primitive). The plan at a certain level is generated based on the corresponding model. 
Initial states and goals are first described in the most abstract (or uppermost) model, and a 
number of task sequences are generated to achieve these goals in this model. (An example of 
the task hierarchy established in accordance with the model hierarchy is shown in Figure 2.) 
This plan generation is usually based on the descriptive information represented in the 
corresponding model. One of the sequences is selected according to a particular planning 
strategy (the utility is used in the case of DTP), and then each task in the sequence is further 
refined, that is, the sub-task sequences in the less-abstract model for achieving the task are 
generated. These sequences are called refinements of the task.  
Actual conflicts are identified when all tasks have been expanded into primitive tasks, since 
the required amount of resources and time needed for executing the plan are precisely 
determined at this level. This may not prevent an agent from investigating the possibility of 
conflicts at an abstract level, however. For example, if a certain room is roughly modelled as 
a single object at an abstract level such as the level-0 model in Figure 1 and two agents have 
plans to work in this room at the same time, they can resolve this possible conflict by one 
agent deciding to work at another time. However, this conflict may not occur after the plans 
have been expanded into primitive ones, because it might turn out that the agents are able to 
work at different places in the room. In general, the process of conflict detection and 
resolution in abstract layers is simple because its domain model and related operators are 
simple. However, it usually results in redundant and inefficient plans.  

                                                                 
1 An agent selects the plan that may lead to the highest utility. However, the utility value is 
determined from the primitive task/plan, so the utility of a non-primitive task/plan is 
expressed as a range calculated according to the possible lower-level refined plans. It has 
been reported that agents should choose the plan that contains the highest utility and 
expand it to the next layer for effective planning (Goldwin & Simmons, 1998). 
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considerably lower quality. As a result, in multi-agent systems, the second- or third-best 
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which tasks in an abstract plan will conflict with other agents' plans at a lower level with 
higher probability and either involve a costly conflict resolution process and/or result in a 
low-quality plan after it has been resolved. We emphasize that the appearances of conflicts 
strongly depend on the resource structures of the environments of the sensor-network 
applications. This suggests that the learning is mandatory. 
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introduce conflict patterns (CP) at a certain abstract level called the screening level (SL). The 
screening level is a one of intermediary level of the hierarchical model at which the conflicts 
of generating plans are predicted. The possible conflicts are stored as conflict patterns to 
specify the situations where conflicts will occur with high probabilities if the agents refine 
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cost of resolutions, and the quality/performance of the resulting plans on the basis of CPs in 
the plans at the screening level and past experience. The conflict discount is calculated and 
updated by using statistically learned expected values or by reinforcement learning, so that 
the agents select the appropriate refinement at the SL.  
Note that we assume that the initial utility is good for selecting plans for single-agent cases. 
This utility may lead to acceptable but minimum quality plans after conflict resolution in the 
MAS context. Thus, agents learn the conflict discount appropriate for the environment in 
order to select better SL plans.  
In this chapter, we formally define conflict patterns and discuss the estimation of their 
conflict discounts. We then introduce the notion of sub-conflict patterns for avoiding 
redundant calculations of conflict discounts and reducing memory space. We also clarify the 
distributed version of the planning framework with our conflict estimation, which is an 
extension of that in (Sugawara et al., 2005). Then we present an experimental evaluation of 
the efficiency of plans generated by our method for a simulated laboratory room. This 
chapter is organized as follows: First, we discuss the issue addressed here and the planning 
framework used in our application systems. We then explain the process of conflict 
detection and resolution. Following that, we introduce the use of conflict patterns to classify 
situations involving conflicts with other agents' plans. Then, the experimental results to 
evaluate our approach are presented. We show that our proposed planning strategy makes 
agent’s planning more efficient in the situation where conflicts are predicted. Finally, we 
cover related work and offer some concluding remarks. 
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In hierarchical planning, plans are generated using an abstract hierarchy of the domain 
model, which includes tasks and resources in an abstract form. Initial states and goals are 
first described in the most abstract model, and a number of task sequences are generated to 
achieve these goals. One of the sequences is then selected according to a particular planning 

 

strategy (A utility is used in the case of the decision-theoretic planning.1
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possible conflicts with other agents. As a result, although they can create acceptable plans 
when there is no interference between plans, they might not be able to do so when there is 
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preferable that agents predict which conflicts will vanish or be easy or difficult to resolve 
during the remainder of the planning period. It is important, therefore, to provide another 
utility for plan selection when there is the possibility of conflict. However, determining 
what the conflicts are and which tasks easily cause them is a function of the location of 
scarce or heavily used resources and the type of agent; thus, the outcome strongly depends 
on the situation and environment where the sensor-network system is deployed. This type 
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model. In general, while abstract (higher-level) models are simple and thus do not contain 
complete information, they are appropriate for understanding the global and long-term 
picture of activities. Naturally, the lower-layer models are more informative and 
complicated, so they are used for detailed descriptions of local and sectional plans. 
 Let’s consider our laboratory room shown in Figure 1 that will be the example environment 
of the experiments in this paper. In this figure, there are a number of hierarchical models of 
the room; the model at level 0 is the most abstract and the one at level 3 is the most concrete 
(so primitive). The plan at a certain level is generated based on the corresponding model. 
Initial states and goals are first described in the most abstract (or uppermost) model, and a 
number of task sequences are generated to achieve these goals in this model. (An example of 
the task hierarchy established in accordance with the model hierarchy is shown in Figure 2.) 
This plan generation is usually based on the descriptive information represented in the 
corresponding model. One of the sequences is selected according to a particular planning 
strategy (the utility is used in the case of DTP), and then each task in the sequence is further 
refined, that is, the sub-task sequences in the less-abstract model for achieving the task are 
generated. These sequences are called refinements of the task.  
Actual conflicts are identified when all tasks have been expanded into primitive tasks, since 
the required amount of resources and time needed for executing the plan are precisely 
determined at this level. This may not prevent an agent from investigating the possibility of 
conflicts at an abstract level, however. For example, if a certain room is roughly modelled as 
a single object at an abstract level such as the level-0 model in Figure 1 and two agents have 
plans to work in this room at the same time, they can resolve this possible conflict by one 
agent deciding to work at another time. However, this conflict may not occur after the plans 
have been expanded into primitive ones, because it might turn out that the agents are able to 
work at different places in the room. In general, the process of conflict detection and 
resolution in abstract layers is simple because its domain model and related operators are 
simple. However, it usually results in redundant and inefficient plans.  

                                                                 
1 An agent selects the plan that may lead to the highest utility. However, the utility value is 
determined from the primitive task/plan, so the utility of a non-primitive task/plan is 
expressed as a range calculated according to the possible lower-level refined plans. It has 
been reported that agents should choose the plan that contains the highest utility and 
expand it to the next layer for effective planning (Goldwin & Simmons, 1998). 
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of information cannot be provided a priori during the design time. Therefore, agents have to 
learn an additional utility for MAS contexts.  
 

 
Fig. 1. Example of a hierarchical description. 

 

 
 

Fig. 2. Hierarchical task structure based on the hierarchical model. 

 
3. Planning at the screening level 

3.1 Planning architecture 
In our planning architecture, agents first exchange only the presently being generated, 
scheduled and executed plans described in a certain abstract-level model, called the 
screening level (SL). We assume that the plans at this level are simpler than ones at the 
primitive level but are enough to classify the conflicting situations. The SL plans presently 
scheduled or being executed are called SL-valid plans, and the SL plans that are currently 
being generated (so are pending) are called SL-pending plans.  
When agent ai starts to create its plan for this environment, it first generates a number of SL 
plans (from the abstract-level plan) and tentatively selects one of them (using conventional 
utility). It then requests SL-valid and SL-pending plans from other agents to investigate the 
possible conflicts between ai's new plan and other plans, by using an estimation based on the 
utility with the learned conflict discount as described in Section 4. According to this result, ai 
selects one of the SL plans to refine further. This plan is marked as `SL-pending'. If ai is 
requested to send its plans during this process, it immediately notifies the request for that it 
is `SL planning' and sends the SL-pending plan right after it is determined. Agent ai then 
waits for a short while for other unreceived plans; if it receives no other SL plans that have 
high conflict discounts, it proceeds to the next stage described below. Otherwise, one of the 
agents selects another SL plan instead of the current SL-pending plan; this may slow down 
the system in an extremely busy environment, so a tailored method for this issue will need 
to be developed in the future.  
For further conflicts analysis, agent ai requests primitive plans only from the agents whose 
plans are predicted to conflict with ai 's SL plan. Then ai modifies the primitive plan to 
eliminate the detected conflicts. If conflict discount is sufficiently learned, the cost of conflict 
resolution is relatively low and the resulting plan is acceptable. When ai completes a 
primitive plan without conflicts, the plan is scheduled or executed immediately; and its SL-
plan is marked `SL-valid'. Section 4 discusses how ai learns to predict conflicts at the SL and 
how the utilities with a conflict discount are estimated.  
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We focus on applications where the same or similar plans are frequently reproduced. 
Examples of target applications are planning for the intelligent behaviours in sensor-
network and ubiquitous-computing systems with many devices, such as sensors, effectors 
and robots (Figure 1), where agents reside in these devices to control them (Takada et al., 
2003). Examples of application scenarios are described in (Kurihara et al., 2005). In this sort 
of application, e.g., robots moving in a room and assisting in people's daily activities, certain 
actions are repeated. We assume that other plans that are already scheduled or being 
executed are not modified (at least, the plans that have already been approved should be 
preferred) in the current implementation. Often this restricts the quality of the resulting 
plan. Our aim, however, is to select the most appropriate SL plan in a timely manner. If all 
of the plans generated at the SL appear to have high-discount conflicts, the agent can 
backtrack and select another plan at the SL or at a higher level; the agent still creates an 
abstract plan, which is simpler than creating a useless primitive plan, so we believe that the 
cost is not so high.  

 
3.2 Conflict detection at screening level 
The agent detects possible conflicts, according to resource and task information at the SL, by 
identifying the possibility of whether multiple plans will use the same resources, such as 
locations (e.g., squares in Figure 1). An example is illustrated in Figure 3, for which the SL is 
level 2 in Figure 1; a square at this SL (specified by a pair of lower-case letters) corresponds 
to 4x4 squares in the primitive model (A square in the primitive level is specified by a pair of 
positive integers.). In Figure 3, the agent can suggest that task tl = move(cd 

 

→ dd) in the new 
plan may conflict with task t'n = move(cd 

 

→ bd) in the SL-valid plan, where move(cd 

 

→ dd) 
is the SL plan expressing the agent's movement from somewhere in area (c, d) to area (d, d). 
This conflict can be expected if some squares in area (c, d) can be simultaneously occupied 
by two agents during a certain time interval.  
 

 
 

Fig. 3. Example of a detected conflict. 
 
An agent has to take into account time relationships between tasks in the plans. The 
duration of each task in the SL-valid plans has already been determined, but not that of the 

 

new plan. Thus, it uses the expected average duration of each SL task. This value is initially 
given as part of the SL model; for example, move(cd 

 

→ bd) takes four ticks if agents (that is, 
robots) can move to the next small square in a tick. The expected duration is then 
statistically adjusted according to the generated primitive plans induced from this SL task.  
The questions of when and where conflicts likely occur and whether their resolutions are 
difficult depend upon the system's environment. Suppose that three agents want to pass 
through area (b, d). In the SL model, this area (place is a resource) is expressed as a single 
entity, so conflicts can be expected. However, this area has enough room for three agents if 
each agent occupies a small square at the primitive level; hence, the conflicts might not 
actually occur or might be easily resolved. However, in (c, d) where agents move only left or 
right, there is not enough room for three agents. Thus, it seems probable that the agents' 
plans will have conflicts there. Of course, this probability is influenced by the temporal 
relationships of the agents entering area (c, d). If a conflict is detected, one of the agents 
must step out of the other agent's way and wait for it to pass by before resuming its 
movement.  
 

Method Description 

Synchronizat
ion 

  Stop until another agent performing a task that requires a needed 
resource finishes the task and releases the resource. Wait for a primitive 
task or use of some resource by another agent until the task finishes or 
the agent releases the resource. This method may insert a number for 
“wait for a tick” for synchronization. 

Waiting 
Stop until other agents finish tasks that create pre-conditions of the local 
task. This method may insert a number for “wait for a tick” for 
synchronization. 

Replacement 

Replace tasks whose post-conditions do not affect tasks in other agents or 
whose pre-conditions are not affected by tasks in other agents. This 
method may replace the conflicting task with others, but these other tasks 
usually have lower utility (or incur extra cost). 

Reordering Reorder tasks to avoid negative relationships. 

Insertion 
Insert tasks whose post-conditions recover the pre-conditions of the task. 
This method adds some tasks, so the utility of the resulting plan 
decreases. 

Commission 

Entrust the task to other agents. This form of resolution is preferable 
when, for example, a conflict can only be resolved by other agents, or if 
another agent can do the task at lower cost. This method can eliminate 
some tasks, though some communications, not only for detecting the 
sharable tasks of the plans but also for committing them to another agent, 
take place. 

 

Table 1. Examples of methods of resolution. 

 
3.3 Conflict detection and resolution 
A number of resolution methods, shown in Table 1, are applied to resolve conflicts. Thus, 
the agents involved must negotiate which agent (or all agents involved) should commit to 
modifying their plans and then decide what methods should be applied. These resolution 
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methods are defined as rules and applied under a certain policy. The resulting plans usually 
have extra cost for the resolutions. In this paper, we do not care what kind of policy is used; 
our only concern is the cost of resolution and the quality of the resulting plan.  

 
4. Conflict estimation from conflict patterns 
 

4.1 Conflict pattern --- an expression of conflicting situations 
A conflict pattern (CP) expresses a conflict between SL plans. First, we focus on an SL task 
identified as having a conflict. Let t be an SL task in a new SL plan p, denoted by t

 

∈ p. 
Suppose that SL plans p1, …, pk of other agents are SL-valid. Then CP, denoted here by P(t), 
is expressed as  

P(t) = (t, (t'1, o1), …, (t'h, oh)) 
 

where t’i 

 

∈  pj (1

 

≤ 

 

∃ j 

 

≤ h) and oi is optional data. CP describes the situation where t is 
expected to conflict with t'1, …, t'h in SL-valid plans.  
The optional data oi can be any information that can be used to distinguish conflicting 
situations more accurately. For instance, it may be information about (relative) the time of 
execution and agents' names or types that suggest their ability/performance or physical size 
(when agents, such as robots and vehicles, have physical bodies). In the example of Figure 3, 
CP is expressed as  
 

P1(tl) = (tl, (t'n,   (max (s'n – sl, 0), min(el – sl, e'n – sl)))), 
 

where the optional data is the relative time interval during which the expected conflict may 
occur. To simplify the expression of this example, we describe the optional data in a more 
abstract form. For this purpose, we can use the expressions of time relativity; the duration of 
t'n overlaps the anterior half (ah) or posterior half (ph) of the duration of tl. Other cases of 
time relativity are expressed as “overlap (ol).” Thus, P1(tl) = (tl, (t'n, r'l)), where r'l = ah, ph or 
ol. 
The situation in Figure 4 shows that tl may conflict with t'n+1 and t''m-1. The following CP 
corresponds to this situation:  
 

P2(tl) = (tl, (t'n+1, r'l), (t''m-1, r''l)) 
 

where r'l, r''l = ah, ph or ol. 

 
4.2 Concept of conflict discount 
Let U(p) (or U(t)) be the initial utility for a primitive plan p (or a primitive task t). U(p) for a 
non-primitive plan (or task) is the range that cumulatively indicates possible lower-
primitive plans/tasks. We introduce the conflict discount for a CP, cd(P). The conflict 
discount is conceptually defined as  
 

                                                cd(P) = U(pp) – U(ppm) + CCR(P)                                                (1) 
 

 

where pp is the primitive plan of SL plan p before conflict resolution, and ppm is the modified 
primitive plan for resolving conflict P. The term CCR indicates the cost of conflict detection 
and resolution at the primitive level, which is calculated by combining the costs of 
requesting, receiving, and analyzing primitive plans from other agents and applying conflict 
resolution rules to modify the new plan. So even if no conflict actually occurs at the 
primitive level (U(pp)=U(ppm)), cd(P) 

 

≠ 0. This is because, if a conflict is expected at SL, the 
cost of conflict detection will be incurred. Define cd’(P) = U(pp) – U(ppm) as the difference in 
utilities. The estimation of cd(P) is described in the next section. 
When an agent has a new SL plan p that is expected to have CPs, P1 , …, PN,   
 

cd(p) = 
    

 

i = 1

N

∑ cd(Pi). 

 
The agent uses the modified utility U(p) – cd(p) instead of U(p). When no conflicts are 
predicted, the agent uses U(p) since cd(p) = 0. Our method statistically adjusts the conflict 
discounts for frequently appearing CPs. Because we focus on the efficiency of plans, we 
assume that U(p) is the estimated execution time of the primitive plan in the example below.  

 
4.3 Estimation of conflict discount 
The conflict discount for a CP, cd(P), is iteratively adjusted by the average or update 
function as follows when CP is observed s times.  
 

                             cds(P) = 
    

 

di
si = 1

s

∑                                                              (2) 

              cds(P) = 

 

λ  * cds-1(P) + (1 – 

 

λ ) * ds                                             (3) 
 

where 0< 

 

λ  < 1 and ds indicates the s-th CCRs plus the s-th observed utility difference 
between the original primitive plan and the plan after the resolution of the conflict 
corresponding to P. Eq. (3) is more sensitive to environmental changes than Eq. (2). Note 
that the conflict of P might not occur at the primitive level after all; if so, ds = 0 + CCRs. For 
example, if the partner agent takes route (1) in Figure 3, and this conflict can be resolved by 
taking a detour or by using “wait for two ticks” to wait until the partner agent passes by. In 
this case, ds =2 + CCRs. However, if the partner agent takes route (2) in Figure 3, no conflict 
actually occurs and ds = 0 + CCRs. 
To acquire the CCR value for each plan, we assume that agents can monitor their planning 
activities by themselves. More precisely, CCR consists of the time for (1) requesting and 
receiving primitive plans from other agents that are suggested to have conflicts, (2) 
detecting actual conflicts between these plans and the local plan, and (3) modifying the local 
plan to resolve these conflicts. Agents keep the times for these activities. The conflict 
discount is re-calculated using the value of CCR plus the differential utility for each CP 
acquired by each agent from Eq. (2) or (3).  
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The situation in Figure 4 shows that tl may conflict with t'n+1 and t''m-1. The following CP 
corresponds to this situation:  
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where r'l, r''l = ah, ph or ol. 

 
4.2 Concept of conflict discount 
Let U(p) (or U(t)) be the initial utility for a primitive plan p (or a primitive task t). U(p) for a 
non-primitive plan (or task) is the range that cumulatively indicates possible lower-
primitive plans/tasks. We introduce the conflict discount for a CP, cd(P). The conflict 
discount is conceptually defined as  
 

                                                cd(P) = U(pp) – U(ppm) + CCR(P)                                                (1) 
 

 

where pp is the primitive plan of SL plan p before conflict resolution, and ppm is the modified 
primitive plan for resolving conflict P. The term CCR indicates the cost of conflict detection 
and resolution at the primitive level, which is calculated by combining the costs of 
requesting, receiving, and analyzing primitive plans from other agents and applying conflict 
resolution rules to modify the new plan. So even if no conflict actually occurs at the 
primitive level (U(pp)=U(ppm)), cd(P) 

 

≠ 0. This is because, if a conflict is expected at SL, the 
cost of conflict detection will be incurred. Define cd’(P) = U(pp) – U(ppm) as the difference in 
utilities. The estimation of cd(P) is described in the next section. 
When an agent has a new SL plan p that is expected to have CPs, P1 , …, PN,   
 

cd(p) = 
    

 

i = 1

N

∑ cd(Pi). 

 
The agent uses the modified utility U(p) – cd(p) instead of U(p). When no conflicts are 
predicted, the agent uses U(p) since cd(p) = 0. Our method statistically adjusts the conflict 
discounts for frequently appearing CPs. Because we focus on the efficiency of plans, we 
assume that U(p) is the estimated execution time of the primitive plan in the example below.  

 
4.3 Estimation of conflict discount 
The conflict discount for a CP, cd(P), is iteratively adjusted by the average or update 
function as follows when CP is observed s times.  
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              cds(P) = 

 

λ  * cds-1(P) + (1 – 
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where 0< 

 

λ  < 1 and ds indicates the s-th CCRs plus the s-th observed utility difference 
between the original primitive plan and the plan after the resolution of the conflict 
corresponding to P. Eq. (3) is more sensitive to environmental changes than Eq. (2). Note 
that the conflict of P might not occur at the primitive level after all; if so, ds = 0 + CCRs. For 
example, if the partner agent takes route (1) in Figure 3, and this conflict can be resolved by 
taking a detour or by using “wait for two ticks” to wait until the partner agent passes by. In 
this case, ds =2 + CCRs. However, if the partner agent takes route (2) in Figure 3, no conflict 
actually occurs and ds = 0 + CCRs. 
To acquire the CCR value for each plan, we assume that agents can monitor their planning 
activities by themselves. More precisely, CCR consists of the time for (1) requesting and 
receiving primitive plans from other agents that are suggested to have conflicts, (2) 
detecting actual conflicts between these plans and the local plan, and (3) modifying the local 
plan to resolve these conflicts. Agents keep the times for these activities. The conflict 
discount is re-calculated using the value of CCR plus the differential utility for each CP 
acquired by each agent from Eq. (2) or (3).  
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Fig. 4. Example of conflicts between plans. 
 
The calculation of cd(p) of SL plan p, like the conflict resolution process, is an iteration of the 
procedures for (1) searching for, from the first task, the task t that has a conflict pattern P 
with other plans, and (2) predicting the conflict discount cd(P). In procedure (2), the 
additional cost of avoiding conflicts is predicted, and thus the start times of subsequent 
tasks may be delayed for this amount of time. Since a number of conflicts may appear and 
disappear in the remaining part of the plan because of this delay, the agent detects the next 
conflicting task by using the adjusted duration.  

 
4.4 Sub-conflict patterns 
It is probable that many CPs will be created, and storing many CPs in the casebase would 
require a large amount of memory. This also incurs a large search cost, which degrades 
scalability. It also lowers the performance of conflict estimations of the CPs. Here, we can try 
to reduce the memory taken up by the CPs. 
Suppose that P1 and P2 are CPs: 
 

P1 = (t, (t1, r1), …, (tn, rn)) 
P2 = (t', (t'1, r'1), …, (t'm, r'm)) 

 
If t = t' and {(t1, r1), …, (tn, rn)} 

 

⊂ {(t'1, r'1), …, (t'm, r'm)}, then P1 is the sub-conflict pattern 
(sub-CP) of P2, denoted by P1 

 

⊂ P2. Now, we assume that cd(P1) 

 

≤ cd(P2) if P1 

 

⊂ P2. This is 
a natural assumption because P1 is resolved if the conflict with P2 is resolved. 
To save memory, the agent only stores CPs whose conflict discount values are near the 
turning point of the decision. For example, if cd(P2) is sufficiently small, the cd value for P1 
(

 

⊆P2) will not necessarily be stored, so its cd estimation can be eliminated. Similarly, if 
cd(P1) is large, which means that the agent will give up the current SL plan, the cd value for 
P2 (

 

⊇P1) does not have to be stored. 

 
5. Experiments 
 

5.1 Conflict discount estimation 
We experimentally investigated how cd' (instead of cd) changes depending on the ways that 
agents interfere in a simulated laboratory room (Figure 1). Agent A randomly selects a 

 

starting point in region R1 and a goal in region R2 and then tries to generate a new plan for 
this movement. Another agent, B, already has an approved plan whose start and goal are 
also randomly selected in R1 and R2. In this setting, these agents do not cause any conflict 
when they may take different routes, such as to the north or south of the meeting table. 
However, they are likely to have conflicts when they both have to pass through area (c, d) 
because chairs and computer tables slightly narrow the route through it. Hence, we focused 
on the cases in which a conflict would be expected there at the SL and iterated the 
experiment until A's task move(cd 

 

→ dd) conflicted with B's task, which were both expressed 
as move(cd 

 

→ dd) (same direction) at the SL. Note that the duration of A's SL plan was an 
estimated value that may differ from the actual duration of execution. This estimated 
duration was not used in the experiments in (Sugawara et al., 2005); thus, some of the 
experimental values shown below are slightly different from the ones reported in that paper.  
The SL plan was expanded into a primitive plan, and we investigated the conflict discount 
after conflict resolution. Because B requests A's primitive plan, extra costs may be incurred 
even if no conflicts end up occurring. Therefore, in the following experiments, the number 
of plans of other agents that were predicted to have conflicts with the new plan was used as 
the approximate value of CCR (hence, a constant for each P) of Eq. (1), because it is 
proportional to the number of these plans. This assumption means that it takes a tick to 
request and receive a primitive plan from another agent, check for conflicts between the 
received and local plans, and resolve these conflicts. We iterated this experiment a few 
hundred times to calculate cd’.  
The task move(cd 

 

→ dd) usually takes four to six ticks in this environment. Note that we 
assumed the SL-task move(X,Y) during interval [s, e] occupies resource X during s to e and 
resource Y at e and that the primitive-level task move(x, y) during [s, s+1] (a primitive task 
takes 1 tick) occupies x and y during s to s+1. If the agent finds a possible conflict within the 
first two ticks, the relative time relationship is denoted by ah; Additionally note that if it 
finds such a possibility within the last two ticks, the relative time relationship is denoted by 
ph. Otherwise, the relative time relationship is denoted by ol. Hence, we estimated the 
values of cd’ for the following conflict patterns:  
 

P3 = (move(cd 

 

→ dd), ((move(cd 

 

→ dd), r))), 
 

where r is ah, ph or ol, meaning that these two agents move in the same direction.  
 

 
Fig. 5. Estimated cd’ and average values. 
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this movement. Another agent, B, already has an approved plan whose start and goal are 
also randomly selected in R1 and R2. In this setting, these agents do not cause any conflict 
when they may take different routes, such as to the north or south of the meeting table. 
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on the cases in which a conflict would be expected there at the SL and iterated the 
experiment until A's task move(cd 

 

→ dd) conflicted with B's task, which were both expressed 
as move(cd 

 

→ dd) (same direction) at the SL. Note that the duration of A's SL plan was an 
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hundred times to calculate cd’.  
The task move(cd 
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Tables 1 and 2 show the average values from ten experiments based on ten different random 
seeds, and the graphs in Figure 5 are from one of these experiments. 
Graphs (a) in Figure 5 show the estimated values of cd’m (

 

λ  = 0.98, 1

 

≤ m 

 

≤ 500) derived 
from Eqs. (2) and (3) when r = ol. In these cases, cd’(P3) = 0.71 (so cd(P3) = cd'(P3)+ CCR(P3) 
= 1.71), which is reasonably small. This is because the two-square-wide path is wide enough 
for two agents to pass through the area, but agent A sometimes has to take a detour to avoid 
conflicts. Other cases, such as moving in the opposite direction, are shown in (Sugawara et 
al., 2005). 
However, the cd’ values largely differ when two agents, B and C, which have approved 
plans (i.e., plans that do not conflict with each other), move in the same direction move(cd 

 

→ 
dd) and agent A begins to create a plan to move in the opposite direction though the same 
area. The conflict pattern of this situation is expressed as  
 

P4 = (move(cd

 

→bd)), ((move(cd

 

→dd)), ol), (move(cd

 

→dd)), ol))). 
 
The estimated cd’(P4) = 5.12 (cd(P4) = 7.12) is quite different from the previous cases, as 
shown by graphs (b) in Figure 5. Because B and C move almost simultaneously without 
conflicts, they usually occupy the narrow route in area (c, d) together. Thus, agent A always 
has to move aside, wait for several ticks until B and C pass, and then move back to the 
original route. If the agent's new plan is predicted to have this conflict pattern at the SL, it 
can select, after learning, another route, such as one taking it north of the meeting table or 
another taking it south of the sofa in Figure 1, provided the route is shorter than the one in 
the original plan plus 7.12. 
Table 2 shows the estimated cd’ values in time-relativity cases other than P4. For example, if 
one of the relative time relationships in P4 is ah (This CP is denoted by P'4), the estimated 
cd’(P'4) = 1.80. This is small because if B and C move a slight distance away from each other, 
A can weave its way around them. In the case of ph-ph, A's planned task move(cd 

 

→ bd) may 
conflict in the latter half of its execution, so the agents will usually not meet in the narrow 
area (A moves right to left). However, because of uncertainty, they infrequently meet at 
different times in the narrow area. Table 2 suggests that the values of cd’ depend on the 
resource structure of the routes, especially area (c, d) in Figure 1.  
 

 ol-ol (P4) ph-ph ah-ah ah-ol (P'4) ah-ph ph-ol 

Value of cd' 5.12 3.67 3.30 1.80 0.75 1.87 
Table 2. Experimentally estimated conflict discount cd’. 
 
Suppose that in another situation the agent finds a CP, P5 such that P4 

 

⊂ P5. This CP may 
appear when conflict among more than four agents at (c, d) is expected. In this case, cd’(P5) 
must be larger than 5.12. If this value is larger than the predefined threshold, the agent can 
calculate that cd(P5) 

 

≥ 7.12 (or cd(P5) 

 

≥ 8.12 if this conflict occurs among more than four 
agents), suggesting that it should try to find another route or shift (delay) its start time to 
avoid this conflict, even if it has no data about P5. Conversely, cd’(P'4) = 1.80 can induce 
cd’(P3) 

 

≤ 1.80. If this value is small enough, the agent does not need to calculate cd(P3). 
Table 2 also indicates that cd’(P3) 

 

≤ 0.70 if r = ah or ph in P3.  

 

5.2 Cost (length) of generated plans 
We investigated how efficient plans are generated with lower cost after a conflict pattern is 
found. In our planning strategy, agent A tries to select or generate another SL plan that is 
expected to have no conflict with other plans and whose estimated utility (in our case, the 
length of the plan) is less than the estimated utility of the original SL plan plus cd (if the CP 
is P4, then cd(P4) is 7.12). The cost of selecting or generating another SL-plan is relatively 
low because we can set the upper limit of plan length. If A can find the new SL plan, it is 
selected and further refined. If A cannot find one, the original plan is selected (so conflict 
detection and resolution may be required). In the conventional planning strategy, the first 
SL plan to be generated would always be refined even if some conflicts were expected. (Of 
course, there might be no conflicts after all).  
We examined, in our simulated room, the improvement of our planning strategy that 
resulted from using the estimated conflict discount value in Table 2. The results of this 
experiment (Table 3) show that our planning strategy provides an improvement of 2.65 ticks 
on average when a conflicting situation corresponding P4 is detected. In other cases, our 
planning method can generate efficient plans except when the conflict time relativity is ph-ol. 
This improvement is not very large. However, the ability to provide some information for 
deciding whether the agent should continue to refine the current plan even if the conflict 
resolution process will very likely be invoked or try to find another plan that does not have 
conflict with other agents is significant in applications like ours. In the ph-ol case, cd’ is low 
so A cannot find any other better route. 
 

 CPs Conventional strategy Our planning strategy Improvement 
P4 (ol-ol) 33.34 30.69 2.65 % 

ah-ah 32.39 30.44 1.95 % 
ph-ph 30.93 29.40 1.53 % 
ph-ol 23.80 23.80 0 % 

Table 3. Cost (length) of resulting primitive plans. Columns 1 and 2 respectively show the 
average cost of primitive plans derived from the original SL plans and that of primitive 
plans derived under our planning strategy. In both cases, the cost of conflict detection and 
resolution is included.  
 
The improvement shown in Table 3 seems fairly small, but our simulated laboratory room is 
based on an actual room; we believe that our method would be more significant in other 
situations/environments. For example, (1) if more robots were to move right to left in the 
narrow area in Figure 3, (2) if the chair there were a bench (a longer chair), or (3) if there 
were a shorter detour, the improvement would be larger, thus the resulting plans would be 
of relatively higher quality than the ones obtained by a conventional planning strategy. We 
finally note that, although the start and goal positions were selected randomly in our 
experiments, agents (including persons) in actual applications usually have fixed start and 
goal points. Therefore, we believe that the improvements derived from the experimental 
results would appear more when this is actually applied to this kind of systems.  
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Tables 1 and 2 show the average values from ten experiments based on ten different random 
seeds, and the graphs in Figure 5 are from one of these experiments. 
Graphs (a) in Figure 5 show the estimated values of cd’m (

 

λ  = 0.98, 1

 

≤ m 

 

≤ 500) derived 
from Eqs. (2) and (3) when r = ol. In these cases, cd’(P3) = 0.71 (so cd(P3) = cd'(P3)+ CCR(P3) 
= 1.71), which is reasonably small. This is because the two-square-wide path is wide enough 
for two agents to pass through the area, but agent A sometimes has to take a detour to avoid 
conflicts. Other cases, such as moving in the opposite direction, are shown in (Sugawara et 
al., 2005). 
However, the cd’ values largely differ when two agents, B and C, which have approved 
plans (i.e., plans that do not conflict with each other), move in the same direction move(cd 

 

→ 
dd) and agent A begins to create a plan to move in the opposite direction though the same 
area. The conflict pattern of this situation is expressed as  
 

P4 = (move(cd

 

→bd)), ((move(cd

 

→dd)), ol), (move(cd

 

→dd)), ol))). 
 
The estimated cd’(P4) = 5.12 (cd(P4) = 7.12) is quite different from the previous cases, as 
shown by graphs (b) in Figure 5. Because B and C move almost simultaneously without 
conflicts, they usually occupy the narrow route in area (c, d) together. Thus, agent A always 
has to move aside, wait for several ticks until B and C pass, and then move back to the 
original route. If the agent's new plan is predicted to have this conflict pattern at the SL, it 
can select, after learning, another route, such as one taking it north of the meeting table or 
another taking it south of the sofa in Figure 1, provided the route is shorter than the one in 
the original plan plus 7.12. 
Table 2 shows the estimated cd’ values in time-relativity cases other than P4. For example, if 
one of the relative time relationships in P4 is ah (This CP is denoted by P'4), the estimated 
cd’(P'4) = 1.80. This is small because if B and C move a slight distance away from each other, 
A can weave its way around them. In the case of ph-ph, A's planned task move(cd 

 

→ bd) may 
conflict in the latter half of its execution, so the agents will usually not meet in the narrow 
area (A moves right to left). However, because of uncertainty, they infrequently meet at 
different times in the narrow area. Table 2 suggests that the values of cd’ depend on the 
resource structure of the routes, especially area (c, d) in Figure 1.  
 

 ol-ol (P4) ph-ph ah-ah ah-ol (P'4) ah-ph ph-ol 

Value of cd' 5.12 3.67 3.30 1.80 0.75 1.87 
Table 2. Experimentally estimated conflict discount cd’. 
 
Suppose that in another situation the agent finds a CP, P5 such that P4 

 

⊂ P5. This CP may 
appear when conflict among more than four agents at (c, d) is expected. In this case, cd’(P5) 
must be larger than 5.12. If this value is larger than the predefined threshold, the agent can 
calculate that cd(P5) 

 

≥ 7.12 (or cd(P5) 

 

≥ 8.12 if this conflict occurs among more than four 
agents), suggesting that it should try to find another route or shift (delay) its start time to 
avoid this conflict, even if it has no data about P5. Conversely, cd’(P'4) = 1.80 can induce 
cd’(P3) 

 

≤ 1.80. If this value is small enough, the agent does not need to calculate cd(P3). 
Table 2 also indicates that cd’(P3) 

 

≤ 0.70 if r = ah or ph in P3.  

 

5.2 Cost (length) of generated plans 
We investigated how efficient plans are generated with lower cost after a conflict pattern is 
found. In our planning strategy, agent A tries to select or generate another SL plan that is 
expected to have no conflict with other plans and whose estimated utility (in our case, the 
length of the plan) is less than the estimated utility of the original SL plan plus cd (if the CP 
is P4, then cd(P4) is 7.12). The cost of selecting or generating another SL-plan is relatively 
low because we can set the upper limit of plan length. If A can find the new SL plan, it is 
selected and further refined. If A cannot find one, the original plan is selected (so conflict 
detection and resolution may be required). In the conventional planning strategy, the first 
SL plan to be generated would always be refined even if some conflicts were expected. (Of 
course, there might be no conflicts after all).  
We examined, in our simulated room, the improvement of our planning strategy that 
resulted from using the estimated conflict discount value in Table 2. The results of this 
experiment (Table 3) show that our planning strategy provides an improvement of 2.65 ticks 
on average when a conflicting situation corresponding P4 is detected. In other cases, our 
planning method can generate efficient plans except when the conflict time relativity is ph-ol. 
This improvement is not very large. However, the ability to provide some information for 
deciding whether the agent should continue to refine the current plan even if the conflict 
resolution process will very likely be invoked or try to find another plan that does not have 
conflict with other agents is significant in applications like ours. In the ph-ol case, cd’ is low 
so A cannot find any other better route. 
 

 CPs Conventional strategy Our planning strategy Improvement 
P4 (ol-ol) 33.34 30.69 2.65 % 

ah-ah 32.39 30.44 1.95 % 
ph-ph 30.93 29.40 1.53 % 
ph-ol 23.80 23.80 0 % 

Table 3. Cost (length) of resulting primitive plans. Columns 1 and 2 respectively show the 
average cost of primitive plans derived from the original SL plans and that of primitive 
plans derived under our planning strategy. In both cases, the cost of conflict detection and 
resolution is included.  
 
The improvement shown in Table 3 seems fairly small, but our simulated laboratory room is 
based on an actual room; we believe that our method would be more significant in other 
situations/environments. For example, (1) if more robots were to move right to left in the 
narrow area in Figure 3, (2) if the chair there were a bench (a longer chair), or (3) if there 
were a shorter detour, the improvement would be larger, thus the resulting plans would be 
of relatively higher quality than the ones obtained by a conventional planning strategy. We 
finally note that, although the start and goal positions were selected randomly in our 
experiments, agents (including persons) in actual applications usually have fixed start and 
goal points. Therefore, we believe that the improvements derived from the experimental 
results would appear more when this is actually applied to this kind of systems.  
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6. Discussion and related work 
 

There have been a number of studies on efficient planning in the MAS context. For example, 
GPGP (Decker & Lesser, 1992) is a general framework for generating effective plans using 
task and resource relationships among agents. Our method can be used in this framework to 
identify which abstract plan (task) should be refined first so that the map of the task 
relationships related to the plan can be created.  
Hierarchical planning and coordination issues for improving MAS planning have also been 
discussed. For example, Ref. (Clement et al., 2001) proposed choosing the most appropriate 
abstract task/plan on the basis of summary information derived from the primitive tasks 
and plans in a bottom-up fashion. This method can avoid hopeless planning if some 
resources are recognized to be insufficient at an abstract level. It also introduced fewest-
threats-first (FTF) heuristics to choose a lower (deeper) plan. Our approach focuses on the 
cases where conflicts can be accurately identified at only deeper levels, because the tasks, 
resources, and their environment in an abstract model are described in an abstract way. 
Furthermore, a plan with fewer conflicts does not always lead to a better plan; it is possible 
that only one conflict fails to be resolved but that conflict is nonetheless a critical one. The 
idea behind our research is that, although conflicts may be invisible at abstract levels 
(including the SL), there is a tendency that conflicts often occur depending on the 
environmental factors related to the availability and use of resources, such as the location of 
agents, the kind of resources, and type of agents, as well as on the kind of task. Hence, we 
aim at expressing and distinguishing these situations by using CPs in order to enable agents 
to statistically learn the difficulty of conflict resolution and the quality of a resulting plan.  
A number of issues related to MAS planning have been investigated in case-based reasoning 
(CBR) or its related domains. For example, (Giampapa & Sycara, 2001) proposed a 
conversational case-based reasoner, called NaCoDAE, which is a type of agent in their MAS 
applications and helps users decide a course of action by engaging them in a dialogue in 
which they must describe the problem or situation of assigning missions to platoons. Plan 
reuse for the same/similar situations in a MAS context has also been proposed for MAS 
coordination (Sugawara, 1995) and collaboration (Plaza, 2005). A remarkable work similar to 
our approach is (Macedo & Cardoso, 2004), where a case is used to expand an abstract plan 
to a less abstract one in HTN, although we focus on avoiding conflicts and/or selecting 
costless conflicts. In this sense, our motivation is more similar to that in (Aha et al., 2005) 
which applied CBR to a real-time strategy game.  
Our work is also related to hierarchical reinforcement learning, such as (Dietterich, 1998; 
Kaelbling, 1993; Sutton et al., 1998), because an abstract task is considered to be a subroutine 
or a subfunction to be learned. For example, in the MAXQ approach (Dietterich, 1998), a task 
is divided into subroutines that are individually learned by RL methods. Our approach is to 
select an appropriate subroutine for each situation. In MAXQ, the conflict discount is 
assumed to have been learned at lower levels. However, in a multi-agent setting, it is 
naturally difficult to define the task hierarchy for all agents simultaneously.  
One clear limitation of our method is that the reliability of cd values heavily depends on the 
accuracy of the SL conflict detection and time-estimation processes. Thus, it is very 
important to select the appropriate SL and carefully describe the SL model. For example, if 
level 1 in Figure 1 is the SL, our method does not work well since that level is too abstract. 
As mentioned above, another issue is that the use of optional data in CPs is important for 
distinguishing one situation from another. To distinguish situations, our method needs the 

 

location of task execution (which may determine available resources), type of agent (which 
may determine required resources), and (relative) time information. Additionally, if many 
CPs are expected in a plan, conflict detection at the SL may be ambiguous regarding the 
scheduled time and resources of the SL tasks, which would affect the quality and cost of the 
plans. Finally, our method will have to be extended before it can deal with situations where 
multiple plans are created simultaneously; this extension is important for effective planning, 
and it will be addressed in a future work.  

 
7. Conclusion 
 

This chapter proposed a method to predict, at an abstract level called the screening level, the 
cost of possible conflict resolution, and the quality of the resulting plan, to generate better 
primitive (concrete) plans. In our framework, an agent called the manager agent maintains 
the plans that are scheduled or being executed at the screening level and predicts possible 
conflicts between these plans and the newly proposed plan. Then, if necessary, a detailed 
analysis of primitive plans is performed by individual agents. We conducted experiments to 
reveal the estimated additional cost (estimated cd and cd’ values) of the plans after conflict 
resolution and the efficiency of plans derived from our method. Our method enables agents 
to decide whether the current plan should be refined or another plan should be created at an 
earlier stage, that is, before an agent creates its primitive plan; this decision makes agents' 
planning efficient.  
Acknowledgement: This research was supported by SCOPE program of the Ministry of 
Internal Affairs and Communications, Japan, under contract 071607001. 
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resources are recognized to be insufficient at an abstract level. It also introduced fewest-
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cases where conflicts can be accurately identified at only deeper levels, because the tasks, 
resources, and their environment in an abstract model are described in an abstract way. 
Furthermore, a plan with fewer conflicts does not always lead to a better plan; it is possible 
that only one conflict fails to be resolved but that conflict is nonetheless a critical one. The 
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(including the SL), there is a tendency that conflicts often occur depending on the 
environmental factors related to the availability and use of resources, such as the location of 
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is divided into subroutines that are individually learned by RL methods. Our approach is to 
select an appropriate subroutine for each situation. In MAXQ, the conflict discount is 
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level 1 in Figure 1 is the SL, our method does not work well since that level is too abstract. 
As mentioned above, another issue is that the use of optional data in CPs is important for 
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location of task execution (which may determine available resources), type of agent (which 
may determine required resources), and (relative) time information. Additionally, if many 
CPs are expected in a plan, conflict detection at the SL may be ambiguous regarding the 
scheduled time and resources of the SL tasks, which would affect the quality and cost of the 
plans. Finally, our method will have to be extended before it can deal with situations where 
multiple plans are created simultaneously; this extension is important for effective planning, 
and it will be addressed in a future work.  
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cost of possible conflict resolution, and the quality of the resulting plan, to generate better 
primitive (concrete) plans. In our framework, an agent called the manager agent maintains 
the plans that are scheduled or being executed at the screening level and predicts possible 
conflicts between these plans and the newly proposed plan. Then, if necessary, a detailed 
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