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Stress and EEG 
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1. Introduction 

Many people suffer from stress in their everyday life. While there is a close relationship 

between stress and mental health, psychological stress (and associated emotions such as 

anger, anxiety, and depression), can also have effects on physical health. Indeed, chronic 

psychological stress can change the responsiveness of central-peripheral regulatory systems 

(Fuchs & Fluegee 1995; Fuchs, Uno, & Fluegge 1995), potentially rendering them less 

efficient or adaptive in terms of supporting health. Conditions such as chronic stress, 

depression, and anxiety have been found to be associated with abnormal autonomic 

nervous system (ANS) functioning (Cohen et al., 2000; Hughes & Stoney 2000). Accordingly, 

stress is one of the major factors contributing to chronic disorders (Decker et al., 1996; 

Lawrence & Kim 2000). 

Stress also influences the desire to work, performance at work, and one’s general attitude 

toward life (NIOSH, 1999). Within the industry sector, higher stress levels and stress-related 

disease lead to decrease in company performance and increase in medical expenses (Cooper, 

1996; Manning, et al., 1996). In 2008 in Korea, there were 1,967 deaths associated with 

occupational cases. Almost half of these deaths (974, or 49.5%) could be ascribed to heart or 

brain blood vessel disease (Ministry of Labor, 2008). This is not surprising given that stress 

is implicated in 75% of all heart and brain blood vessel diseases (Belkic, et al., 2004). It is 

thus apparent that stress can increase social and economic losses and decrease a country’s 

competitiveness (Driskell & Salas, 1996). Therefore, precautionary measures to reduce stress 

and adequate management of this condition are essential for both individual health and the 

welfare of society at a broader level. 

This chapter reports on relationships among psychological stress, the EEG 

(Electroencephalogram), ECG, and salivary cortisol in people suffering from chronic stress. 

We hypothesized that chronic stress will have negative effects on the central-ANS and 

physiological responsiveness. There are many bio-signal channels by which stress can be 

potentially quantified, including ECG, EEG, and the skin conductance response (SCR) 

(Kohlish & Schaefer 1996; Gevins et al., 1998). Even so, determining the stress level of any 

given individual can be difficult. Related to this is debate concerning the extent to which the 

EEG can be used to reliably measure stress. However, this chapter presents data showing 

that there are significant correlations between EEG measures and other indices of stress, 

including the ECG and salivary cortisol. Also, it revealed relationships between high beta 
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frequency EEG activity and each of HRV, measured as the standard deviation of all normal 

RR intervals (SDNN) and salivary cortisol during several different conditions. Our results 

suggest that inter-individual differences in stress can be reliably assessed by EEG. 

2. The stress response  

The human nervous system is very complex and contains two major divisions: central and 

peripheral. The peripheral nervous system includes the ANS, which has a particular 

association with negative psychological states such as stress, anxiety, and depression.  

The ANS performs and regulates automatic bodily functions associated with breathing, 

heart rate, digestion, and the hormonal system. The ANS itself has two parts: sympathetic 

and parasympathetic. The sympathetic and parasympathetic nervous systems initiate the 

stress and relaxation response, respectively.  

There is normally a balance maintained between the activities of the sympathetic and 

parasympathetic nervous systems. Chronic stress can disturb this balance and thereby cause 

stress-related health problems to arise. 

When one is exposed to a physical or psychological stressor, the brain initiates a stress 

response, from which a series of chemical reactions ensue. The stress response is a healthy 

defense mechanism and involves the release of hormones that have numerous biochemical 

and physiological effects. However, the continued release of these hormones under 

conditions of chronic stress can have detrimental effects on health.  

Indeed, the hormonal response associated with long-lasting stress increases the risk of many 

diseases, including heart disease, stroke, and angina. Stress hormones can weaken the 

immune system and thus promote vulnerability to infection. Stress hormones also trigger 

increases in blood pressure, heart rate, and respiration and raise the risk of stroke, heart 

attack, and kidney diseases (Noback et al., 1986). 

Cognitive and physiological processes of the central nervous system (CNS) associated with 

stress are known to affect most organs of the human body.  

The stress response involves activation of regulatory centers in the CNS that stimulate both 

the hypothalamic-pituitary-adrenal (HPA) axis and ANS.  

The HPA axis is one of the major systems involved in the stress response. It facilitates 

adaptations to changes in the internal or external conditions of the body. The stress response 

involves central and peripheral changes that are coordinated by the CNS. The release of 

glucocorticoids (GCs) such as cortisol is controlled by the paraventricular nucleus of the 

hypothalamus, in which parvocellular neurons synthesize and release corticotrophin-

releasing hormone (CRH) as a response to stress. These neurons also secrete other 

hormones, including arginine vasopressin. The combined actions of arginine vasopressin 

and CRH activate the HPA axis. The release of CRH into the pituitary portal system induces 

the pituitary to release adrenocorticotropic hormone (ACTH), which in turn induces the 

release of GCs from the adrenal cortex. GCs exert negative feedback on the hypothalamus 

and pituitary gland that serves to terminate the stress response when no longer required, 

thereby preventing excessive responses. GCs are involved in many aspects of the stress 

response; they facilitate adaptation of the body to changing conditions by regulating energy 

stores, inhibiting nonessential physiological activity, and promoting behavioral responses to 

stimuli perceived as stressful (Johnson et al., 1992; Bao et al., 2008). 

www.intechopen.com



Stress and EEG 

 

415 

3. Assessing levels of stress 

3.1 Psychological assessment 

The stress response can be measured and evaluated in terms of perceptual, behavioral, and 

physical responses. The evaluation of perceptual responses to a stressor involves subjective 

estimations and perceptions. Indeed, self-report questionnaires are one of the most common 

instruments used to measure an individual’s level of stress (Cohen et al., 1997). Numerous 

questionnaires have been used in clinical practice and psychiatric research to evaluate stress, 

including the Perceived Stress Scale (PSS) (Cohen et al., 1983), the Life Events and Coping 

Inventory (LECI) (Lewis, 1988), and the Stress Response Inventory (SRI) (Koh et al., 2001). 

The PSS measures the degree to which situations are considered stressful, doing so by 

addressing events experienced in the preceding month. It was designed to quantify how 

unpredictable, uncontrollable, and overloaded adults find their lives. The LECI is composed 

of 125 questions that assess the extent to which children experience stress in association with 

life events. The SRI is designed for adults, but it differs from the PSS in assessing the mental 

and physical symptoms associated with psychological stress; it consists of 39 items and 

produces scores for seven factors: tension, aggression, somatization, anger, depression, 

fatigue, and frustration.  

3.2 Physical assessment 

The physical response to stress has two components: these are a physiological response 
indicative of central-autonomic activity and a biochemical response involving changes in the 
endocrine and immune systems (Cohen, Kessler & Gordon 1997).  

3.2.1 Biochemical response 

Stress induces changes in autonomic function and the secretion of hormones that include 

cortisol, corticosterone, and adrenal catecholamines (Van der Kar & Blair 1999). 

The presence of stress hormones such as adrenaline, noradrenaline, and cortisol can be 
considered indicative of a stress response. Some studies have reported that repeated exposure 
to intense stress increases the secretion of cortisol (Schulz et al., 1998; Evans et al., 2001). 
Cortisol levels can be measured in numerous bodily fluids, including serum, urine, and saliva.  
There is a daily cycle in cortisol levels, which are normally high in the morning and low at 
night (Stone et al., 2001). However, repeated exposure to stress decreases the ability to 
regulate cortisol levels, leading to an elevated level that remains high at night. In such case, 
the levels may become abnormally low and show very little variation (Dallman, 1993; 
Pruessner et al., 1999). It has been shown that there are relationships between salivary 
cortisol levels and physiological variables used to assess stress, including HRV, skin 
temperature, blood pressure (BP), heart rate (HR), and galvanic skin response (GSR). 
Accordingly, salivary cortisol is routinely used as a biomarker of psychological stress and 
associated mental or physical diseases. Exposure to long-lasting stressors often results in 
elevated cortisol levels (Bigert, Bluhm, & Theorell 2005). Indeed, salivary cortisol is generally 
considered to be a reliable measure of HPA adaptation to stress (Park, & Kim 2007). 

3.2.2 HRV (Heart rate variability) 

Stress induces a change in autonomic functioning (Van der Kar & Blair 1999). Blood 
pressure and heart rate increase during stress, reflecting a predominance of sympathetic 
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nervous system activity (Ritvanen et al., 2005). HRV is the beat-to-beat variation in heart 
rate, and it has recently been used as a biomarker of ANS activity associated with mental 
stress (Zhong et al. 2005). Time domain analysis of HRV involves quantifying the mean or 
standard deviation of RR intervals. Frequency domain analysis involves calculating the 
power of the respiratory-dependent high frequency and low frequency components of HRV. 
While high frequency power is mediated by vagal activity (Hayano et al., 1991), it has been 
suggested that low frequency power primarily reflects sympathetic modulation (Pomeranz 
et al., 1985; Malliani et al., 1991). Many studies have investigated abnormalities in ANS 
functioning associated with stress, with HRV as one of the measures shown to be affected 
(Salahuddin et al., 2007). Mental stress is reported to evoke a decrease in the high frequency 
component and an increase in the low frequency component of HRV (Bernardi et al., 2000). 
Job stress has been shown to induce excessive levels of sympathoadrenal activation, leading 
to increases in blood pressure and heart rate, the secretion of catecholamines, and the release 
of lipids and glucose into the bloodstream (Theorel et al. 1993). Abnormalities of ANS 
functioning (Horsten et al. 1999) that include decreased HRV are associated with mental 
stress in laboratory experiments (Myrtek et al. 1996; Sloan et al. 1994). Moreover, lower than 
normal HRV has been found in subjects with depression, high levels of hostility, and 
anxiety. Low HRV may reflect an inability to generate variable and complex physiological 
responses, rendering an individual physiologically rigid and vulnerable (Horsten et al. 
1999). Sustained autonomic activation can result in arrhythmia or sudden heart attack 
because of an increase in sympathetic and decrease in parasympathetic activity. 

3.2.3 EEG 

In healthy people not experiencing stress, there is a balance between the sympathetic and 
parasympathetic arms of the ANS and flexibility in how these respond. Exposure to 
threatening situations induces a fight-or-flight response whereby emotional and vigilance 
systems are activated. Although most current day stress arises from psychosocial factors 
that are not life threatening, the fight-or-flight response may still be generated, for example, 
during tests or when called upon to give an impromptu speech (Johannes et al 2007). Studies 
into brain activity patterns under stressful conditions have focused on stress generated by 
words, examinations, noise, and mental tasks (Matsunami et al., 2001; Lewis et al., 2007; 
Tucker 1981; Davidson et al., 1979; Seo et al., 2008a; Seo et al., 2009). 
A major aspect of neurophysiological research into emotion concerns hemispheric 

specialization. While the left hemisphere appears to be more involved in the processing of 

positive emotions and approach-related behaviors, the right hemisphere is more involved in 

the processing of negative emotions and withdrawal behaviors (Coan & Allen, 2004; 

Davidson, 2003). These differences are represented by a model of emotional processing in 

which the frontal cortex plays a key role. Evidence supporting this model has been obtained 

from studies concerning asymmetry in prefrontal EEG alpha activity. Positive moods or 

reactions have been shown to be associated with relatively greater left prefrontal activity 

(LFA) and negative moods or reactions with relatively greater right prefrontal activity (RFA) 

(Davidson, Jackson & Kalin, 2000). 

The results of recent neuroimaging studies suggest that negative affect typically elicits 
activation in the right prefrontal cortex, amygdala, and insula, and the left prefrontal cortex 
is associated with positive emotions (Davidson; 1992). The right prefrontal cortex may be 
critically involved in the response to stress, since it is a fundamental component of both the 
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emotional and vigilance networks. Some studies suggest that high levels of right-sided 
prefrontal activation are associated with a negative affective style and weakened immune 
system. For example, Davidson has reported that differences in prefrontal activity 
asymmetry reflect individual differences in affective styles (Bierhaus et al., 2003; Epel et al., 
2004). Importantly, the prefrontal cortex may mediate the extent to which psychosocial 
stress affects mental and physical health (Segerstrom & Miller 2004; Cohen et al., 1993). 
There appear to be differences in how activity of the left and right cortical hemispheres 
affects ANS functioning. Moreover, the extent of this asymmetry has been suggested to vary 
under conditions of chronic stress (Papousek, 2002). Related effects are reported for stress-
related emotions, with preferential right hemispheric activation in the frontopolar region 
shown to be associated with electrodermal activity (EDA) in anxious subjects (Papousek & 
Schulter, 2001). 

4. Neurofeedback 

The side effects and inconvenience associated with long term use of medications has 
facilitated an interest in alternative therapies and self-regulation for maintaining health.  
Alternative therapies such as yoga, meditation, and Ki Gong are widely used to manage 
stress. These therapies induce relaxation or decrease psychophysiological arousal by 
reducing the activities of the sympathetic nervous system. Another therapeutic approach 
involves biofeedback, in which ANS variables such as heart rate, blood pressure, skin 
tension, and temperature are regulated. Biofeedback has been applied to mental diseases 
such as anxiety and depression and to psychosomatic diseases such as migraine, tension 
headache, and hyperpiesia (Sadock B.J. & Sadock V.A. 2004). Neurofeedback is biofeedback 
using brain waves and has specific applications for brain diseases and associated symptoms 
(Ahn, 2006; Park, 2006). There have been many recent studies concerning the utility of 
neurofeedback within clinical medicine. Conditions for which neurofeedback has been most 
intensively used include alcoholism, epilepsy, ADHD, brain injury, and mood disorders 
(Peniston E.G., 1999; Mann C.A., 1992; Byers A.P., 1995; Baehr E., 2001). In a more general 
sense, neurofeedback has been demonstrated to improve concentration, memory, and 
musical performance (Gruzelier J, 2005).  
Subjects undergoing neurofeedback training attempt to regulate their brain waves, wherein 
special signals are presented to the subject in a suitable form. Via operant conditioning, this 
feedback facilitates a subject’s ability to adopt a desired brain wave state. Neurofeedback 
training focuses upon two components of the EEG spectrum: synchronized beta waves and 
alpha waves. Alpha waves reflect a calm, open, and balanced psychological state with a 
decrease in alpha wave activity during stress. Alpha wave training attempts to alleviate 
stress by inducing a state of relaxation. This involves removing or reducing habitual 
tendencies to respond to stressful situations with tension and anxiety.  
Beta waves are associated with concentration, thought, and listening. Synchronized brain 
waves reflect attention or awareness or consciousness in the absence of motor activity. 
Synchronization at low frequencies (delta and theta) reflects awareness on an unconscious 
level. Conversely, synchronization of higher frequency alpha and beta waves reflects a state 
of conscious awareness. Beta training is reported to increase focus, concentration, energy 
levels, and mental clarity (Paul, 2008). Alpha and beta training supplement one another and 
can be used in combination to manage stress. Neurofeedback is a noninvasive technique 
potentially effective in reducing stress. However, there may be a particular benefit to be had 
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in combining neurofeedback with medications that by themselves have a limited role in 
managing stress. 

5. Experimental methods 

5.1 Participants 

The participants were 33 healthy, right-handed volunteers (9 females and 24 males) aged 

30–40 years old. All participants had normal hearing, and none had a neurological disorder. 

Informed written consent was provided by all participants before completing questionnaires 

or undergoing psychophysiological assessment. 

5.2 SRI(Stress Response Inventory) and SAM(Self Assessment Manikin) 

Stress was assessed with the SRI, which participants completed prior to physiological 
measurements being obtained. 
The SAM (Fig. 1) has been used widely to assess the emotional response of subjects to 
experimental stimuli. In being pictorial it can be used with people from a diverse range of 
backgrounds. The SAM quantifies pleasant and unpleasant emotions on a nine-point scale 
(Margaret et al. 1994).  
 

 
Fig. 1. SAM Valence (negative-positive) 

5.3 Procedures 

Visual stimuli from the International Affective Picture System (IAPS) were used to evoke 

emotional responses (Lang, Bradley & Cuthbert 1995). The stimuli were presented as a set of 

pleasant images and a set of unpleasant images. Each set lasted for 5 min, with individual 

images presented for 15 s. Participants made a rating with the SAM after each image set. 

Salivary cortisol was collected after the SRI had been completed, following which 

participants underwent the sequence of procedures shown in Figure 2: eyes-closed, eyes-

open, pleasant images, SAM, rest, unpleasant images, and SAM. EEG and ECG recordings 

were obtained throughout the experiment. A 5-min portion of the ECG recording was used 

for short-term HRV analysis. 

5.4 Cortisol  

Cortisol levels quantify the endocrine response to stress. The collection of blood samples for 

measuring cortisol levels can be associated with greater inter-individual differences than when 

saliva samples are used (Park & Kim 2007). Saliva was obtained from our participants between 

noon and 3 pm. Cortisol levels were determined using a Solid-Phase Radioimmunoassay 

(RIA) Coat-A-Count Cortisol kit (Siemens, USA), as per the manufacturer’s instructions, and a 

Gamma counter (Packard, USA).  

www.intechopen.com



Stress and EEG 

 

419 

 

Fig. 2. Experimental sequence 

5.5 ECG recording and analysis 

The ECG was monitored continuously with a noninvasive system developed by us 
previously. Limb leads II and III were used, and the sampling rate was 512 Hz. HRV 
analysis requires accurate detection of the QRS complex. However, this can be difficult 
because ECG signals are easily corrupted by noise generated by muscular contraction or 
electrical power lines, and by a drift from baseline associated with respiration or motion 
artifacts. In addressing this issue, we used a novel QRS detection algorithm based on multi-
scale mathematical morphology (3M). This was designed to specifically identify R waves, 
and with which successive R-R interval series could be reliably determined. 

5.6 EEG recording and analysis 

The EEG was recorded in each of the four conditions designed to induce different levels of 
stress: eyes-closed, eyes-open, pleasant images, and unpleasant images. Unpleasant and 
pleasant images were presented to evoke negative and positive emotions, respectively. 
Participants rested with their eyes closed for 1 min and with their eyes open for 5 min.  
The EEG was recorded with Ag-AgCl disc electrodes from four Modified Combinatiorial 
Nomenclature (MCN) system sites: FC5, FC6, O1, and O2. These were specifically chosen to 
facilitate the detection of stress, anxiety, and dysphoria, as reflected by beta activity. The 
reference and ground sites were Cz and Iz, respectively. A QEEG-4 (LXE1104-RS232, 
LAXTHA Inc.) device obtained recordings at a sampling rate of 256 Hz. The resolution of 
the A/D converter was 12 bits, and electrode impedance was maintained as less than 5 kΩ.  
EEG data was analyzed with Complexity v2.8 software (LAXTHA Inc.). Recordings were 
band-pass FFT filtered (4–30 Hz), to eliminate any influence of artifacts in the theta (4–8 Hz), 
alpha (8–13 Hz), and beta (13–30 Hz) ranges. Ocular artifacts were removed using a PCA-
based procedure in Complexity v2.8. 

5.7 Statistical analysis 

Pearson’s correlation was used to determine the strength of relationships among EEG, ECG 
(SDNN), salivary cortisol, and SRI data. Stress levels groupings of stress, non-stress and 
general were made with k-means cluster analysis of SDNN and cortisol data. Differences in 
SDNN and cortisol between these groups were examined with ANOVA. All statistical 
analyses were performed using SPSS v12.0, and considered to be significant at the level of p 
< 0.05. 
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6. Results 

6.1 Relationships among EEG, ECG, salivary cortisol, and SRI data  

Salivary cortisol was negatively correlated with SDNN (r = –0.498, p = 0.07). However, there 

was no significant relationship between SDNN and SRI, or between cortisol and SRI. In 

general, the high stress group showed decreased HRV features compared to the low stress 

group under chronic stress (Kim, Seo & Salahuddin 2008). Long lasting stress can produce 

elevated cortisol levels and restrict their typical overnight reduction (Bigert, Bluhm, Theorell 

2005). 

6.2 EEG and ECG 

The relationship between SDNN and relative high beta power for each of the four EEG sites 

in the eyes-closed condition is shown in Table 1. There was a significant negative correlation 

between SDNN and relative high beta power at both the anterior temporal sites in this 

condition. Significant correlations were not found in any of the other conditions or at either 

of the occipital sites. 
 

 
Recording site 

r p 

FC5 –0.428 0.013 

FC6 –0.346 0.049 

O1 0.052 0.772 

O2 0.070 0.697 

Table 1. Relationships between SDNN and high beta activity in the eyes-closed condition 

Table 2 shows the results of the k-means cluster analysis by which stress level groupings 
based on SDNN data were made.  
 

Cluster center ANOVA 
 Stress  

(N = 13) 
Non-Stress  

(N = 9) 
General  
(N = 11) 

F p 

SDNN 24.64 50.77 36.75 71.077 0.000 
 

Table 2. K-means cluster analysis of SDNN data 

The mean high beta power at the anterior temporal sites of each SDNN group is shown in 

Figure 3. There was a significant difference in high beta activity across the groups at FC5 (F 

= 4.271, p = 0.023) but not at FC6 (F = 2.262, p = 0.122). The stress group (with relatively low 

SDNN) had the highest level of beta activity.  

6.3 Relationships between salivary cortisol and EEG data 

The relationship between salivary cortisol level and relative high beta power at each of the 

four EEG sites in the eyes-closed condition is summarized in Table 4. In this condition, there 

was a significant positive correlation between the cortisol level and relative high beta power 

at both the anterior temporal sites, and a tendency toward a similar relationship at one of 

the occipital sites (O2). Significant relationships were not found in any of the other 

conditions. 
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Fig. 3. Relative high beta power in each of the three SDNN-based stress level groups 

 
Recording site 

r p 

FC5 0.454 0.008 

FC6 0.439 0.011 

O1 0.247 0.165 

O2 0.334 0.057 

Table 3. Relationships between cortisol and high beta activity in the eyes-closed condition 

Table 4 shows the results of the k-means cluster analysis by which stress level groupings 
based on cortisol data were made. 
 

Cluster center ANOVA 

 Stress 
(N = 8) 

Non-Stress 
(N = 10) 

General 
(N = 15) 

F p 

Cortisol 
(ug/dL)

0.32 0.11 0.21 71.378 0.000 

Table 4. K-means cluster analysis of cortisol data 

 

Fig. 4. Relative high beta power in each of the three cortisol-based stress level groups 

The mean high beta power at the anterior temporal sites of each cortisol group is shown in 
Figure 4. There was a significant difference in high beta activity across the groups at both 
FC5 (F = 5.556, p = 0.009) and FC6 (F = 3.635, p = 0.039) sites. The stress group (with 
relatively high cortisol levels) had the highest level of beta activity. 
The relationship between salivary cortisol level and relative high beta power at each of the 
four EEG sites in the eyes-closed condition is summarized in Table 4. In this condition, there 
was a significant positive correlation between the cortisol level and relative high beta power at 
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both the anterior temporal sites, and a tendency toward a similar relationship at one of the 
occipital sites (O2). Significant relationships were not found in any of the other conditions. 

7. Discussion 

There are three major results to report from the present study. The first of these is a 
significant correlation between HRV and salivary cortisol (but not between HRV and SRI 
scores). Second, significant correlations exist between relative high beta EEG power at 
anterior temporal sites and each of HRV and salivary cortisol during an eyes-closed resting 
condition. The third finding is a difference in the relative high beta power across stress level 
groups determined on the basis of SDNN and cortisol data. In both instances, the stress 
group participants had the highest level of beta activity.  
Chronic stress leads to increase in the variability of central-autonomic responses and 
decrease in physiological adaptability and immunity (Fuchs & Fluegee 1995; Fuchs, Uno & 
Fluegge 1995; Cohen et al., 2000; Hughes & Stoney 2000). There have been many studies 
using biosignals to quantify the stress associated with mental tasks or work load in healthy 
subjects (Jeon et al., 2002). These studies have established that biomarker profiles can 
distinguish between people experiencing chronic stress and those who are not, with 
sufferers of chronic stress typically having lower HRV and higher cortisol levels. The 
findings of the present study are thus consistent with those of previous research.  
Although many researchers have reported EEG abnormalities as being associated with 
stress and negative emotions, the extent to which stress can be reliably evaluated from the 
EEG has been unclear. Recent EEG research on emotion has focused on relationships 
between dorsolateral prefrontal asymmetry and a dispositional tendency toward positive or 
negative affects (Davidson 2004). However, some researchers have suggested a need to pay 
more attention to frontopolar regions of the prefrontal cortex (Papousek & Schulter 2002). 
Thompson has indicated that the EEG of someone under stress displays decreases in both 
alpha (11–12 Hz) and sensorimotor rhythm (SMR, 12–15 Hz) activity, and increases in EEG 
amplitude in the 19–22 Hz and high beta (23–35 Hz) ranges at both Cz and FCz sites 
(Michael & Lynda 2007). Emotional intensity, particularly relating to anxiety, correlates with 
19–22 Hz band activity, while activity within the 23–36 Hz band reflects an active brain 
state. Accortt has reported a relationship between premenstrual distress and frontal EEG 
alpha, an effect especially pronounced at the anterior temporal sites (Accortt & Allen 2006). 
It has also been found that beta rhythms are predominant under resting conditions in 
bilateral superior temporal and somato-motor regions of the cortex (Mantlnl et al., 2007), 
both of which are implicated in emotional processes (Hagemann et al., 1998; Davidson et al., 
1990).  
In the present study, we found a correlation between HRV and high beta activity at anterior 
temporal sites (FC5, FC6) during the eyes-closed condition. We also found a correlation 
between salivary cortisol and high beta activity in this condition. These results show that 
participants with relatively low HRV had relatively high levels of beta activity in premotor 
regions of the cortex. Participants with a higher level of salivary cortisol also had a higher 
level of beta activity. These results suggest that there are close relationships among EEG, 
ECG, and salivary cortisol indicative of chronic stress. Chronic stress was particularly 
associated with high levels of relative beta power at anterior temporal sites.  
We assigned participants to stress level groups on the basis of SDNN and salivary cortisol 
data. Greater stress was associated with lower HRV (i.e., lower SDNN values) and a higher 
level of cortisol. The group with the highest stress level showed the highest level of beta 
activity during the eyes-closed condition. However, there were no significant correlations 
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among EEG, ECG, and salivary cortisol data during any of the other conditions: eyes-open, 
pleasant images, and unpleasant images. These correlations need to be analyzed because of 
the difference in individual responses to stimuli. Participants experiencing chronic stress 
showed less HRV than those who were not. Range of variance of HRV features according to 
stimuli was little.  
Finally, the present study demonstrated that there are consistent relationships among EEG, 
ECG, and salivary cortisol data associated with chronic stress. In addition to confirming the 
results of previous studies, our results suggest that chronic stress may be reliably assessed 
by relative high beta EEG power at anterior temporal sites. Indeed, this variable could even 
be seen as a diathesis for the dysphoria associated with chronic stress. 
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