
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

A Framework for Localizing Integrity
Constraints Checking in Distributed Database

Ali Amer Alwan, Hamidah Ibrahim and Nur Izura Udzir
Department of Computer Science

Faculty of Computer Science and Information Technology
Universiti Putra Malaysia, 43400 Serdang,

Malaysia

1. Introduction

The validity, accuracy, and semantic of data are significant requirements in modern
database applications. Semantic data in database is normally represented under the form of
integrity constraints. Integrity constraints are properties, typically depending on the nature
of the application domain, which must always be satisfied for the data to be considered
consistent. Maintaining obedience of data with respect to integrity constraints is an essential
requirement, since, if some data lacks integrity, then answers to queries cannot be trusted.
Databases usually contain massive collections of data that rapidly evolve over time; this
makes perfect checking at each update too time consuming a task to be feasible. In this
regard, DBMS needs to be extended with the ability to automatically verify that database
updates do not introduce any violation of integrity (Martinenghi, 2005; Christiansen &
Martinenghi, 2006). The way we pursue here is the so-called simplification of integrity
constraints. Simplification means to generate a set of integrity tests from the initial
constraints whose satisfaction implies the satisfaction of the original constraints in the
updated state. The main interest of the simplification process is to obtain a set of integrity
tests (simplified forms) that are as easy to evaluate as possible. In this sense, simplification
technique is feasible in terms of the cost of evaluating the constraints. Integrity constraint
checking is the process of ensuring that the integrity constraints are satisfied by the database
after it has been updated. Checking the consistency of a database state will generally involve
the execution of integrity tests on the database which verify whether the database is
satisfying its constraints or not. The problem of checking integrity constraints in database
system has been addressed by many researchers, and has been proved to be extremely
difficult to implement, particularly in distributed database. This chapter presents a
framework for checking integrity constraints in a distributed database by utilizing as much
as possible the information at a local site. This is achieved by considering several types of
integrity tests and not focusing only on certain type of test as suggested by previous
researchers. In addition, an approach for ranking and selecting suitable integrity tests that
reduces the amount of data transferred across the network, the amount of data accessed,
and the number of sites involved is also presented. The remainder of this chapter is
organized as follows. In Section 2, the previous works related to this research are reported.

Source: Convergence and Hybrid Information Technologies, Book edited by: Marius Crisan,
 ISBN 978-953-307-068-1, pp. 426, March 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Convergence and Hybrid Information Technologies

76

In Section 3, the basic definitions, notation and examples, which are used in the rest of the
chapter, are set out. In Section 4, the components of the proposed framework are described
followed by some examples. Conclusion and further research are presented in the final
section, 5.

2. Related work

For distributed databases, a number of researchers have looked at the problem of semantic
integrity checking. Although many research works have been conducted concerning the
issues of integrity constraint checking and maintaining in distributed databases but these
works failed to exploit the available information at the target site and explore the various
types of integrity tests to ensure local checking can always be achieved. This is briefly
shown in Table 1, where column labeled 1, 2, 3, 4, 5, 6, 7, and 8 represent the work by Simon
and Valduriez (1986), Qian (1989), Mazumdar (1993), Gupta (1994), Ibrahim et al (2001),
Ibrahim (2002), Madiraju et al (2006), and Soumya et al (2008) respectively.

Criteria 1 2 3 4 5 6 7 8

Domain √ √ √ √ √

Key √ √ √ √ √

Referentia
l

√ √ √ √ √ √

Semantic √ √ √ √ √ √ √

Types of
integrity

constraints

Transition √

Complete √ √

Sufficient √ √ √ √ √ √ √
Types of

tests
Support

Table 1. Summary of the Previous Work

The work presented in Simon and Valduriez (1986) constructed a simplification method for
integrity constraints expressed in terms of assertions for central databases and extended it to
distributed databases. This method produces at assertion definition time, differential pre-
tests called compiled assertions, which can be used to prevent the introduction of
inconsistencies in the database. The cost of integrity checking is reduced because only data
subject to update are checked in this approach.
Qian (1989) argued that most approaches derive simplified forms of integrity constraints

from the syntactic structure of the constraints and the update operation without exploiting

knowledge about the application domain and the actual implementation of the database.

Qian (1989) shows that distributed constraints can be translated into constraints on the

fragments of a distributed database, given the definition of the fragmentation, and offers a

framework for constraint reformulation. The constraint reformulation algorithm used to

derive sufficient conditions can potentially be very inefficient because it searches through

the entire space of eligible reformulation for the optimal one. Using heuristic rules to restrict

the reformulation step may miss some optimal reformulation.

The work presented by Mazumdar (1993) aims at minimizing the number of sites involved
in evaluating the integrity constraints in a distributed environment. In his approach the
intention is to reduce the non locality of constraints by deriving sufficient conditions not
only for the distributed integrity constraints given, but also for those arising as tests for

www.intechopen.com

A Framework for Localizing Integrity Constraints Checking in Distributed Database

77

particular transactions. His method relies on a standard backchaining approach to find the
sufficient conditions.
Gupta (1994) presents an algorithm to generate parameterized local tests that check whether
an update operation violates a constraint. This algorithm uses the initial consistency
assumption, an integrity constraint assertion that is expressed in a subset of first order logic,
and the target relation to produce the local test. This optimization technique allows a global
constraint to be verified by accessing data locally at a single database where the
modification is made. However, this approach is only useful in situations where each site of
a distributed DBMS contains one or more intact relations since it does not consider any
fragmentation rules.
Ibrahim et al (2001) contribute to the solution of constraint checking in a distributed
database by demonstrating when it is possible to derive from global constraints localized
constraints. They have proved that examining the semantics of both the tests and the
relevant update operations reduces the amount of data transferred across the network. The
simplified tests have reduced the amount of data that needed to be accessed and the number
of sites that might be involved. Ibrahim (2002) extends the work in Ibrahim et al (2001) by
considering the transition constraints.
The work proposed by Madiraju et al (2006) focuses on checking global constraints involving
aggregates in the presence of updates. The algorithm takes as input an update statement, a
list of global constraints involving aggregates and granules. The sub constraint granules are
executed locally on remote sites and the algorithm decides if a constraint is violated based
on these sub constraint executions. The algorithm performs constraints checking before the
updates and thus saves time and resources on rollback. This approach is limited as they only
consider semantic integrity constraints involving both arithmetic and aggregate predicates.
Other types of integrity constraints that are important and are frequently used in database
applications are not being considered.
Soumya et al (2008) proposed a technique to achieve optimization of constraint checking
process in distributed databases by exploiting technique of parallelism, compile time
constraint checking, localized constraint checking, and history of constraint violations. The
architecture mainly consists of two modules: Constraint Analyzer and Constraint Ranker for
analyzing the constraints and for ranking the constraints, respectively for systems with
relational databases. They achieved optimization in terms of time by executing the
constraints in parallel with mobile agents.
From these works, it can be observed that most of the previous works proposed an approach
to derive simplified form of the initial integrity constraint with the sufficiency property,
since the sufficient test is known to be cheaper than the complete test and its initial integrity
constraint as it involved less data to be transferred across the network and always can be
evaluated at the target site, i.e. only one site will be involved during the checking process.
The previous approaches assume that an update operation will be executed at a site where
the relation specified in the update operation is located, which is not always true. For
example, consider a relation R that is located at site 1. An insert operation into R is assume
to be submitted by a user at site 1 and the sufficient test generated is used to validate the
consistency of the database with respect to this update operation, which can be performed
locally at site 1. But if the same update operation is submitted at different site, say 2, the
sufficient test is no longer appropriate as it will definitely access information from site 1
which is now remote to site 2. Therefore, an approach is needed so that local checking can be
performed regardless the location of the submitted update operation. Also, the approach
must be able to cater the important and frequently used integrity constraint types.

www.intechopen.com

 Convergence and Hybrid Information Technologies

78

3. Preliminaries

Our approach has been developed in the context of relational databases. A database is
described by a database schema, D, which consists of a finite set of relation schemas, <R1, R2,
…, Rm>. A relation schema is denoted by R(A1, A2, …, An) where R is the name of the relation
(predicate) with n-arity and Ai’s are the attributes of R. A relational distributed database
schema is described as (D, IC, AS) where IC is a finite set of integrity constraints and AS is a
finite set of allocation schemas.
Database integrity constraints are expressed in prenex conjunctive normal form with the
range restricted property. A conjunct (literal) is an atomic formula of the form R(u1, u2, …,
uk) where R is a k-ary relation name and each ui is either a variable or a constant. A positive
atomic formula (positive literal) is denoted by R(u1, u2, …, uk) whilst a negative atomic
formula (negative literal) is prefixed by ¬. An (in)equality is a formula of the form u1 OP u2
(prefixed with ¬ for inequality) where both u1 and u2 can be constants or variables and OP

∈ {<, ≤, >, ≥, <>, =}. Throughout this chapter the company database is used, as given in
Figure 1. This example has been used in most previous works related to the area of
constraint checking (Feras, 2006; Ibrahim, 2006; Ibrahim et al, 2001; Gupta, 1994).

Fig. 1. The Company Static Integrity Constraint

Schema:

emp(eno, dno, ejob, esal); dept(dno, dname, mgrno, mgrsal); proj(eno, dno, pno)

Integrity Constraints:

Domain Constraint

(IC-1) ‘The salary in relation emp must be greater than 0’

(∀w∀x∀y∀z)(emp(w, x, y, z) → (z > 0))

Key Constraints

(IC-2) ‘eno is the primary key of emp’

(∀w∀x1∀x2∀y1∀y2∀z1∀z2)(emp(w, x1, y1, z1) ∧ emp(w, x2, y2, z2) → (x1 = x2) ∧ (y1 = y2) ∧ (z1 = z2))

(IC-3) ‘Every department has a unique dno’

(∀w∀x1∀x2∀y1∀y2∀z1∀z2)(dept(w, x1, y1, z1) ∧ dept(w, x2, y2, z2) → (x1 = x2) ∧ (y1 = y2) ∧ (z1 = z2))

Referential Integrity Constraints

(IC-4) ‘The dno of every tuple in the emp relation exists in the dept relation’

(∀t∀u∀v∀w∃x∃y∃z)(emp(t, u, v, w) → dept(u, x, y, z))

(IC-5) ‘The eno of every tuple in the proj relation exists in the emp relation’

(∀u∀v∀w∃x∃y∃z)(proj(u, v, w) → emp(u, x, y, z))

(IC-6) ‘The dno of every tuple in the proj relation exists in the dept relation’

(∀u∀v∀w∃x∃y∃z)(proj(u, v, w) → dept(v, x, y, z))

(IC-7) ‘The mgrno of every tuple in the dept relation exists in the emp relation’

(∀t∀u∀v∀w∃x∃y∃z)(dept(t, u, v, w) → emp(v, x, y, z))

(IC-8) ’The manager salary, mgrsal, in the dept relation exists in emp relation, esal’

(∀u∀v∀w∀x∃y∃z)(dept(u, v, w, x) → emp(w, y, z, x))

General Semantic Integrity Constraints

(IC-9) ‘Every manager in department D1 earns > 4000’

(∀w∀x∀y∀z)(dept(w, x, y, z) ∧ (w = ‘D1’) → (z > 4000))

(IC-10) ‘Every employee must earn ≤ to the manager in the same department’

(∀t∀u∀v∀w∀x∀y∀z)(emp(t, u, v, w) ∧ dept(u, x, y, z) → (w ≤ z))

(IC-11) ‘All managers who are working on project P3 must earn more than 1000’

(∀v∀w∀x∀y∀z)(dept(v, w, x, y) ∧ proj(x, z, P3) → (y > 1000))

(IC-12) ‘Any department that is working on a project P1 is also working on project P2’

(∀x∀y∃z)(proj(x, y, P1) → proj(z, y, P2))

www.intechopen.com

A Framework for Localizing Integrity Constraints Checking in Distributed Database

79

In the database literature, many types and variations of integrity tests have been described
(McCune and Henschen, 1989; McCarroll, 1995). The classifications of integrity tests are
based on some of their characteristics, as explained below.
a. Based on when the integrity test is evaluated: (i) post-tests - allow an update operation

to be executed on a database state, which changes it to a new state, and when an
inconsistent result is detected undo this update. The method that applies these integrity
tests is called the detection method. (ii) pre-tests - allow an update to be executed only if
it changes the database state to a consistent state. The method that applies these
integrity tests is called the prevention method.

b. Based on region: (i) local tests – verify the consistency of a database within the local
region, i.e. by accessing the information at the local site. The method that adopts these
integrity tests is called the local method. (ii) global tests - verify the consistency of a
database outside the local region, i.e. by accessing the information at the remote site(s).
The method that adopts these integrity tests is called the global method.

c. Based on its properties: (i) sufficient tests - when the test is satisfied, this implies that
the associated constraint is satisfied and thus the update operation is safe with respect
to the constraint. (ii) necessary tests - when the test is not satisfied, this implies that the
associated constraint is violated and thus the update operation is unsafe with respect to
the constraint. (iii) complete tests - has both the sufficiency and the necessity properties.

Integrity test
based on input

Integrity test
based on region

Integrity test based on
detection/prevention methods

Integrity test based
on its properties

Sufficient test
Necessary test

Post-test – evaluated after an
update is performed

Complete test
Sufficient test
Necessary test

Global test –
spans remote

site(s) Pre-test – evaluated before an
update is performed

Complete test
Sufficient test
Necessary test

Post-test – evaluated after an
update is performed

Complete test
Sufficient test
Necessary test

Non-support
test

Local test – spans
local site

Pre-test – evaluated before an
update is performed

Complete test
Sufficient test
Necessary test

Post-test – evaluated after an
update is performed

Complete test
Sufficient test
Necessary test

Global test –
spans remote

site(s) Pre-test – evaluated before an
update is performed

Complete test
Sufficient test
Necessary test

Post-test – evaluated after an
update is performed

Complete test
Sufficient test
Necessary test

Support test

Local test – spans
local site

Pre-test – evaluated before an
update is performed

Complete test

Table 2. Types of Integrity Tests in Distributed Database

www.intechopen.com

 Convergence and Hybrid Information Technologies

80

d. Based on the input used to generate the test: (i) non-support tests - these integrity tests
are generated based on the update operation and the integrity constraint to be checked,
called target integrity constraint, and (ii) support tests - any tests that are derived using
other integrity constraints as the support to generate the tests. These types of integrity
tests are summarized in Table 2.

4. The proposed framework

Figure 2 illustrates the proposed framework of integrity constraint checking for distributed
database systems. This framework is divided into two modules: COMPILE-TIME MODULE
and RUN-TIME MODULE which are elaborated in the subsections 4.1 and 4.2, respectively.
The proposed framework has been successfully implemented using Visual Basic 6.0
programming language. Each module has been developed and tested with respect to the
example database that is considered in this chapter. The major tasks of the framework are to
generate the integrity tests for a given update operation, and ranked the selected integrity
tests. We do not attempt to discuss in detail the implementation of the components that
underpin the framework, but rather present brief results of the implementation of the
various components embodied in this framework.

Fig. 2. The Proposed Framework of Constraint Checking

4.1 Components of compile-time module
This module encompasses three components, namely: Knowledge Builder, Update
Templates Generator, and Integrity Tests Generator as explained below.

www.intechopen.com

A Framework for Localizing Integrity Constraints Checking in Distributed Database

81

Knowledge Builder: This component analyzes the database schema and integrity
constraints for a particular database application. It checks the syntactic correctness of a
database schema and extracts some facts that include the names of relations in the database
system, names and number of attributes in each relation. In addition, it checks if the input
constraints specified by the user are valid and correct with respect to the syntactic formula
given in the constraint specification.
Update Templates Generator: The aim of this component is to derive all possible update
operations (templates) that might violate a given constraint. The update templates are
generated for a particular database by applying the well-known update theorems. These
theorems with their proofs can be found in (Nicolas, 1982) and are therefore omitted here.
Integrity Tests Generator: The most important and the essential component in the Compile-
Time Module is integrity tests generator. The main operation is to construct the integrity
tests by simplifying the integrity constraint which is specified in prenex conjunctive normal
form. This component addresses the issue of checking the constraints locally regardless the
location of the submitted update operation as elaborated in Section 2. Three types of
integrity test are generated by using three different algorithms, namely: complete tests are
derived using Algorithm-1 proposed by Nicolas (1982); complete/sufficient tests are
generated using Algorithm-2 proposed by Ibrahim (1998); while support tests are produced
using Algorithm-3 which is proposed by us. These algorithms adopt the substitution
techniques and absorption rules to generate integrity tests (Nicolas, 1982; Ibrahim, 1998).
The difference between our algorithm and Algorithm-1 and Algorithm-2 is that our proposed
simplification technique uses other integrity constraints to generate integrity tests while
both the Algorithm-1 and Algorithm-2 used the target integrity constraint (integrity constraint
to be checked) as the input. The details of these algorithms are omitted here. Interested
readers may refer to Alwan et al (2007). Table 3 summarizes the integrity tests generated for
the integrity constraints listed in Figure 1 using these algorithms.
In Figure 3 the interface for generating update templates is illustrated for the Company
database.
Figure 4 presents the interface for the Integrity Tests Generator component that has been
implemented for the Company database.

4.2 Components of run-time module
The Run-Time Module encompasses four components namely: Update Template Analyzer,
Integrity Tests Selector, Integrity Tests Ranker, and Integrity Tests Classifier as elaborated
below.
Update Template Analyzer: This component analyzes the syntax of an update operation
submitted by a user. It checks that the name of relation and the number of
attributes/columns which are specified in the update operation are the same as the name of
relation and the number of attributes/columns that appear in the database schema.
Integrity Tests Selector: The main function of this component is to identify the integrity
constraints that might be violated given an update operation and select the integrity tests
associated to those constraints. This phase is achieved by comparing the real update
operation with the update templates that have been generated. This comparison includes
checking the name of relation and type of update operation. If both the actual update
operation and update template have the same relation name and type of update operation,
then the integrity tests of the update template are selected. This is to ensure that only those
constraints and their associated integrity tests that might be violated for the given update
operation are considered for evaluation.

www.intechopen.com

 Convergence and Hybrid Information Technologies

82

IC-i Update template Integrity test
Type of
integrity test

IC-1 insert emp(a, b, c, d) 1. d > 0 Complete Test

2. (∀x2∀y2∀z2)(¬emp(a, x2, y2, z2) ∨ [(b = x2) ∧
(c = y2) ∧ (d = z2)])

Complete Test

3. (∀x1∀y1∀z1)(¬emp(a, x1, y1, z1)) Complete Test

4. (∃v∃w)(proj(a, v, w)) Support Test

IC-2 insert emp(a, b, c, d)

5. (∃t∃u∃w)(dept(t, u, a, w)) Support Test

6. (∀x2∀y2∀z2)(¬dept(a, x2, y2, z2) ∨ [(b = x2) ∧
(c = y2) ∧ (d = z2)])

Complete Test

7. (∀x1∀y1∀z1)(¬dept(a, x1, y1, z1)) Complete Test

8. (∃t∃v∃w)(emp(t, a, v, w)) Support Test

IC-3 insert dept(a, b, c, d)

9. (∃u∃w)(proj(u, a, w)) Support Test

10. (∃x∃y∃z)(dept(b, x, y, z)) Complete Test

11. (∃t∃v∃w)(emp(t, b, v, w)) Sufficient Test

insert emp(a, b, c, d)

12. (∃u∃w)(proj(u, b, w)) Support Test

13. (∀t∀v∀w)(¬emp(t, a, v, w)) Complete Test

IC-4

delete dept(a, b, c, d)

14. (∀u∀w)(¬proj(u, a, w)) Support Test

15. (∃x∃y∃z)(emp(a, x, y, z)) Complete Test

16. (∃v∃w)(proj(a, v, w)) Sufficient Test

insert proj(a, b, c)

17. (∃t∃u∃w)(dept(t, u, a, w)) Support Test

18. (∀v∀w)(¬proj(a, v, w)) Complete Test

IC-5

delete emp(a, b, c, d)

19. (∀t∀u∀w)(¬dept(t, u, a, w)) Support Test

20. (∃x∃y∃z)(dept(b, x, y, z)) Complete Test

21. (∃u∃w)(proj(u, b, w)) Sufficient Test

insert proj(a, b, c)

22. (∃t∃v∃w)(emp(t, b, v, w)) Support Test

23. (∀u∀w)(¬proj(u, a, w)) Complete Test

IC-6

delete dept(a, b, c, d)

24. (∀t∀v∀w)(¬emp(t, a, v, w)) Support Test

25. (∃x∃y∃z)(emp(c, x, y, z)) Complete Test insert dept(a, b, c, d)

26. (∃v∃w)(proj(c, v, w)) Support Test

27. (∀t∀u∀w)(¬dept(t, u, a, w)) Complete Test

IC-7

delete emp(a, b, c, d)

28. (∀v∀w)(¬proj(a, v, w)) Support Test

insert dept(a, b, c, d) 29. (∃y∃z)(emp(c, y, z, d)) Complete Test IC-8

delete emp(a, b, c, d) 30. (∀u∀v)(¬dept(u, v, a, d)) Complete Test

IC-9 insert dept(a, b, c, d) 31. (a <> ‘D1’) ∨ (d > 4000) Complete Test

32. (∀x∀y∀z)(¬dept(b, x, y, z) ∨ (d ≤ z)) Complete Test insert emp(a, b, c, d)

33. (∃t∃v∃w)(emp(t, b, v, w) ∧ (w ≥ d)) Sufficient Test

IC-10

insert dept(a, b, c, d) 34. (∀t∀v∀w)(¬emp(t, a, v, w) ∨ (w ≤ d)) Complete Test

35. (∀z)(¬proj(c, z, P3) ∨ (d > 1000)) Complete Test insert dept(a, b, c, d)

36. (∃x∃y∃z)(emp(c, x, y, z) ∧ (d > 1000)) Support Test

37. (∀v∀w∀y)(¬dept(v, w, a, y) ∨ (y > 1000)) Complete Test

38. (∃z)(proj(a, z, P3)) Sufficient Test

IC-11

insert proj(a, b, P3)

39. (∃x∃y∃z)(emp(a, x, y, z) ∧ (z > 1000)) Support Test

40. (∃z)(proj(z, b, P2)) Complete Test insert proj(a, b, P1)

41. (∃x)(proj(x, b, P1)) Sufficient Test

42. (∀x)(¬proj(x, b, P1)) Complete Test

IC-12

delete proj(a, b, P2)

43. (∃z)(proj(z, b, P2) ∧ (z <> a)) Sufficient Test

Table 3. Integrity Tests of the Integrity Constraints of the Example Database

www.intechopen.com

A Framework for Localizing Integrity Constraints Checking in Distributed Database

83

Fig. 3. The List of Update Templates Generated for the Company Database

Fig. 4. The Integrity Tests of the Referential Integrity Constraint IC-4 for the Company
Database

www.intechopen.com

 Convergence and Hybrid Information Technologies

84

Integrity Tests Ranker: The main aim of this component is to rank the selected integrity
tests. It attempts to answer the following questions; which test should be selected if there are
several alternatives that can be chosen from? What are the criteria that should be measured
in order to identify the suitable test?
Most of the works in integrity constraints checking focused on techniques to simplify
integrity constraints with the assumption that the simplified forms of the constraints are
cheaper than the initial constraints. Thus, the simplified form is evaluated (instead of the
initial constraint) to verify the consistency of the database. Moreover, most of the efficiency
measurements consider a single cost component and are more applicable for measuring the
cost of evaluating integrity constraints in a centralized environment rather than a
distributed environment. In addition, most of the previous works consider limited type of
integrity tests (complete and sufficient) and depend strictly on the assumption that the
update operation is always submitted at the site where the relation specified in the update is
located. Thus, their approaches in selecting suitable integrity tests are not general enough.
These approaches do not consider support tests and there is no ranking between the types of
tests, i.e. all tests are considered the same.
We argue that tests should be ranked as they have different probability of being true or false
in a given database state. Thus, we suggest complete test should have the highest priority,
followed by sufficient test, and lastly by support test. This is because complete test has both
the sufficiency and the necessity properties, sufficient test can only verify for valid database
state, and most of the support test is either sufficient test or necessary test. As mentioned in
the literature, the amount of data transferred across the network is the most critical factor;
therefore we suggest the amount of data transferred to have the highest priority in the
ranking model, followed by the number of sites involved, and the amount of data accessed.
Based on these arguments, we have proposed a ranking model as shown in Figure 5. Each
value in the box, i.e. 1, 2, 3, …, P, is the rank value where P is the maximum rank value. The
rank value of a test, Testi, with respect to T is denoted by RankT. Similar notation is used for
indicating the rank value of a test with respect to σ and Á. Thus, we can calculate the total
rank value for a given test by simply adding the rank values for each of the parameter, i.e.
Rank-Testi = RankT + Rankσ + RankÁ., where Τ provides an estimate of the amount of data
transferred across the network, A provides an estimate of the amount of data accessed, and σ
gives a rough measurement of the amount of nonlocal access necessary to evaluate a
constraint or integrity test. The test with the smallest rank value is said to be the suitable
test. A test with the lowest total rank value is said to be the most appropriate test. The
ranking model is designed as follows:
1. If the amount of data transferred of a given test is 0 (i.e. the test is a local test), then

depending on its property, a value of 1, 2, and 3 is assigned to the RankT if the test is a
complete, sufficient, and support, respectively. Otherwise for each nonlocal test (T ≠ 0),
the tests are ordered according to the value of T and the test with the lowest T, a value
of 4 is assigned to its RankT. The next lowest, a value of 5 is assigned to its RankT and so
on.

2. If the number of sites involved in checking a given test is 1, then depending on its
property, a value of 4, 5, and 6 is assigned to the Rankσ if the test is a complete,
sufficient, and support, respectively. The rank value begins with 4 (and not 1, 2, or 3) to
show that the number of sites has lower priority than the amount of data transferred.
Otherwise, for each test with σ ≠ 1, the tests are ordered according to the number of sites

www.intechopen.com

A Framework for Localizing Integrity Constraints Checking in Distributed Database

85

involved and the test with the lowest σ, a value of 7 is assigned to its Rankσ. The next
lowest, a value of 8 is assigned to its Rankσ and so on. Also, note that a test with Rankσ =
4 (5 and 6, respectively) will definitely not be assigned a RankT = 4 (5 and 6,
respectively) since RankT = 4 (5 and 6, respectively) indicates that the test is a nonlocal
test while Rankσ = 4 (5 and 6, respectively) denotes that the test is a local test. Although
they have the same rank value, i.e. 4, but after adding the rank value for both T and σ,
the local test will definitely have lower total rank value compared to the nonlocal test.

3. If the amount of data accessed for each of the test is the same, then depending on its
property, a value of 7, 8, and 9 is assigned to the RankÁ if the test is a complete,
sufficient, and support, respectively. The rank value begins with 7 (and not 1, 2, …, 6) to
show that the amount of data accessed has the lowest priority compared to the amount
of data transferred and the number of sites involved. Otherwise, for each test with
different amount of data accessed, these tests are ordered according to the amount of
data accessed and the test with the lowest Á , a value of 10 is assigned to its RankÁ. The
next lowest, a value of 11 is assigned to its RankÁ and so on. Also, note that a test with
RankÁ = 7 (8 and 9, respectively) can be assigned a Rankσ = 7 (8, 9, …, Pσ) which indicate
that the test is a nonlocal complete test (nonlocal sufficient test and nonlocal support
test, respectively) and the amount of data accessed is the same for all the alternative
tests.

Parameter/
Type of Test

Complete, C Sufficient, S Support, Sup Remarks

T = 0 1 2 3

If T ≠ 0, the tests are rank
accordingly based on the
amount of data transferred.
Rank value begins with 4, 5, 6,
…, PT

σ = 1 4 5 6

If σ ≠ 1, the tests are rank
accordingly based on the
number of sites involved. Rank
value begins with 7, 8, 9, …, Pσ

ÁC = ÁS = ÁSup 7 8 9

If ÁC ≠ ÁS ≠ ÁSup, the tests are
rank accordingly based on the
amount of data accessed. Rank
value begins with 10, 11, 12,
…, PÁ .

Note: PT (Pσ and PÁ, respectively) is the maximum rank value assigned to a test based on T (σ
and Á, respectively).

Fig. 5. The Proposed Ranking Model

To illustrate the ranking model for integrity tests, three scenarios are considered:
i. Centralized database (all relations are located at the same site).
ii. Average case (two relations are located at the same site while the other is located at a

different site).
iii. Worst case (each relation is located at different sites).
We assume that emp relation contains 500 employees (500 tuples), dept relation contains 10
departments (10 tuples), and proj relation contains 100 projects (100 tuples).

www.intechopen.com

 Convergence and Hybrid Information Technologies

86

 IC-4 and the insert operation into emp relation are used to demonstrate the model, i.e. tests
10 (complete), 11 (sufficient), and 12 (support) are compared.
Based on the result shown in Table 4, complete test, C, is selected, as it is the most suitable
test for centralized database. Since all tests have similar characteristics with regards to T (=
0) and σ (= 1), the only different are the properties of the tests and Á. Mazumdar (1993)
scatter metric alone is not able to select the suitable test as these tests have the same scatter
metric, σ = 1, while Ibrahim et al (2001) will select the test with the lowest Á. If the tests have
the same amount of data accessed, then no solution is given in Ibrahim et al (2001).

Update is submitted at site: Location of Relations Rank-Testi Test Selected

S1

S1

emp, dept, proj C = 1 + 4 + 10 =15
S = 2 + 5 + 12 = 19
Sup = 3 + 6 + 11 = 20

Test C

Table 4. Case (i) Centralized Database

Table 5 presents an average case with several different scenarios. Here, we assume that two
of the relations are located at the same site while the other relation is located at a different
site, and update operation is submitted at any of these sites. From the results, we observed
that local test is always selected regardless the type of the tests. In cases where more than
one local test is available, then the tests are rank according to the type and the amount of
data accessed (this scenario is similar to the case (i) centralized database discussed earlier).

Update is submitted at site: Location of Relations Rank-Testi Test Selected
S1 emp, dept S1

 S2 proj
C = 1 + 4 + 10 = 15
S = 2 + 5 + 12 = 19
Sup = 4 + 7 + 11 =
22

Test C

S1 emp, dept S2
S2 proj

C = 4 + 7 + 10 = 21
S = 5 + 7 + 12 = 24
Sup = 3 + 6 + 11 =
20

Test Sup

S1 emp, proj S1
S2 dept

C = 4 + 7 + 10 = 21
S = 2 + 5 + 12 = 19
Sup = 3 + 6 + 11 =
20

Test S

S1 emp, proj S2
S2 dept

C = 1 + 4 + 10 = 15
S = 5 + 7 + 12 = 24
Sup = 4 + 7 + 11 =
22

Test C

S1 dept, proj S1
S2 emp

C = 1 + 4 + 10 = 15
S = 4 + 7 + 12 = 23
Sup = 3 + 6 + 11 =
20

Test C

S1 dept, proj S2
S2 emp

C = 4 + 7 + 10 = 21
S = 2 + 5 + 12 = 19
Sup = 5 + 7 + 11 =
23

Test S

Table 5. Case (ii) Average Case

www.intechopen.com

A Framework for Localizing Integrity Constraints Checking in Distributed Database

87

Table 6 presents the worst case scenario. In this case each relation is located at different sites.
Here, we assume emp relation is located at site S1, dept relation is located at site S2, and proj
relation is located at site S3. The test that is selected is the local test (T = 0 and σ = 1). As
mentioned earlier, most of the previous works assumed that the update operation is
submitted at the site where the relation specifies in the update is located, and thus the
sufficient test is always selected. In the ranking model, the suitable test (with the lowest total
rank value) is selected and this test can be complete, sufficient or support.

Update is submitted at site: Location of Relations Rank-Testi Test Selected

S1 emp

S2 dept
S1

S3 proj

C = 4 + 7 + 10 = 21
S = 2 + 5 + 12 = 19
Sup = 5 + 7 + 11 = 23

Test S

S1 emp

S2 dept
S2

S3 proj

C = 1 + 4 + 10 = 15
S = 5 + 7 + 12 = 24
Sup = 4 + 7 + 11 = 22

Test C

S1 emp

S2 dept

S3

S3 proj

C = 4 + 7 + 10 = 21
S = 5 + 7 + 12 = 24
Sup = 3 + 6 + 11 = 20

Test Sup

Table 6. Case (iii) Worst Case

Obviously, in some cases, support tests can benefit the distributed database, where local
constraint can be achieved. Integrating these various types of integrity tests during
constraint checking and not concentrating on certain types of integrity tests (as suggested by
previous works) can enhance the performance of the constraint mechanism. Thus,
developing an approach that can increase the performance and minimize the cost during the
process of constraint checking in the distributed database is important. We have evaluated
the model with several cases and several different types of integrity constraints, and in all
cases the model is able to select the suitable test as expected.
Integrity Tests Classifier: This component focuses on classifying the integrity tests based on
region i.e., into local test or global test. Each test regardless the type can be classified as
either local or global depending on where the real update operation is submitted and the
location of the relation(s) specified in the integrity tests is located. If the test can be
performed locally, then the test is being local. In contrary, when the test needs to transfer
data across the network from another site(s) the test is being global. Note that the Integrity
Tests Ranker component ranks the integrity tests without selecting any of the tests for
evaluation. Only after classification that the test with the lowest total rank value (normally
local test) is selected. The Test Selected column in tables 4, 5 and 6 is to demonstrate the
whole idea of selecting the suitable integrity test to be evaluated from a list of alternative
tests. Figure 6 illustrates the interface of the Run-Time Module.

5. Conclusion

In this chapter, we have proposed an approach that performs constraint checking at the
target site by utilizing as much as possible the local information to avoid the possibility of
transferring data across the network. The novelty of this approach is that local checking can
be performed regardless the location of the submitted update operation. This is achieved by
having several types of integrity tests and not focusing on certain type of integrity tests as

www.intechopen.com

 Convergence and Hybrid Information Technologies

88

Fig. 6. The Interface of the Run-Time Module

suggested by previous researchers in this area. Also, we have proposed an approach for

ranking and selecting suitable integrity tests that reduce the amount of data transferred

across the network, the amount of data accessed, and the number of sites involved. Most

importantly, we have proved that in most cases, support tests can benefit the distributed

database, where local constraint checking can be achieved. Thus, the efficiency of checking

constraint process is increased. Both of these strategies are embedded in our proposed

framework as presented in this chapter. For future works further enhancement to the

proposed approach can be done by considering strategies to maintain the distributed

database state when violation occurs. Considering multiple operations or transaction is

another area that can be explored where strategies that can minimize the cost of checking

the constraints are needed.

6. References

Alwan, A. A.; Ibrahim, H. & Udzir, N. I., (2007). Local Integrity Checking using Local

Information in a Distributed Database. Proceedings of the 1st Aalborg University

IEEE.Student Paper Contest 2007 (AISPC’07), Aalborg, January 2007, Denmark.

Christiansen H. & Martinenghi D. (2006). On using Simplification and Correction Tables for

Integrity Maintenance in Integrated Databases, Proceedings of the 17th International

www.intechopen.com

A Framework for Localizing Integrity Constraints Checking in Distributed Database

89

Conference on Database and Expert Systems Applications (DEXA'06), pp. 569 – 576,

Krakow, September 2006, Poland.

Feras, A. H. H., (2006). Integrity Constraints Maintenance for Parallel Databases. Ph.D. Thesis,

Universiti Putra Malaysia, Malaysia.

Gupta A., (1994). Partial Information based Integrity Constraint Checking. Ph.D. Thesis, Stanford

University, USA.

Ibrahim H. (1998). Semantic Integrity Constraints Enforcement for a Distributed Database, Ph.D.

Thesis, University of Wales College of Cardiff, Cardiff (UK).

Ibrahim H.; Gray W.A., & Fiddian N.J. (2001). Optimizing Fragment Constraints – A

Performance Evaluation, International Journal of Intelligent Systems – Verification and

Validation Issues in Databases, Knowledge-Based Systems, and Ontologies, Edited by:

Ronald, R., John Wiley & Sons Inc.,Vol. 16, No. 3, , 2001, pp. 285 – 306, ISSN 0884-

8173.

Ibrahim H. (2002). A Strategy for Semantic Integrity Checking in Distributed Databases,

Proceedings of the Ninth International Conference on Parallel and Distributed

Systems, pp. 139- 144, Republic of China, IEEE Computer Society, December 2002,

China.

Ibrahim, H., (2006). Checking Integrity Constraints – How it Differs in Centralized,

Distributed and Parallel Databases. Proceedings of the Second International Workshop

on Logical Aspects and Applications of Integrity Constraints, pp. 563 – 568, Krakow,

September 2006, Poland.

Madiraju P.; Sunderraman R., and Haibin W. (2006). A Framework for Global Constraint

Checking Involving Aggregates in Multidatabases Using Granular Computing,
Proceedings of IEEE International Conference on Granular Computing (IEEE-GrC‘06),

pp. 506 – 509, Atlanta, May 2006, USA.

Martinenghi, D., (2005). Advanced Techniques for Efficient Data Integrity Checking. Ph.D. Thesis,

Roskilde University, Denmark.

Mazumdar, S., (1993). Optimizing Distributed Integrity Constraints. Proceedings of the 3rd

International Symposium on Database Systems for Advanced Applications, pp. 327 – 334,

Vol. 4, Taejon, April 1993, Korea.

McCarroll N.F. (1995). Semantic Integrity Enforcement in Parallel Database Machines, PhD

Thesis, Department of Computer Science, University of Sheffield, Sheffield, UK.

McCune, W. W. & Henschen, L. J., (1989). Maintaining State Constraints in Relational

Databases: a Proof Theoretic Basis. Journal of the Association for Computing

Machinery, Vol. 36 No.1, January 1989, pp. 46 – 68, ISSN:0004-5411.

Nicolas, J. M., (1982). Logic for Improving Integrity Checking in Relational Databases. Acta

Informatica, Vol. 18, No.3, 1982, pp. 227 – 253, ISSN:0001-5903.

Qian, X., (1989). Distribution Design of Integrity Constraints. Proceedings of the 2nd

International Conference on Expert Database Systems, pp. 205 – 226, Vienna, Virginia,

April 1989, USA.

Simon, E. & Valduriez, P., (1986). Integrity Control in Distributed Database Systems.

Proceedings of the 19th Hawaii International Conference on System Sciences, pp. 622 –

632, Honolulu, Hawaii, January 1986, USA.

www.intechopen.com

 Convergence and Hybrid Information Technologies

90

Soumya B.; Madiraju, & Ibrahim H. (2008). Constraint Optimization for a System of Relation

Databases, Proceedings of the IEEE 8th International Conference on Computer and

Information Technology (CiT 2008), pp. 155 - 160, Sydney, July 2008, Australia.

www.intechopen.com

Convergence and Hybrid Information Technologies

Edited by Marius Crisan

ISBN 978-953-307-068-1

Hard cover, 426 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Starting a journey on the new path of converging information technologies is the aim of the present book.

Extended on 27 chapters, the book provides the reader with some leading-edge research results regarding

algorithms and information models, software frameworks, multimedia, information security, communication

networks, and applications. Information technologies are only at the dawn of a massive transformation and

adaptation to the complex demands of the new upcoming information society. It is not possible to achieve a

thorough view of the field in one book. Nonetheless, the editor hopes that the book can at least offer the first

step into the convergence domain of information technologies, and the reader will find it instructive and

stimulating.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ali Amer Alwan, Hamidah Ibrahim and Nur Izura Udzir (2010). A Framework for Localizing Integrity Constraints

Checking in Distributed Database, Convergence and Hybrid Information Technologies, Marius Crisan (Ed.),

ISBN: 978-953-307-068-1, InTech, Available from: http://www.intechopen.com/books/convergence-and-hybrid-

information-technologies/a-framework-for-localizing-integrity-constraints-checking-in-distributed-database

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

