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Slovak University of Technology,  

Faculty of Electrical Engineering and Information Technology, 
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1. Introduction     

Control design methods have to respect various requirements imposed on the performance 
of controlled systems. Controllers often include many design parameters and their various 
constraints. The search/optimisation process may be complicated, discontinuous or non-
convex, and often some analytical methods are not able to yield satisfactory results. 
Opposite to this, evolution-based search techniques are able to generate new control laws 
and non-intuitive solutions as well. Without loss of generality, let us consider the use of 
genetic algorithm (GA), which is one of the most frequently used evolutionary techniques. 
Recently, genetic algorithms have been applied in process control to solve a wide range of 
optimisation and design problems. This chapter is focused on the design of controllers for 
continuous-time systems.   
Let us classify the known approaches, which are using evolutionary algorithms (EA) in two 
groups. In the first group the EA's are used as a powerful optimisation/search tool in 
analytically formulated control design methods. The parameters of controllers (or any 
dynamic system) are designed analytically, based on the stability or required system 
performance (Kawabe et al., 1996; Krohling & Rey, 2001; Man, 2001; Sekaj & Veselý, 2005). 
The second group of methods applies simulation-based closed-loop time response 
evaluation of the model (Herrero et al., 2002; Khatib, 1999; Lewin, 2005; Mitsukura et all, 
1999; Sweriduk et al., 1999; Yang, 2005). A multi-objective approach that comprises 7 
different objectives including both analytically formulated and time-response performance 
based ones is presented in (Molina-Cristóbal, 2005). 
If the design task includes not just searching for parameters of a prespecified control 
structure but also searches for the internal structure itself, an extension to this approach is 
possible using the Genetic programming (Koza, 1992;  Banzhaf  et al., 1999; Koza et al., 2000;  
Sekaj et al., 2005; Sekaj & Perkacz, 2007). To optimise controller structure also a hierarchical 
GA can be used (Man at al., 2001). In (Grosman & Lewin, 2005) Genetic programming has 
been used to generate the Lyapunov functions. Survey of evolutionary-based control system 
designs is e.g. in (Fleming & Purshouse; Lewin, 2005).  
In this chapter a straightforward incorporating of the simulation-based closed-loop time 
response evaluation in the evolutionary algorithm is presented. The proposed approach 
deals with a direct Evolutionary-based search/optimisation in the controller parameter 
space combined with extensive computer simulations of the designed closed-loop system O
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(Sekaj, 1999; Sekaj et al., 2002; Sekaj, 2003; Sekaj et al., 2005; Sekaj & Perkacz, 2007; Sekaj 
2005). Thus, the simulation is an essential part of the minimised objective function. It will be 
shown that according to this approach, the design of optimal parameters for a dynamic 
system is transformed into a "conventional" n-dimensional optimisation problem. In section 
2, the design principle is described and the use of various performance indices is discussed. 
In the section 3 robust controller design methods are proposed. A multi-objective design 
approach is discussed in section 4, where multiple objectives are considered in the controller 
design procedure. Finally, controller internal structure design and its parameters using 
genetic programming is proposed in section 5. 

2. Controller design 

2.1 The design principle 

As already mentioned, the control design objective is to provide required static and dynamic 
behaviour of the controlled process, usually represented in terms of the well-known 
performance measures: maximum overshoot, settling time, decay rate, steady state error or 
various integral performance indices (Dorf, 1990; Kuo, 1991; and others).  
Without loss of generality let us consider a simple feedback loop (Fig. 1) where y is the 
controlled variable, u is the control, r is the reference and e is the control error (e=r-y). Let an 
appropriate simulation model of the controlled object be available. The closed-loop 
performance will be assessed using the simple integral performance index "integral of 
absolute control error" defined as 

 ∫=
T

AE dtteI
0

)(  (1) 

where T is the simulation time. The discrete form of this performance index is 

 ∑
=

=
N

k

kAE eTI
ks

1
,

 (2) 

where Ts,k is the simulation step size and N is the number of simulation steps. 
 

 
Fig. 1. Simple feedback control loop 

The controller design is actually an optimisation task - search for such controller parameters 
from the defined parameter space that minimise the performance index (1) or (2). The cost 
function (fitness) is a mapping Rn→R, where n is the number of designed controller 
parameters. The cost function evaluation consists of two steps. The first step is the closed-
loop time response simulation, the second one is the performance index evaluation. Note, 
that when designing complex, multi-input multi-output (MIMO) control structures or the 
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other controller types (fuzzy controllers, neuro-controllers, etc.) the dimension n of the 
search space may be quite large (more than tens or even hundreds).  
Graphical representation of a simple cost function corresponding to a simple PI controller 
design is in Fig. 2. Each point of the surface GIAE=f(P,I) is a result of a simulation and the 
performance index (1) evaluation. The optimal PI controller parameters are represented by 
the co-ordinates of the surface global minimum. This simple 2-D search problem can also be 
solved using conventional (deterministic) enumerative search/optimisation techniques. 
However, in case of more complex control structures comprising many parameters, the 
dimension of the search space is growing and the use of such methods may be no more 
feasible due to high computational requirements. Here, the evolutionary-based techniques, 
in our case the genetic algorithms can successfully be used. 
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Fig. 2. Graphical representation of a cost function with the IAE performance index (1) for a 
particular closed-loop under a PI controller 

2.2 Genetic algorithm 

Genetic algorithms (Goldberg, 1989; Michalewicz, 1996;  Eiben & Smith, 2003; Man et al., 
2001) deals with a population consisting of a set of chromosomes. Each chromosome 
represents a potential solution and has the form of a linear string of numbers; in our case, 
items of a chromosome (genes) correspond to the designed controller parameters. As the 
controller parameters are real-number variables and the number of the searched parameters 
can be large, real-coded chromosomes have been considered. 
Without loss of generality consider a PID controller, which control law in time domain 
description is as follows 

 
dt

tde
DdtteItPetu

)(
)()()( ++= ∫  (3) 

where P∈R, I∈R, D∈R are the proportional, integral and derivative gains, respectively. In 
this case a chromosome can be represented in the form ch={P,I,D}. For any other controller 
type with parameters c1, c2, ... , cq the corresponding chromosome would be a string  

ch={c1, c2, ... , cq}.  

A general scheme of a GA can be described as follows:  
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1. Initialisation of the population of chromosomes (generating a set of random 
chromosomes). 

2. Evaluation of the cost function (fitness) for all chromosomes. 
3. Selection of parent chromosomes. 
4. Crossover and mutation of parents → children. 
5. Creation of a new population consisting of new children and selected members of the 

old population including the best individual from the current population.  
6. Testing terminating conditions, jump to the Step 2 or End. 
The block scheme describing the controller design principle is shown in Fig. 3. 
 

 
Fig. 3. Block scheme of the GA-based controller design 

Example in Fig. 4 shows evolution of a PID via minimisation of the criterion (1). After a 
certain number of generations the best solution from the current population (its closed-loop 
step response) has been plotted. As after 100 generations the solution has not changed 
considerably, the GA run could have been terminated. The cost function convergence 
during three independent GA-runs (cost function of the currently best individual of the 
population vs. generation number) is depicted in Fig. 5. 
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Fig. 4. Evolution of the PID controller parameters after 1, 10, 20, 30 and 100 generations 
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Fig. 5. Cost function convergence of the PID controller design procedure for three 
independent GA-runs for population size 30 individuals. 

Note, that the controller design for a complex system can become a multi-modal and a time-
consuming problem, where often a good sub-optimal solution is sufficient. The answer to 
the question about the convergence rate of the controller design procedure is similar as in 
case of other numerical GA-based search/optimisation problems. It depends on the search 
space size and dimension and on the GA performance. 

2.3 Choice of the performance index 

Consider that a GA has found the optimal (sub-optimal) solution in the user-defined search 
space of controller parameters. The choice of the performance index has a fundamental 
influence on the closed-loop dynamics. Normally, using (1) or (2) brings about fast control 
responses with small overshoots between 2-5% (Fig. 4). For various objectives different 
performance indices can be used (Sekaj, 1999;  Sekaj, 2005). 
If it is necessary to reduce overshoot or to damp oscillations, it is recommended to insert in 
the integral additional terms, which include absolute values of the first or also the second 
derivatives of the control error 

 ( )∫ ′′+′+=
T

dtteteteJ
0

)()()( γβα  (4) 

and to increase β and γ  with respect to α, where α β γ, , are weight coefficients. Note, that 

the control error derivatives can be replaced with the absolute values of output derivatives 
(|y'(t)|, |y''(t)|).  In the discrete case the integral is replaced by the sum and the derivatives 
by the differences. Good results can be obtained also using the performance index in the 
form 

 
stJ )1( ααη −+=  (5) 

where η is the overshoot, ts is the settling time and 10 <<α  is the weight coefficient. 
Tracking the reference step response yr(t)  is achieved via minimising 
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 ∫ −= dttytyJ r

2))()((  (6) 

Control energy minimisation can be achieved using performance indices of the type 

 ∫ −+= dttuteJ ))()1()(( 22 αα  (7) 

where u is the control variable. A universal performance index, which combines some above 
criterions is as follows 

 ( )∫ ′++′+=
T

dttuctubteateJ
0

)()()()(  (8) 

 

where e' is the control error derivative, u is the control variable and u' is its derivative. This 
performance index includes oscillation damping (increasing a), minimisation of the absolute 
value of the control signal u (increasing b) and minimisation of control signal change u′  
(increasing c).  In Fig. 6 to Fig. 13 various configurations of parameters a, b, and c in (8) and 
their influence of the closed-loop time response y and control value u are depicted.   
In case of designing multi-input multi-output systems the design procedure is analogical, 
but for each output a particular (i-th) part of the cost function with some weight is 
considered (9). 

 ∑
=

=
N

i

iiJwJ
1

 (9) 

 

Remark about the closed-loop stability: Due to the applied performance index 
minimisation, closed-loop stability is an implicit attribute of the controller design process. 
Unstable chromosomes are eliminated during the evolution because of high values of 
performance index and thus the solution is directed into the region of stable parameters. 
However if necessary, it is possible to include some stability test in each fitness evaluation. 
Cost function values of unstable individuals can additionally obtain high penalty values. 
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Fig. 6. Closed-loop time responses for various values of the parameter a in (8) 
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Fig. 7. Time responses of control value for various values of the parameter a in (8) 
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Fig. 8. Closed-loop time responses for various values of the parameter b in (8) 
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Fig. 9. Time responses of control value for various values of the parameter b in (8) 
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Fig. 10. Closed-loop time responses for various values of the parameter c in (8) 
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Fig. 11. Time responses of control value for various values of the parameter c in (8) 
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Fig. 12. Closed-loop time responses for various values of the parameters a,b,c in (8) 
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Fig. 13. Time responses of control value for various values of the parameter a,b,c  in (8) 

3. Robust controller design 

3.1 Design in fixed defined working points 

Consider c = {c1, c2, … , cq} to be the set of designed controller parameters and let the  
s = {s1, s2, … , sr} is the set of parameters of the controlled system. During the operation of the 
plant, the parameters si can move within some uncertainty space 

 S:   max,min, iii sss ≤≤ ;  ri ,...,2,1=  (10) 

where si,min and si,max are the minimum and maximum possible values of the i-th system 
parameter, respectively. Consider W different (physical) working points of the controlled 
process, defined by different vectors s, which are to be controlled by the robust controller. 
For that case consider the cost function in the additive form 

 ∑
=

=
W

i

iJJ
1

 (11) 

comprising performance evaluation (for instance (1)) in all W working points. It is also 
recommended to include the measured noise from the real system or other possible 
disturbances or expected situations in the simulation model. Note, that alternatively to the 
set of W defined physical working points we can use a set of 2r system parameter vectors 
located in the vertices of a polytope representing bounds of the parameter space S. 

3.2 Random generating of working points 
Alternative to the previous method, for the working point selection the following method 
can be considered (Sekaj & Šrámek, 2005). In each generation of the GA, n random working 
points (for all chromosomes of the population the same ones) are generated i.e. n vectors 
(say n=100) of system parameters s become random values from the space S. For each 
individual of the population the fitness function is calculated using the performance index 
(11). In the next generation other n random parameter vectors are generated. In each 
generation the cost function evaluation is as follows: 
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1. random generation of n system parameter vectors s (working points), 
2. closed-loop simulation and evaluation of the performance index for each individual and 

each working point,  
3. evaluation of the cost function (11) for each individual. 

3.3 Experimental comparison of robust design methods 

To demonstrate the proposed controller design methods, consider the controlled system, 
which is described by the non-linear differential equation 

 ubyayayay 0
3

012 =++′+′′  (12) 

The gain of this system is not constant and depends on the system output value y. Let the 
system parameters move within the uncertainty intervals 

 ( ) ( ) ( ) ( )20;01.0,2.0;02.0,5;02.0,5;1 2100 ∈∈∈∈ aaab  (13) 

Consider a PID controller described by the transfer function 

 GPID(s)=P+I/s+Ds  (14) 

with the control variable limited within the range 1010 ≤≤− u . The parameters P, I and D 
have been designed using the following 4 methods: 
Method 1: Robust approach according to section 3.2 with 100 randomly generated working 

points from the space S in each generation.  
Method 2: Simple PID design using GA according to section 2, eq. (1) in the nominal working 

point (WP3 in next method). 
Method 3: Robust approach according to the IMC+PID method (Rivera et al., 1986) designed 

in 3 fixed working points:  
         WP1: a0=0.02; a1=0.02; a2=0.01; b0=1 - lower limits of intervals (13) 
         WP2: a0=5; a1=0.2; a2=20; b0=5 - upper limits of (13) 
         WP3: a0=2.51; a1=0.11; a2=10.005; b0=3 - mean values of (13), nominal working point. 

Method 4: Conventional “Optimal Module” PID design method (Oldenburg & Sartorius, 
1956) using a linearised system in the nominal working point. 

The design results are summarised in Table 1. 
 

Method P I D SRM 

1 100 12.62 4.41 0.2898 

2 98.03 8.66 8.45 0.3521 

3 89.10 15.41 2.92 0.3058 

4 20.56 0.98 0.36 1.0124 

Table 1. Results of the Robust PID design methods 

The proposed Statistical robustness measure (SRM) quantifies statistical evaluation of a set of 
closed-loop simulation experiments (in our case 1200) with randomly generated working 
points from the uncertainty space S. The SRM can be expressed by a scalar value calculated 
as follows 
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 ∑
=

=
N

i

iN
JSRM

1

1  (15) 

where N is the number of closed-loop simulation experiments and J is a selected 
performance index. In our case (1) has been used. 
All obtained results from Tab.1 have been tested on 25 randomly selected working points 
from the parameter space S (all 25 are identical for all 4 design methods). Time-responses for 
all design methods are depicted in Fig. 14-Fig. 17. 
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Fig. 14. Closed-loop time responses of 25 test systems for Method 1 
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Fig. 15. Closed-loop time responses of 25 test systems for Method 2 
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Fig. 16. Closed-loop time responses of 25 test systems for Method 3 
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Fig. 17. Closed-loop time responses of 25 test systems for Method 4 

4. Multi-objective controller design 

4.1 Design principle 

In solving many practical design problems not just a single optimisation objective is 
considered. Moreover, the particular objectives are in contradiction (e.g. performance vs. 
energy consumption, etc.). A common way of solving multi-objective tasks is using a single 
cost function consisting of multiple parts 

 nn fwfwfwJ +++= ...2211  (16) 
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where each part fi, i = 1, ..., n  represents an objective with some weight wi. The main 
disadvantage of this method is the high sensitivity of the solution to the weight coefficients. 
This can lead to solutions, which do not correspond to our primary requirements.  
Another way for solving multi-objective problems is the use of the Dominance principle, 
which is the search for the Pareto-optimal set of solutions. This is an effective way to 
overcome the above mentioned problem. Several authors have used this approach in solving 
various multi-objective problems e.g. (Corne et al., 2000; Fleming & Purshouse;  Zitzler & 
Thiele, 1998). Consider minimisation problem. According to the Dominance principle the 
individual x dominates the individual y (or the individual y is dominated by the individual 
x) if 

ni ,...,2,1=∀ ; )()( yfxf ii ≤  and 

},...,2,1{; njj ∈∃ ; )()( yfxf jj <  
(17) 

where n is the number of objectives and fi , i=1,2,...,n is the cost function corresponding to the 
i-th objective. In case of maximisation tasks the formulation is analogical. A set of 
individuals, which are non-dominated by another individual are members of the Pareto-
optimal set of solutions.   
Now, the objective is not to find a single solution, but as much as possible non-dominated 
solutions, for which it is not possible to decide, which one is better. Each user will select the 
individual, which is the best with respect to his requirements. Based on the above approach 
the search algorithm is as follows: 
1. Generating of the initial population. 
2. Calculation of all objective functions for each individual of the population. 
3. Domination calculation: each individual of the population will obtain such a number of 

"penalty points", which corresponds to the number of individuals by which it is 
dominated. The number of penalty points represents the final minimised cost function. 

4. Individuals with zero penalty points are stored in the current group of non-dominated 
individuals. 

5. Calculation of the new population (selection, crossover, mutation). 
6. Adding the current non-dominated group to the new population. 
7. Testing of terminating conditions, jump to Step 2 or end. 
In case of controller design applications various objectives can be considered: integral 
performance indices (as in section 2), settling time, maximum overshoot, oscillation 
damping, various stability measures, gain/phase margin, energy consumption, other 
economic aspects, minimisation of negative environmental impacts of the controlled process 
operation, etc. 

4.2 Case study 

Consider the design of a DC motor speed controller. The objectives are short settling time 
and, on the other hand, low control energy consumption. To fulfil the first objective let us 
minimise the simple integral criterion (1). 
The second objective can be represented by minimisation of the integral of the input motor 
voltage square, which is proportional to the input energy consumption 
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 ∫=
T

dttuJ
0

2

2 )(  (18) 

The results obtained using the algorithm described in the section 4 are depicted in Fig.18  (J2 

versus J1).  Individuals, which have occurred during the GA run are marked by "x". The non-
dominated solutions from the last generation are in the left bottom part of the area marked 
with "o". Detail of the non-dominated set is also depicted in Fig.19. The individual marked 
"Min(J1)" represents the solution with the best performance with respect to the objective J1 
and the individual marked "Min(J2)" represents the best solution with respect to the 
objective J2. The individual marked "Compromise" is a selected trade off between the both 
previous extremes. Step responses for all three mentioned solutions are depicted in Fig.20 
and Fig.21. 
 

 
 

Fig. 18. Individuals occurred during the multi-objective evolution 
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Fig. 19. Set of non-dominated individuals (Pareto-optimal set) - detail of Fig.18 
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Fig. 20. Time-responses of three selected individuals 
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Fig. 21. Control variable time-responses of the three selected individuals 

5. Controller internal structure design 

In the previous parts the design goal was the optimisation of defined controller parameters. 
In this section also the internal structure of the controller is designed/optimised. Because 
the structure of the controller is unknown, also the number of its parameters is not defined. 
From that reason, the length of the chromosome is changing. For such a task the Genetic 
Programming has been used (Koza, 1992; Banzhaf et al., 1999). Next two various approaches 
are proposed (Sekaj et al., 2005; Sekaj & Perkacz, 2007) . In the first approach a discrete-time 
recurrent control algorithm is considered. In the second an interconnected network of 
elementary dynamic and static building blocks are used for a controller design.  

y 

u 

www.intechopen.com



 Evolutionary Computation 

 

254 

5.1 Discrete-time controller algorithm design 

In this proposed approach a discrete-time recurrent control algorithm has been designed as 
function of defined time-delayed input variables (Sekaj et al., 2005). The following variables 
have been considered:  e(k), e(k-1), ..., e(k-m), y(k), y(k-1), ..., y(k-n), u(k-1), u(k-2), ..., u(k-p), r(k), 
where e is the control error, y is the controlled output, u is control value and k is the control 
step. The aim is to find the optimal form of the controller function 

F(θ)=? 

θ ={e(k),..., e(k-m), y(k),..., y(k-n), u(k-1),..., u(k-p),r(k),c} 
(19) 

such that the cost function (2) is minimised, where c are real constants. For the 
representation of the function F the in GP commonly used tree representation has been 
used. The functional nodes contain operations +, -, * and the terminating nodes include 
operation arguments from the vector θ. An example of such a tree is in Fig. 22. 
Following genetic operations have been applied to modify the tree-represented individuals. 
The first one is the crossover, which is the exchange of randomly selected sub-trees in two 
parent trees (see Fig. 23a). From the mutation operators (unary operations) the following 
have been used: replacement of a randomly selected sub-tree by another randomly 
generated sub-tree, removal of a randomly selected sub-tree or addition of a randomly 
generated sub-tree (see Fig. 23b). The last mutation type is the mutation of a terminating 
node, which is a random change of a constant (or a variable) to another value or another 
variable. 
Let us demonstrate the design approach on a controller design for a simple oscillatory linear 
system with the transfer function 
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The cost function in form (2) has been used. After 3000 generations the following recurrent 
control algorithm has been obtained 

u(k) = 6.74([y(k) - y(k-2) - e(k)][e(k-2) –10.88] [23.25+ y(k-1) + y(k-2)]) - -87.82e(k-2) 
[9.33 + y(k-2)]+ y(k) + e(k) - e(k-1) 

(21) 

 
Fig. 22. Example of a controller function tree representation 
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Fig. 23. a) crossover of two trees, b) mutation by removing (adding) of a sub-tree 

In Fig. 24 the closed-loop response under the obtained solution after a reference signal step 
and an external disturbance is compared with a time response under a PID designed using 
GA with the same cost function. 

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

t i m e  [s ]

p
ro

c
e

s
s G A -P ID

G P

 
Fig. 24. Time responses with GP and GA designed controllers 

5.2 Interconnected controller network 

This controller representation is based on an interconnected network, which consists of the 
following elementary continuous-time dynamic/static function blocks: integrator, 
derivative unit, amplifier (multiplication by a constant) and a summation/multiplication 
unit (see Fig. 25) where A, B and D are real constants (Sekaj & Perkacz, 2007). The objective 
is to find the optimal control network consisting of such elementary function blocks and 
their interconnections, which minimises the cost function (1) or (2). 
To represent each potential solution the following table or matrix format of a chromosome 
has been used (see example in Table 2). Each column represents one of the above-mentioned 
blocks. The second row includes the type of each block (Mul-multiplication, Sum-

y 
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summation, Der-derivative, Int-integral). The third row contains the number of the next 
block connected to its output. The number 0 indicates the controller output. The fourth row 
indicates the number of the previous block or signal connected to the block input. Negative 
numbers indicate the controller input signals, positive numbers are function blocks. It is 
possible to reduce the coding algorithm in such a way, that for each block it is sufficient to 
use only one input and one output. The last row contains a multiplicative constant of each 
block. Summation blocks need not be present in the table. For demonstration of the coding 
mechanism, the genotype in Table 2 corresponds to the controller in Fig. 26. In our case -1 
represents the control error signal e. 
 

 
Fig. 25. Library of the used elementary function blocks 

block 1 2 3 4 5 
Mul Mul Der Mul Mul 

0 0 2 0 0 
-1 3 -1 -1 4 

at
tr

ib
u

te
 

36.92 3.57 31.96 36.08 21.54 

Table 2. Chromosome representation 

 
Fig. 26. Controller network example 

Specialised crossover and mutation operators have been programmed to modify 
chromosomes. In case of crossover, two selected parent chromosomes are divided, both in 
random positions between two columns of the table, and then their appropriate parts are 
exchanged. For mutation the following operations have been used: the first is the random 
change of the block type, i.e. a block (for example integrator) is modified to another block 
type (e.g. a derivative unit). A next mutation type is the random deletion or addition of a 
block in the scheme. The last used mutation type is the random change of a constant, which 
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is a part of each block type. After each modification some connections may be missing or 
excessive. Therefore, the unnecessary ones are removed or the new ones are randomly 
added and connected to randomly selected points. 
The design approach has been verified on the controller design for the linear dynamic 
system 
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The objective was to minimise the performance index (2). The designed controller structure 
which was obtained after 3000 generations with the population size 80 individuals,  
mutation rate 0.3 and the crossover rate 0.3 is in Fig. 27. The closed-loop response of the 
obtained controller (GP) to the reference signal is in Fig. 28 compared with PID controller, 
which was optimised using GA (GA-PID, according section 2).  

 
Fig. 27. Controller structure 
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Fig. 28. Time response of the designed controller for reference signal steps from the value 0 
to 5, 10 and 8 
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6. Conclusion 

In this chapter evolutionary based design/optimisation approaches has been proposed for 
controller design of continuous-time process control. Parameters of controllers with fixed 
defined internal structure are designed as well as controllers with a-priori unknown internal 
structure and its parameters. The presented approaches minimise a cost function, which 
comprises closed-loop system simulation and performance index evaluation. In this way the 
controller design is transformed into a search problem in the n-dimensional parameter 
space.  
The design/optimisation can be carried out for complex systems and control structures of 
various types. The main and practically the only limitation of the approach is the time-
consuming computation (compared with conventional approaches) due to thousands up to 
ten thousands closed-loop simulations needed by each design procedure. From the point of 
view the user, on the other hand, the design method is simple to use. It transfers the design 
effort from the experienced human designer to the computer.  
The design approach is simple to extend to robust controller design, for which two different 
methods have been proposed. In addition statistical robustness measure has been 
introduced, which can be considered as an objective tool for robust controller performance 
comparison.  Next, the design idea has been extended also to a multi-objective design task, 
where the objective is the search for the Pareto-optimal set of solutions. From these solutions 
the designer can choose the representative, which is the most appropriate in the particular 
case.  
Finally the design goal was extended from a fix defined controller structure with unknown 
controller parameters to the search/optimisation of the unknown internal structure of the 
controller.  From that reason, the Genetic Programming has been used. 
The proposed evolutionary-based methods can be used for design of various types of 
controllers for various system types (linear, non-linear, stable, unstable, SISO and MIMO, 
fuzzy, neural, etc.). The only condition of this approach is that there exists a simulation 
model of the designed closed-loop. 
In the future, this design approach will be extended for solving very complex design tasks in 
the process control area like complex MIMO control systems for non-linear continuous-time 
systems and for robotic applications using parallel evolutionary algorithms. 
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